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Definitions

For an isometric immersion

f : Mn → Rn+p

of an n-dimensional connected Riemannian manifold Mn with codi-
mension p into flat Euclidean space, we denote its second funda-
mental form by

αf : TM × TM → T⊥
f M, αf (X ,Y ) :=

(
∇̃XY

)
T⊥
f M

,

and its normal connection by

∇⊥ : TM × T⊥M → T⊥
f M, ∇⊥

X ξ =
(
∇̃X ξ

)
T⊥
f M

.
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General existence

Main existence result:

Theorem (Nash, 1956)

Any Riemannian manifold Mn can be isometrically embedded in
Rn+p, for sufficiently large codimension p.

First key problem: (Only known for a few manifolds)

For a given Riemannian manifold Mn, what is (locally or globally)
the lowest possible codimension p = p(Mn) in Nash Theorem?
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Uniqueness: rigidity

We say that an isometric immersion

f : Mn → Rn+p

is (isometrically) rigid

if any other isometric immersion

g : Mn → Rn+p

is congruent to f by a “rigid motion” of the ambient space, i.e.,
when there is an isometry T : Rn+p → Rn+p such that

g = T ◦ f .

(In particular, rigidity implies that p = p(Mn)).
If otherwise, we say that f is (isometrically) deformable.
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Deformations

Basic deformation problem:

(too difficult!)

Describe (in some sense) all deformations of

f : Mn → Rn+p

when p = p(Mn) is the lowest possible codimension.

• And if p is not the lowest possible codimension?

General deformation problem:

Describe all isometric immersions of Mn into Rn+q for a given codi-
mension q... for ’small’ codimension q (q < n ?).
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Local rigidity results: Hypersurfaces (p = 1)

The type number of f : Mn → Rn+1 at x ∈ Mn is the integer

τ(x) = rankαf (x).

Theorem (Beez, 1876 & Killing, 1885)

Any immersed hypersurface with τ ≥ 3 is rigid.

FACT. By the Gauss equation,

τ(x) ≤ 1 ⇐⇒ KM(x) = 0.

Using the Gauss Parametrization (Sbrana), it is easy to see that the
set of (local) flat hypersurfaces of Rn+1 can be naturally identified
with C∞(R,Rn+1): the smooth curves in Rn+1.
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Sbrana-Cartan Hypersurfaces

Thus, the interesting (local) case is when the type number satisfies

τ ≡ 2.

The description of the nonflat locally deformable hypersurfaces and
their possible deformations is due, independently, to Sbrana (1909)
and Cartan (1916), and we call such submanifolds Sbrana-Cartan
hypersurfaces.

They are divided in 4 types of (n − 2)-ruled hypersurfaces:

surface-like (products): deform as surfaces in R3 or S3;

(n-1)-ruled: moduli space of deformations = C∞(R,R);

continuous type: moduli space of deformations = R;

discrete type: exactly one more deformation: moduli Z2.
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Local rigidity results: Higher codimensions

With a clever generalization of the concept of type number for higher
codimensions, we have:

Theorem (Allendoerfer, 1939)

Any immersed submanifold with τ ≥ 3 is rigid.

FACT: τ ≥ 3 implies codimension p ≤ n/3.

Theorem (E. Berger, R. Bryant & P. Griffiths, 1983)

“Generically”, any submanifold with p ≤ n and n ≥ 6 is rigid.

These are algebraic results, with little geometry...
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An observation

To deal with the deformation problem in higher codimension, we
introduce a new concept based on the following observation:

Let Nn+1 ⊂ Rn+2 be a Sbrana-Cartan (i.e., deformable and classi-
fied) hypersurface and

Mn ⊂ Nn+1 ⊂ Rn+2

any hypersurface. Then, in general Mn is a deformable submanifold
in Rn+2 because deformations of Nn+1 induce deformations of Mn.

This kind of “dishonest” deformations must be discarded since we
are reducing the codimension of the problem, and for that purpose
we introduce the following general definition:
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Isometric extensions

Definition (Isometric extensions)

We say that a pair of isometric immersions f : Mn → Rn+p and
g : Mn → Rn+q extends isometrically when there are:

a Riemannian manifold Nn+r with r ≥ 1,

an isometric embedding j : Mn ↪→ Nn+r ,

and isometric immersions F :Nn+r → Rn+p, G :Nn+r → Rn+q

such that f = F ◦ j and g = G ◦ j .

Rn+p

��
��

��1f

Mn

Rn+q

PPPPPPqg

Nn+rj-�� F�
��

G
@
@R

commutes!
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Genuine deformations

Rn+p

��
��

��1f
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�
�

NOT a genuine
deformation

Definition (Genuine deformation)

Given a submanifold f : Mn → Rn+p we say that g : Mn → Rn+q

is a genuine deformation of f there is no open subset U ⊂ Mn along
which the restrictions f |U and g |U extend isometrically.

Remark

This is a symmetric concept: for pairs and sets.
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Remark

This is a symmetric concept: for pairs and sets.
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Definition (Genuine rigidity)

Given f : Mn → Rn+p and a positive integer q, we say that f is
genuinely rigid in Rn+q if for any g : Mn → Rn+q there is an open
dense subset U ⊂ Mn such that f |U and g |U extend isometrically.

That is, g is nowhere a genuine deformation of f .

Remark

If r = p = q, we recover the concept of isometric rigidity.

If r = p < q, we recover the concept of compositions.
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The main result

Assume that the submanifolds f : Mn → Rn+p and g : Mn → Rn+q

are mutually Dd -ruled, that is, Dd is a d-dimensional integrable
distribution of Mn whose leaves are mapped by f and g onto open
subsets of affine subspaces.

Set

LD = span{αf (D,TM)} and L′D = span{αg (D,TM)}.

Then, by the Gauss equation, the map T
D

: LD → L′D given by

T
D

(αf (Y ,X )) = αg (Y ,X ), Y ∈ Dd ,X ∈ TM,

is a well defined bundle isometry.
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The main result: local in nature

Theorem (Dajczer & F—, 2004)

Let g : Mn → Rn+q be a genuine deformation of f : Mn → Rn+p,
with p + q < n and min {p, q} ≤ 5. Then, locally f and g are
mutually Dd -ruled, with d ≥ n − p − q + 3 dim LD .

Locally = along connected components of an open dense subset.

Remark

The above result generalizes and unifies several rigidity results
and all the ones we know about compositions.
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∃ genuine deformation ⇒ mutually ruled

Thus, for a pair of genuine deformations we have:

T⊥
f M = LD ⊕ L⊥D LD := span {αf (D,TM)}

T⊥
g M = L′D ⊕ L′⊥D L′D := span {αg (D,TM)}

?

T
D

(∇⊥)LD = (∇⊥)L′D

(αf )LD = (αg )L′D

@
@R

�
��

Dd = ker
(
αf
L⊥D

)
∩ ker

(
αg

L′⊥D

)
rulings

Moreover, the estimate d ≥ n − p − q + 3 dim LD is sharp.
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Consequences

Corollary

Let f : Mn → Rn+p, q ∈ N with p + q < n and min{p, q} ≤ 5.

Beez-Killing; Allendoerfer (for min{p, q} ≤ 5), etc.

If f is nowhere (n−p−q)-ruled, f is genuinely rigid in Rn+q.

If RicM > 0, then f is genuinely rigid in Rn+q.

If Mn is compact, then there exists an open subset U ⊂ Mn

such that f |U is genuinely rigid in Rn+q.

But: it is very hard to obtain global applications from this result!
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Genuine conformal rigidity

Analogously, given a manifold Mn with a conformal structure, we
may want to understand its conformal immersions f : Mn → Rn+p.

Similar rigidity and deformation results to the ones for the iso-
metric case also exist for the conformal realm: Conformal rigidity,
(Sbrana-)Cartan hypersurfaces, Conformal compositions, etc.

In 2010, together with Ruy Tojeiro (UFSCar), we extended several
of these conformal results by means of a genuine conformal rigidity
framework, giving them a unified character. Actually, we obtained
precisely the conformal version of the genuine rigidity theorem above,
with its corresponding corollaries.
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Global rigidity

Global rigidity results are much harder to obtain.

The fundamental one is the beautiful Sacksteder’s theorem (n ≥ 3):

Theorem (Sacksteder, 1962)

Any compact Euclidean hypersurface is rigid provided its set of
totally geodesic points does not disconnect the manifold.

Sacksteder actually proved this equivalent statement:

Theorem (translating Sacksteder’s Theorem...)

Any compact Euclidean hypersurface is genuinely rigid.



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Global rigidity

Global rigidity results are much harder to obtain.

The fundamental one is the beautiful Sacksteder’s theorem (n ≥ 3):

Theorem (Sacksteder, 1962)

Any compact Euclidean hypersurface is rigid provided its set of
totally geodesic points does not disconnect the manifold.

Sacksteder actually proved this equivalent statement:

Theorem (translating Sacksteder’s Theorem...)

Any compact Euclidean hypersurface is genuinely rigid.



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Global rigidity

Global rigidity results are much harder to obtain.

The fundamental one is the beautiful Sacksteder’s theorem (n ≥ 3):

Theorem (Sacksteder, 1962)

Any compact Euclidean hypersurface is rigid provided its set of
totally geodesic points does not disconnect the manifold.

Sacksteder actually proved this equivalent statement:

Theorem (translating Sacksteder’s Theorem...)

Any compact Euclidean hypersurface is genuinely rigid.



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Global rigidity

Global rigidity results are much harder to obtain.

The fundamental one is the beautiful Sacksteder’s theorem (n ≥ 3):

Theorem (Sacksteder, 1962)

Any compact Euclidean hypersurface is rigid provided its set of
totally geodesic points does not disconnect the manifold.

Sacksteder actually proved this equivalent statement:

Theorem (translating Sacksteder’s Theorem...)

Any compact Euclidean hypersurface is genuinely rigid.



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Global rigidity

Global rigidity results are much harder to obtain.

The fundamental one is the beautiful Sacksteder’s theorem (n ≥ 3):

Theorem (Sacksteder, 1962)

Any compact Euclidean hypersurface is rigid provided its set of
totally geodesic points does not disconnect the manifold.

Sacksteder actually proved this equivalent statement:

Theorem (translating Sacksteder’s Theorem...)

Any compact Euclidean hypersurface is genuinely rigid.



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Global rigidity

Outside the realm of hypersurfaces, the only known result of this
kind is the codimension two version of Sacksteder’s theorem:

Theorem (Dajczer & Gromoll, 1995)

Any pair of isometric immersions of a compact Riemannian manifold
Mn into Rn+2, n ≥ 5, must extend isometrically along
each connected component of an open dense subset of Mn,
although maybe singularly.

Why “maybe singularly”?? The introduction of singularities in
this result was shown to be a necessary condition in a recent local
classification we made with Guilherme Freitas (2017).
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Global rigidity

In fact, after all:

We should not try to avoid singularities
when working with ruled extensions!

Singularities are not only necessary, but also natural for the problem,
deeply simplify the theory, and are easy to deal with for ruled sub-
manifolds, as we do when we classify flat and ruled surfaces in R3.
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Introducing singularities

Our purpose in this joint work with Felippe Guimarães (IMPA) was
then to introduce singularities in the genuine rigidity theory, mainly
with the double purpose of obtaining new global rigidity results and
to unify the known ones.

Yet, we got some nice surprises for the local theory...
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Definitions

All the definitions for introducing singularities are the natural ones,
adapting the regular case:

Rn+p

��
��

��1f

Mn

Rn+q

PPPPPPqg

Nn+rj-�� F�
��

G
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We say that f and g singularly extend isometrically if the diagram
commutes, where j is an isometric embedding as before, and F and
G are isometric immersions, except maybe on Mn.



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Definitions

All the definitions for introducing singularities are the natural ones,
adapting the regular case:

Rn+p

��
��

��1f

Mn

Rn+q

PPPPPPqg

Nn+rj-�� F�
��

G
@
@R

We say that f and g singularly extend isometrically if the diagram
commutes, where j is an isometric embedding as before, and F and
G are isometric immersions

, except maybe on Mn.



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Definitions

All the definitions for introducing singularities are the natural ones,
adapting the regular case:

Rn+p

��
��

��1f

Mn

Rn+q

PPPPPPqg

Nn+rj-�� F�
��

G
@
@R

We say that f and g singularly extend isometrically if the diagram
commutes, where j is an isometric embedding as before, and F and
G are isometric immersions, except maybe on Mn.



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Definitions

Analogously, we say that g is a strong genuine deformation of f if
there is no open subset where they singularly extend isometrically.

Accordingly, we say that f is singularly genuinely rigid in Rn+q if it
admits no strong genuine deformation in Rn+q.

With these definitions we show:
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Global statements

Theorem (F— & Guimarães, preprint, 2018)

Let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric
immersions of a compact Riemannian manifold with p+q<n.
Then, locally either f and f̂ singularly extend isometrically,
or f and f̂ are mutually Dd -ruled, with d ≥ n − p − q + 3.

The proof actually works untouched for compact (or complete and
bounded) submanifolds in hyperbolic space, and with a little bit of
extra work we obtained a similar result for complete submanifolds in
the sphere.
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Global consequences

For p +q ≤ 4 this unifies Sacksteder and Dajczer-Gromoll theorems
above, and states that the only way to isometrically immerse a com-
pact Euclidean hypersurface in codimension 3 is as a composition:

Corollary

Any compact (or complete and bounded) submanifold Mn of
Rn+p, n ≥ 5, is singularly genuinely rigid in Rn+q for q ≤ 4− p.
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Global consequences

We also obtained a purely topological criteria for singular genuine
rigidity without any restriction on the codimensions:

Corollary

Let Mn be a compact manifold whose k-th Pontrjagin class satisfies
that [pk ] 6= 0 for some k > 3

4(p + q − 3). Then, any analytic
immersion f : Mn → Rn+p (with the induced metric) is singularly
genuinely rigid in Rn+q in the C∞-category.
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Local analysis: the form φτ

Our global results rely on a local analysis of a special bilinear form.

Let
τ : L` ⊂ T⊥

f M → L̂` ⊂ T⊥
f̂
M

be a vector bundle isometry that preserves the second fundamental
forms and the normal connections restricted to the rank ` vector
normal subbundles L and L̂. Extend τ as Id on TM: τ̄ = Id ⊕ τ .
Let φτ : TM × (TM ⊕ L)→ L⊥ × L̂⊥ be the bilinear form

φτ (X , η) =
(
(∇̃Xη)L⊥ , (∇̃X τ̄ η)L̂⊥

)
,

where ∇̃ stands for the connection in Euclidean space and L⊥ × L̂⊥

is endowed with the semi-Riemannian metric 〈 , 〉=〈 , 〉|L⊥−〈 , 〉|L̂⊥ .



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Local analysis: the form φτ

Our global results rely on a local analysis of a special bilinear form.
Let

τ : L` ⊂ T⊥
f M → L̂` ⊂ T⊥

f̂
M

be a vector bundle isometry that preserves the second fundamental
forms and the normal connections restricted to the rank ` vector
normal subbundles L and L̂. Extend τ as Id on TM: τ̄ = Id ⊕ τ .

Let φτ : TM × (TM ⊕ L)→ L⊥ × L̂⊥ be the bilinear form

φτ (X , η) =
(
(∇̃Xη)L⊥ , (∇̃X τ̄ η)L̂⊥

)
,

where ∇̃ stands for the connection in Euclidean space and L⊥ × L̂⊥

is endowed with the semi-Riemannian metric 〈 , 〉=〈 , 〉|L⊥−〈 , 〉|L̂⊥ .



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Local analysis: the form φτ

Our global results rely on a local analysis of a special bilinear form.
Let

τ : L` ⊂ T⊥
f M → L̂` ⊂ T⊥

f̂
M

be a vector bundle isometry that preserves the second fundamental
forms and the normal connections restricted to the rank ` vector
normal subbundles L and L̂. Extend τ as Id on TM: τ̄ = Id ⊕ τ .
Let φτ : TM × (TM ⊕ L)→ L⊥ × L̂⊥ be the bilinear form

φτ (X , η) =
(
(∇̃Xη)L⊥ , (∇̃X τ̄ η)L̂⊥

)
,

where ∇̃ stands for the connection in Euclidean space and L⊥ × L̂⊥

is endowed with the semi-Riemannian metric 〈 , 〉=〈 , 〉|L⊥−〈 , 〉|L̂⊥ .



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

Local analysis: the form φτ

Our global results rely on a local analysis of a special bilinear form.
Let

τ : L` ⊂ T⊥
f M → L̂` ⊂ T⊥

f̂
M

be a vector bundle isometry that preserves the second fundamental
forms and the normal connections restricted to the rank ` vector
normal subbundles L and L̂. Extend τ as Id on TM: τ̄ = Id ⊕ τ .
Let φτ : TM × (TM ⊕ L)→ L⊥ × L̂⊥ be the bilinear form

φτ (X , η) =
(
(∇̃Xη)L⊥ , (∇̃X τ̄ η)L̂⊥

)
,

where ∇̃ stands for the connection in Euclidean space and L⊥ × L̂⊥

is endowed with the semi-Riemannian metric 〈 , 〉=〈 , 〉|L⊥−〈 , 〉|L̂⊥ .



Outline Local rigidity Genuine Rigidity Global rigidity Singular genuine rigidity The proofs

The form φτ and the main local result

A subset S ⊂ L⊥ ⊕ L̂⊥ is called null if 〈η, ξ〉 = 0 for all η, ξ ∈ S .

Given a distribution D on Mn, denote by O(D) the smallest totally
geodesic distribution of Mn that contains D.

Our main local result applies even to τ = 0:

Theorem

Let f̂ be a strongly genuine deformation of f and

τ : L ⊂ T⊥
f M → L̂ ⊂ T⊥

f̂
M

a parallel v. b. isometry that preserves second fundamental forms.
Let D ⊂ TM ⊕ L such that φτ (TM,D) ⊂ L⊥ ⊕ L̂⊥ is a null set.
Then, D ⊂ TM and locally f and f̂ are mutually O(D)-ruled.

The key advantage here over other local rigidity results: it deals
with easily to construct null sets instead of nullity distributions.
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The main local tool for actual applications

A good example is the following singular version of the main result
in genuine rigidity removing the assumptions on the codimensions.

Recall that Y ∈ TM is a (left) regular element of φτ if

rank(φYτ ) = i(φτ ) := max{rank(φXτ ) : X ∈ TM},

where φXτ = φτ (X , · ). Denote by RE (φτ ) ⊂ TM the open dense
subset of regular elements of φτ , and KY =ker(φYτ ) for Y ∈ RE (φτ ).

Corollary

If f̂ is a strongly genuine deformation of f , then locally they are
mutually O(Dd

Y )-ruled ∀Y ∈ RE (φτ ), where Dd
Y = ker(φYτ )⊂TM

and d = n + `− i(φτ ) ≥ n − p − q + 3`.
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The main local tool for actual applications

By allowing singular extensions we recover all the genuine rigidity
corollaries, yet without the restrictions on the codimensions.

E.g., the previous global corollary about Pontrjagin classes actually
follows from our local result.

Of course, we also obtain local rigidity under any circumstance that
excludes ruled submanifolds. For example:

Corollary

Any immersed submanifold Mn of Rn+p with Ric > 0 is singularly
genuinely rigid in Rn+q for any q < n − p.
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All the computations

Let’s now carry out the complete (and a little bit long) proofs of our
two main theorems.

Proof:........ Just kidding!! :oP

Thanks!!!!

L.
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