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In [F] we showed that the index of relative nullity ν of an isometric immersion f :

Mn → Nn+p between Riemannian manifolds with KM ≤ KN satisfies ν ≥ n − 2p. Here,

KV stands for the sectional curvature of the manifold V and the index of relative nullity

ν of f at x ∈ Mn is the dimension of the relative nullity space of the second fundamental

form α of f , i.e.,

ν(x) = dim {X ∈ TxM : α(X, Y ) = 0, ∀ Y ∈ TxM}.

This result has several applications because of the strong restrictions that having ν > 0

imposes on the manifold and the isometric immersion (see [F] and [G], §3.2.2). A simple

example shows that our estimate is sharp.

Example. Let gi : Hni

i → Rni+1, 1 ≤ i ≤ p, be nowhere flat Euclidean hypersurfaces

of nonpositive sectional curvature. The Gauss equation implies that its index of relative

nullity is ni − 2. Therefore, the product manifold Mn = Hn1

1 × · · · × H
np

p has nonpositive

sectional curvature and its product immersion g = g1×· · ·×gp into Rn+p verifies ν ≡ n−2p.

Notice that g has flat normal bundle.

The main purpose of this paper is to improve the above estimate to ν ≥ n − p − 1

for irreducible Euclidean submanifolds with flat normal bundle. For an integer r ≥ 2,

we say that an isometric immersion g : Mn → Rn+p splits as an r–product if Mn =

Mn1

1 × · · · × Mnr
r and there exist isometric immersions gj : M

nj

j → Rnj+pj , 1 ≤ j ≤ r,

nj ≥ 1, such that g = g1 × · · · × gr.

Theorem 1. Let f : Mn → Rn+p be an isometric immersion with flat normal bundle into

Euclidean space of a Riemannian manifold with nonpositive sectional curvature. Assume

for some integer 2 ≤ r ≤ p that ν ≤ n−p− r everywhere. Then there exists an open dense
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subset U ⊂ Mn such that f |U : U → Rn+p splits locally as an r–product of nowhere flat

Euclidean submanifolds.

Notice that the theorem implies that the above example is unique among those with flat

normal bundle into Euclidean space and ν ≡ n − 2p. Moreover, in this situation, from

Theorem 1 of [M] we have that f |U is locally isometrically rigid if and only if each factor

is rigid.

In the following result, RicM denotes the Ricci curvature of Mn and Qm
c a complete

simply connected Riemannian manifold of constant sectional curvature c.

Corollary 2. Let Mn be an immersed connected submanifold of Qn+p
c , p ≤ n

2
, with

KM ≤ c and RicM < c. If the normal bundle is flat, then c = 0, n = 2p and Mn splits

locally as a p–product of surfaces in R3 of negative Gaussian curvature. Moreover, the

splitting is global provided that Mn is a Hadamard manifold.

We would like to thank Prof. M. Dajczer for helpful suggestions.

The proofs

We first introduce some definitions and notations. Let V n and W s be real vector

spaces endowed with positive definite inner products, both denoted by 〈 , 〉. We say that

a vector valued symmetric bilinear map α : V n × V n → W s is nonpositive if

〈α(X, X), α(Y, Y )〉 − ‖α(X, Y )‖2 ≤ 0, ∀ X, Y ∈ V n.

The map α is diagonalizable if there exists an orthonormal basis {X1, . . . , Xn} of V n such

that α(Xi, Xk) = 0, for all 1 ≤ i 6= k ≤ n. We denote by ∆ the relative nullity space of α,

i.e., ∆ = {X ∈ V n : α(X, Y ) = 0, ∀ Y ∈ V n}, and set ν = dim ∆. By #A we mean de

number of elements of the set A. From now on, j, j ′ stand for arbitrary integers

1 ≤ j ≤ r and 0 ≤ j′ ≤ r.

Next, we extend Proposition 9 of [F] to the case of diagonalizable bilinear maps.
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Proposition 3. Let α : V n × V n → W s be a nonpositive diagonalizable symmet-

ric bilinear map with a diagonalizing orthonormal basis {X1, . . . , Xn}. Assume that

span {ηi = α(Xi, Xi) : 1 ≤ i ≤ n} = W s. Then ν ≥ n− 2s. Furthermore, if ν = n− s− r,

then there exists a partition {1, . . . , n} =
r
∪

j′=0
Ij′ which for any 1 ≤ j ≤ r verifies:

i) #Ij ≥ 2 and Lj = span {ηi : i ∈ Ij} is a subspace of dimension #Ij − 1,

ii) there are #Ij negative numbers {ai
j : i ∈ Ij} such that

∑

i∈Ij
ai

j ηi = 0,

iii) Lj ⊥ Lj′ , for all j′ 6= j.

Proof. Since α is diagonalizable, its nonpositiveness is equivalent to

(1) 〈ηi, ηk〉 ≤ 0, 1 ≤ i 6= k ≤ n.

Suppose that {η1, . . . , ηs} is a basis of W s. Then,

ηk =

s
∑

i=1

ai
kηi, s + 1 ≤ k ≤ n.

We claim that ai
k ≤ 0, for all 1 ≤ i ≤ s and s + 1 ≤ k ≤ n. To see this, fix k and set

P = Pk = {i ≤ s : ai
k ≥ 0}. Hence, for l ∈ P ,

0 ≥ 〈ηk, ηl〉 =

s
∑

i=1

ai
k〈ηi, ηl〉 ≥

∑

i∈P

ai
k〈ηi, ηl〉.

Multipling by al
k ≥ 0 and taking sum over l ∈ P , we obtain

‖
∑

i∈P

ai
kηi‖

2 ≤ 0,

and the claim follows.

From the claim and (1), we get for all 1 ≤ l 6= k ≤ n − s,

(2) 0 ≤
s

∑

i=1

ai
s+l〈ηi, ηs+k〉 = 〈ηs+l, ηs+k〉 ≤ 0.
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Therefore, we have (n−s) mutually orthogonal vectors {ηs+1, . . . , ηn} in an s−dimensional

vector space. We may assume ηs+l = 0 for all r + 1 ≤ l ≤ n − s and some r ≤ s. Thus

ν = n − s − r ≥ n − 2s.

Set Ij = {i ≤ s : ai
s+j < 0} ∪ {s + j} and I0 = {i ≤ n : i 6∈ Ij , 1 ≤ j ≤ r}. Take

Lj′ = span {ηi : i ∈ Ij′}. From equations (1) and (2), we have that u 6∈ Ij if and only if

ηu ∈ L⊥
j . Since for each i ∈ Ij the proof holds replacing ηi by ηs+j , the orthogonality of

{ηs+1, . . . , ηs+r} implies that Lj ⊥ Lj′ , for all j 6= j′. This completes the proof. ut

From now on, s(x) stands for the dimension of the first normal space of the isometric

immersion f at x ∈ Mn, i.e.,

s(x) = dim N 1
f (x) = dim span {α(Y, Z) : Y, Z ∈ TxM}.

Corollary 4. Let f : Mn → Rn+p be an isometric immersion with flat normal bundle

of a Riemannian manifold of nonpositive sectional curvature. Assume that ν ≤ n − s − r

everywhere for some integer 2 ≤ r ≤ p. Then there exist locally in an open dense subset

V ⊂ Mn an orthonormal smooth frame {X1, . . . , Xn} of V and a partition {1, . . . , n} =

r
∪

j′=0
Ij′ which for any 1 ≤ j ≤ r verify:

i) {X1(x), . . . , Xn(x)} diagonalizes the second fundamental form α(x) of f at x ∈ V,

ii) Lj = span {ηi = α(Xi, Xi) : i ∈ Ij} is a normal subbundle of dimension #Ij − 1 ≥ 1,

iii) there are #Ij negative smooth functions {ai
j : i ∈ Ij} such that

∑

i∈Ij
ai

j ηi = 0,

iv) Lj ⊥ Lj′ , for all j′ 6= j.

Proof. Fix x ∈ Mn. Since the ambient space has constant sectional curvature, the flatness

of the normal bundle is equivalent, by the Ricci equation, to the fact that α(x) is diago-

nalizable. Moreover, the curvature hypothesis on f is equivalent to α(x) being nonpositive

by the Gauss equation. Hence, Proposition 3 applies to α(x). It is clear that ν(x), s(x)

and the dimensions of the normal subspaces Lj′(x) are semicontinuous functions. Thus all

of them are locally constant in an open dense subset V. Now, we easily conclude the proof

using Proposition 3 and the uniqueness, up to signs and permutations, of the (smooth)

orthonormal basis which diagonalizes α|∆⊥×∆⊥ . ut

After studying the restrictions that the linear algebra of the Gauss equations imposes
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on the second fundamental form of the immersion, we now analize the differential implica-

tions of the Codazzi equations. With the notations of Corollary 4, let ∇ be the Levi–Civita

connection of Mn and ∇⊥ the normal connection of f . Define locally on V,

D0
j = Dj := {Xi : i ∈ Ij}, D0

0 = D0 := ∆⊥

r
⋂

j=1

D⊥
j

and, for m ≥ 0,

Dm+1
j′ := span {∇XY : X ∈ Dj′ , Y ∈ Dm

j′ } ⊇ Dm
j′ .

Notice that dim Dj = #Ij ≥ 2 and that D0 can be trivial. Also, u ∈ I0 and Xu ∈ ∆ for

all s + r + 1 ≤ u ≤ n.

Lemma 5. With the assumptions and notations of Corollary 4, we get for all l, m ≥ 0 :

i) for all X ∈ D⊥
0 , η ∈ Lj′ , ∇⊥

Xη ∈ Lj′ ,

ii) for all V ∈ D⊥
j , W ∈ Dm

j , ∇V W ∈ Dm
j ,

iii) Dm
j ⊂ Dj ⊕D0 ⊕ ∆, and Dm

0 ⊂ D0 ⊕ ∆,

iv) for all 1 ≤ j 6= k ≤ r, Dm
j ⊥ Dl

k.

Proof. i). Being the normal bundle flat, the Codazzi equations are

(3) ∇⊥
Xk

ηi = 〈∇Xi
Xi, Xk〉(ηi − ηk), ∀ 1 ≤ i 6= k ≤ n,

and

(4) 〈∇Xi
Xk, Xu〉(ηu − ηk) = 〈∇Xk

Xi, Xu〉(ηu − ηi), ∀ 1 ≤ i 6= u 6= k ≤ n.

From equation (3), we obtain i) for X ∈ ∆. Also from (3), we have that ∇⊥
Xη ∈ Lj′ ⊕⊥Lj,

for all X ∈ Dj, j 6= j′. But from (3) and part iii) of Corollary 4, we conclude that

∇⊥
Xξ ∈ Lj, for all X ∈ Dj and ξ ∈ Lj . This proves i).

ii). From (1) and Corollary 4 iii) we easily have that the pair of vectors ηu−ηk and ηu −ηi

are linearly independent for all 1 ≤ i 6= u 6= k ≤ s + r. Thus, equation (4) yields

(5) ∇Xi
Xk ∈ span {Xi} ⊕ ∆, ∀ 1 ≤ i 6= k ≤ s + r.
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Also, equation (3) and part i) give

(6) ∇Xi
Xi ∈ D0 ⊕ ∆, ∀ i ∈ I0, and ∇Xk

Xk ∈ Dj ⊕D0 ⊕ ∆, ∀ k ∈ Ij .

Let us consider the case m = 0. Taking Xu ∈ ∆ in (4), we obtain using (5) that

∇Xi
Xk ∈ span {Xi} ∀ i ∈ Ij′ , k ∈ Ij , j 6= j′.

This, together with (6), proves ii) for all V ∈ D⊥
j ∩∆⊥. Since the relative nullity distribu-

tion is integrable, the case m = 0 follows from (4) for V = Xi ∈ ∆, k ∈ Ij , u ∈ Ij′ and

j 6= j′. We conclude the general case by induction on m using the Gauss equation, since,

when Z ∈ Dj ,

∇V ∇ZW = ∇Z∇V W + ∇[V,Z]W ∈ Dm+1
j .

iii) and iv). Both follow easily by induction using part ii). ut

We are now in position to prove our main result.

Proof of Theorem 1. With the notations of Lemma 5, set

Γj := Dn−2p
j and Γ0 :=

(

r
⊕

j=1
Γj

)⊥

⊂ D0 ⊕ ∆.

From Lemma 5 iv) and Dm
j ⊆ Dm+1

j , we obtain that Dm
j = Γj , m ≥ n. By semicontinuity,

along an open dense subset U ⊂ V ⊂ Mn, all Γj ’s have locally constant dimension, say nj.

Hence, from Lemma 5 we have that all Γj′ ’s are smooth parallel orthogonal distributions

on U , that is, ∇XY ∈ Γj′ , for all Y ∈ Γj′ , X ∈ TM . By the local de Rham’s decomposition

theorem we obtain locally that

U = Mn0

0 × Mn1

1 × · · · × Mnr

r ,

with TMj′ = Γj′ . Observe that, since Dj ⊂ Γj , by Corollary 4 iii) Mj is nowhere flat.

However, M0 can be flat, or even a point.

To conclude that f splits using the Main Lemma of [M], we only need to show that

α(X, Y ) = 0, for all X ∈ Γj′ , Y ∈ Γj , j 6= j′. Observe first that from equation (3) and

Lemma 5 iv) we have

(7) ∇⊥
Xξ ∈ Lj , ∀ X ∈ Γj′ , ξ ∈ Lj , j 6= j′.
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Part iii) of Lemma 5 gives α(X, Z) = 0, for all X ∈ Γj′ , Z ∈ Dj , j 6= j′. Suppose by

induction that α(X, W ) = 0, for all X ∈ Γj′ , W ∈ Dm
j . The Codazzi equation yields

α(X,∇ZW ) = −∇⊥
Xα(Z, W ) + α(∇XZ, W ) + α(Z,∇XW ).

Lemma 5 ii) together with (7) imply that the right–hand side of the above belongs to Lj.

The proof follows now from Lemma 5 iii) which gives α(X,∇ZW ) ∈ L0. ut

Proof of Corollary 2. The hypothesis on the Ricci curvature and the codimension imply

that ν ≡ n−2p = 0. Hence, D0 = ∆ = {0}. Observe that, since s ≡ p and #Ij ≡ 2, all the

dimensions involved are now constant in Mn. We show next that c = 0. Since the proofs

of Corollary 4 and parts i) and ii) of Lemma 5 for m = 0 do not depend on the (constant)

sectional curvature of the ambient space, we have that all Dj ’s are parallel. Therefore, for

unit X ∈ Di, Y ∈ Dj , 1 ≤ i 6= j ≤ p, we have 0 = KM (X, Y ) = c, where the last equality

follows from the Gauss equation. The corollary is now a consequence of Theorem 1 and

the global de Rham’s decomposition theorem. ut

Final remarks

1) The relative nullity hypothesis of Theorem 1 can be weakened to ν(x) ≤ n−s(x)−r,

since Corollary 4 and Lemma 5 hold with this assumption.

2) If D0 = {0}, which is the case when, for example, ν = n − 2s, Lemma 5 i) implies

that N 1
f is parallel. Therefore, the codimension of f reduces to s on U .

3) Any Euclidean hypersurface g : Hm → Rm+1 of nonpositive curvature without flat

points can be described locally by means of the Gauss parametrization in the following

way (see [D–G] for details). Take a surface ξ : V 2 → Sm in the Euclidean unit sphere and

a smooth function γ on V 2. The map Ψ : T⊥
ξ V → Rm+1 given by

(8) Ψ(v) = γξ + grad γ + v

parametrizes g over the normal bundle of ξ, in the open set of normal vectors v which

satisfies det(γId + Hessγ −Bv) < 0. Here, Bv denotes the second fundamental operator of

ξ in the direction v. In this parametrization, ξ is the Gauss map of g and γ = 〈g, ξ〉 is the
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support function. For a characterization of those hypersurfaces which are isometrically

deformable see Sbrana [S] or Cartan [C]. Observe that any isometric immersion f in

Theorem 1 with minimum index of relative nullity ν ≡ n− 2p can be parametrized locally

on U using the Gauss parametrization (8) for each factor.
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