Lista para Entregar!

A entrega deve ser feita até dia 13/04, lembre que irei disponibilizar outra lista dia 06/04.

Exercícios do livro do Manfredo ($5^{\underline{a}}$ edição): Cap III: **05, 07 e 12**.

- 1. Seja $f,g:M^n\to N^n$ isometrias entre variedades Riemannianas M^n,N^n conexas. Mostre que se existe $p\in M^n$ tal que f(p)=g(p) e $f_{*p}=g_{*p}$ então f=g.
- **2.** Seja $f:(M^n,g_1)\to (N^n,g_2)$ um difeomorfismo entre variedades Riemannianas M^n,N^n conexas que preserva distâncias, isto é,

$$d_{q_1}(p,q) = d_{q_2}(f(p), f(p))$$

para todos pontos $p, q \in M$. Mostre que f é uma isometria.

- **3.** Seja M^2 uma variedade Riemanniana conexa, $j:M^2\to M^2$ uma isometria $(j\neq Id)$ e $\alpha:[0,1]\to M^2$, uma curva parametrizada por comprimento de arco. Mostre que se α é fixada por j, isto é, $j\circ\alpha=\alpha$ então α é uma geodésica.
- **4.** Sejam $\phi_n: M^n \to N^n$ isometrias entre variedades Riemannianas M^n, N^n tal que $\{\phi_n\}$ converge uniformemente, na tologia C^0 , a uma função $\phi: M^n \to N^n$. Mostre que ϕ é uma isometria.
- **5.** Seja M^n uma variedade Riemanniana e $f:M^n\to\mathbb{R}$ uma função suave tal que ∇f é um campo unitário. Prove que as curvas integrais de ∇f são curvas que minimizam globalmente a distância, isto é, para $\alpha:(a,b)\to M$ curva integral de ∇f , então

$$d(\alpha(t_1), \alpha(t_2)) = \text{comprimento de } \alpha|_{[t_1, t_2]}, \forall t_1, t_2 \in (a, b)$$

Conclua que toda curva integral de ∇f é geodésica.

Obs.: Lembre que para a prova é importante que façam TODOS os exercícios do livro do Manfredo.