Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs

Singular genuine rigidity

Luis A. Florit (IMPA)

October 2, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 Local rigidity

Local rigidity

- A bit of History
- Hypersurfaces
- Higher codimensions
- 2 Genuine Rigidity
 - Definitions
 - The main result
 - Consequences
- 3 Global rigidity
- ④ Singular genuine rigidity
 - Definitions
 - Global statements
 - Local statements

5 The proofs

Outline	Local rigidity ●○○○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defi	nitions				

For an *isometric immersion*

$$f: M^n \to \mathbb{R}^{n+p}$$

of an *n*-dimensional connected Riemannian manifold M^n with codimension p into flat Euclidean space, we denote its second fundamental form by

 $\alpha^{f}: TM \times TM \to T_{f}^{\perp}M, \quad \alpha^{f}(X, Y) := (\tilde{\nabla}_{X}Y)_{T_{\epsilon}^{\perp}M},$

and its *normal connection* by

 $abla^{\perp}: TM \times T^{\perp}M \to T_f^{\perp}M, \quad \nabla_X^{\perp}\xi = \left(\tilde{\nabla}_X\xi\right)_{T \perp M}.$

Outline	Local rigidity ●○○○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defi	nitions				

For an *isometric immersion*

$$f: M^n \to \mathbb{R}^{n+p}$$

of an *n*-dimensional connected Riemannian manifold M^n with codimension p into flat Euclidean space, we denote its *second fundamental form* by

$$\alpha^f \colon TM \times TM \to T_f^{\perp}M, \quad \alpha^f(X,Y) := \left(\tilde{\nabla}_X Y\right)_{T_f^{\perp}M},$$

and its *normal connection* by

 $\nabla^{\perp}: TM \times T^{\perp}M \to T_f^{\perp}M, \quad \nabla_X^{\perp}\xi = (\tilde{\nabla}_X\xi)_{T^{\perp}M},$

Outline	Local rigidity ●○○○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defi	nitions				

For an *isometric immersion*

$$f: M^n \to \mathbb{R}^{n+p}$$

of an *n*-dimensional connected Riemannian manifold M^n with codimension p into flat Euclidean space, we denote its *second fundamental form* by

$$\alpha^f \colon TM \times TM \to T_f^{\perp}M, \quad \alpha^f(X,Y) := \left(\tilde{\nabla}_X Y\right)_{T_f^{\perp}M},$$

and its normal connection by

$$\nabla^{\perp}: TM \times T^{\perp}M \to T_f^{\perp}M, \quad \nabla_X^{\perp}\xi = \left(\tilde{\nabla}_X \xi\right)_{T_f^{\perp}M}.$$

Outline	Local rigidity ○●○○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Gene	eral existe	nce			

Outline	Local rigidity ○●○○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Gene	eral existe	nce			

Theorem (Nash, 1956)

Any Riemannian manifold M^n can be isometrically embedded in \mathbb{R}^{n+p} , for sufficiently large codimension p.

Outline	Local rigidity ○●○○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Gene	eral existe	nce			

Theorem (Nash, 1956)

Any Riemannian manifold M^n can be isometrically embedded in \mathbb{R}^{n+p} , for sufficiently large codimension p.

First key problem:

Outline	Local rigidity ○●○○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Gene	eral existe	nce			

Theorem (Nash, 1956)

Any Riemannian manifold M^n can be isometrically embedded in \mathbb{R}^{n+p} , for sufficiently large codimension p.

First key problem: (Only known for a few manifolds)

For a given Riemannian manifold M^n , what is (locally or globally) the <u>lowest</u> possible codimension $p = p(M^n)$ in Nash Theorem?

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Uniq	ueness: ri	gidity			

$$f: M^n \to \mathbb{R}^{n+p}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is (isometrically) rigid

Outline	Local rigidity ○○●○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Uniq	ueness: r	igidity			

$$f: M^n \to \mathbb{R}^{n+p}$$

is (isometrically) rigid if any other isometric immersion

$$g: M^n \to \mathbb{R}^{n+p}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

is congruent to f by a "rigid motion" of the ambient space.

Outline	Local rigidity ○○●○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Uniq	ueness: r	igidity			

$$f: M^n \to \mathbb{R}^{n+p}$$

is (isometrically) rigid if any other isometric immersion

$$g: M^n \to \mathbb{R}^{n+p}$$

is congruent to f by a "rigid motion" of the ambient space, i.e., when there is an isometry $T: \mathbb{R}^{n+p} \to \mathbb{R}^{n+p}$ such that

$$g = T \circ f.$$

Outline	Local rigidity ○○●○○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Uniq	ueness: ri	igidity			

$$f: M^n \to \mathbb{R}^{n+p}$$

is (isometrically) rigid if any other isometric immersion

$$g: M^n \to \mathbb{R}^{n+p}$$

is congruent to f by a "rigid motion" of the ambient space, i.e., when there is an isometry $T: \mathbb{R}^{n+p} \to \mathbb{R}^{n+p}$ such that

$$g=T\circ f.$$

(In particular, rigidity implies that $p = p(M^n)$). If otherwise, we say that f is *(isometrically) deformable*.

Outline	Local rigidity ○○○●○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defo	rmations				

Basic deformation problem:

Outline	Local rigidity ○○○●○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defo	rmations				

Basic deformation problem: (too difficult!) Describe (in some sense) all deformations of

 $f: M^n \to \mathbb{R}^{n+p}$

when $p = p(M^n)$ is the *lowest* possible codimension.

Outline	Local rigidity ○○○●○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defo	rmations				

Describe (in some sense) all deformations of

 $f: M^n \to \mathbb{R}^{n+p}$

when $p = p(M^n)$ is the *lowest* possible codimension.

• And if *p* is <u>not</u> the lowest possible codimension?

Outline	Local rigidity 000●000	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defo	rmations				

Describe (in some sense) all deformations of

 $f: M^n \to \mathbb{R}^{n+p}$

when $p = p(M^n)$ is the *lowest* possible codimension.

• And if *p* is <u>not</u> the lowest possible codimension?

General deformation problem:

Outline	Local rigidity ○○○●○○○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defo	rmations				

Describe (in some sense) all deformations of

 $f: M^n \to \mathbb{R}^{n+p}$

when $p = p(M^n)$ is the *lowest* possible codimension.

• And if *p* is <u>not</u> the lowest possible codimension?

General deformation problem: (impossible!)

Describe all isometric immersions of M^n into \mathbb{R}^{n+q} for a given codimension q.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Defo	rmations				

Describe (in some sense) all deformations of

 $f: M^n \to \mathbb{R}^{n+p}$

when $p = p(M^n)$ is the *lowest* possible codimension.

• And if *p* is <u>not</u> the lowest possible codimension?

General deformation problem: (even more difficult...)

Describe all isometric immersions of M^n into \mathbb{R}^{n+q} for a given codimension q... for 'small' codimension q (q < n ?).

The *type number* of $f: M^n \to \mathbb{R}^{n+1}$ at $x \in M^n$ is the integer

 $\tau(x) = \operatorname{rank} \alpha^f(x).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The *type number* of $f: M^n \to \mathbb{R}^{n+1}$ at $x \in M^n$ is the integer

 $\tau(x) = \operatorname{rank} \alpha^f(x).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Beez, 1876 & Killing, 1885)

Any immersed hypersurface with $\tau \geq 3$ is rigid.

The *type number* of $f: M^n \to \mathbb{R}^{n+1}$ at $x \in M^n$ is the integer

 $\tau(x) = \operatorname{rank} \alpha^f(x).$

Theorem (Beez, 1876 & Killing, 1885)

Any immersed hypersurface with $\tau \ge 3$ is rigid.

FACT. By the Gauss equation,

$$\tau(x) \leq 1 \iff K_M(x) = 0.$$

Using the Gauss Parametrization (Sbrana), it is easy to see that the set of (local) flat hypersurfaces of \mathbb{R}^{n+1} can be naturally identified with $C^{\infty}(\mathbb{R}, \mathbb{R}^{n+1})$: the smooth curves in \mathbb{R}^{n+1} .

Outline	Local rigidity ○○○○●○	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Sbrai	na-Cartan	Hypersurf	aces		

 $\tau \equiv 2.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\tau \equiv 2.$

The description of the nonflat locally deformable hypersurfaces and their possible deformations is due, independently, to Sbrana (1909) and Cartan (1916), and we call such submanifolds *Sbrana-Cartan hypersurfaces*.

 $\tau \equiv 2.$

The description of the nonflat locally deformable hypersurfaces and their possible deformations is due, independently, to Sbrana (1909) and Cartan (1916), and we call such submanifolds *Sbrana-Cartan hypersurfaces*.

They are divided in 4 types of (n-2)-ruled hypersurfaces:

$$\tau \equiv 2.$$

The description of the nonflat locally deformable hypersurfaces and their possible deformations is due, independently, to Sbrana (1909) and Cartan (1916), and we call such submanifolds *Sbrana-Cartan hypersurfaces*.

They are divided in 4 types of (n-2)-ruled hypersurfaces:

- surface-like (products): deform as surfaces in \mathbb{R}^3 or \mathbb{S}^3 ;
- (n-1)-ruled: moduli space of deformations = $C^{\infty}(\mathbb{R},\mathbb{R})$;
- continuous type: moduli space of deformations $= \mathbb{R}$;
- discrete type: exactly one more deformation: moduli \mathbb{Z}_2 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Allendoerfer, 1939)

Any immersed submanifold with $\tau \geq 3$ is rigid.

Theorem (Allendoerfer, 1939)

Any immersed submanifold with $\tau \geq 3$ is rigid.

FACT: $\tau \ge 3$ implies codimension $p \le n/3$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Allendoerfer, 1939)

Any immersed submanifold with $\tau \ge 3$ is rigid.

FACT: $\tau \ge 3$ implies codimension $p \le n/3$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (E. Berger, R. Bryant & P. Griffiths, 1983)

"Generically", any submanifold with $p \le n$ and $n \ge 6$ is rigid.

Theorem (Allendoerfer, 1939)

Any immersed submanifold with $\tau \ge 3$ is rigid.

FACT: $\tau \ge 3$ implies codimension $p \le n/3$.

Theorem (E. Berger, R. Bryant & P. Griffiths, 1983)

"Generically", any submanifold with $p \le n$ and $n \ge 6$ is rigid.

These are algebraic results, with little geometry...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
An c	observatio	n			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $N^{n+1} \subset \mathbb{R}^{n+2}$ be a Sbrana-Cartan (i.e., deformable and classified) hypersurface and

$$M^n \subset N^{n+1} \subset \mathbb{R}^{n+2}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

any hypersurface.

Let $N^{n+1} \subset \mathbb{R}^{n+2}$ be a Sbrana-Cartan (i.e., deformable and classified) hypersurface and

$$M^n \subset N^{n+1} \subset \mathbb{R}^{n+2}$$

any hypersurface. Then, in general M^n is a deformable submanifold in \mathbb{R}^{n+2} because deformations of N^{n+1} induce deformations of M^n .

Outline	Local rigidity	Genuine Rigidity ●00000000	Global rigidity	Singular genuine rigidity	The proofs
An c	bservatio	n			

Let $N^{n+1} \subset \mathbb{R}^{n+2}$ be a Sbrana-Cartan (i.e., deformable and classified) hypersurface and

$$M^n \subset N^{n+1} \subset \mathbb{R}^{n+2}$$

any hypersurface. Then, in general M^n is a deformable submanifold in \mathbb{R}^{n+2} because deformations of N^{n+1} induce deformations of M^n .

This kind of "dishonest" deformations must be discarded since we are reducing the codimension of the problem, and for that purpose we introduce the following general definition:

Outline	Local rigidity	Genuine Rigidity ○●○○○○○○○	Global rigidity	Singular genuine rigidity	The proofs
lsom	etric exte	ensions			

Definition (Isometric extensions)
Outline	Local rigidity	Genuine Rigidity ○●○○○○○○	Global rigidity	Singular genuine rigidity	The proofs
Isom	etric exte	ensions			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (Isometric extensions)

We say that a pair of isometric immersions

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
lsom	etric exte	ensions			

We say that a pair of isometric immersions $f: M^n \to \mathbb{R}^{n+p}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		00000000			
leem	atria auto	nciona			
ISOIT	ιθιτις θχιε	INSIONS			

We say that a pair of isometric immersions $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
lsom	etric exte	ensions			

We say that a pair of isometric immersions $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ extends isometrically when there are:

- a Riemannian manifold N^{n+r} with $r \ge 1$,
- an isometric embedding $j: M^n \hookrightarrow N^{n+r}$,
- and isometric immersions $F: N^{n+r} \to \mathbb{R}^{n+p}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Isom	etric exte	ensions			

We say that a pair of isometric immersions $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ extends isometrically when there are:

- a Riemannian manifold N^{n+r} with $r \ge 1$,
- an isometric embedding $j: M^n \hookrightarrow N^{n+r}$,
- and isometric immersions $F: N^{n+r} \to \mathbb{R}^{n+p}$

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Isom	etric exte	ensions			

We say that a pair of isometric immersions $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ extends isometrically when there are:

- a Riemannian manifold N^{n+r} with $r \ge 1$,
- an isometric embedding $j: M^n \hookrightarrow N^{n+r}$,

• and isometric immersions $F: N^{n+r} \to \mathbb{R}^{n+p}$

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		00000000			

Isometric extensions

Definition (Isometric extensions)

We say that a pair of isometric immersions $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ extends isometrically when there are:

- a Riemannian manifold N^{n+r} with $r \ge 1$,
- an isometric embedding $j: M^n \hookrightarrow N^{n+r}$,
- and isometric immersions $F: \mathbb{N}^{n+r} \to \mathbb{R}^{n+p}$, $G: \mathbb{N}^{n+r} \to \mathbb{R}^{n+q}$

Outline	Local rigidity	Local rigidity Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		00000000			

Isometric extensions

Definition (Isometric extensions)

We say that a pair of isometric immersions $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ extends isometrically when there are:

- a Riemannian manifold N^{n+r} with $r \ge 1$,
- an isometric embedding $j: M^n \hookrightarrow N^{n+r}$,
- and isometric immersions $F: N^{n+r} \to \mathbb{R}^{n+p}, \ G: N^{n+r} \to \mathbb{R}^{n+q}$

Outline	Local rigidity	Local rigidity Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		00000000			

Isometric extensions

Definition (Isometric extensions)

We say that a pair of isometric immersions $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ extends isometrically when there are:

- a Riemannian manifold N^{n+r} with $r \ge 1$,
- an isometric embedding $j: M^n \hookrightarrow N^{n+r}$,
- and isometric immersions $F: N^{n+r} \to \mathbb{R}^{n+p}$, $G: N^{n+r} \to \mathbb{R}^{n+q}$

such that $f = F \circ j$ and $g = G \circ j$.

Outline	Local rigidity	Local rigidity Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		00000000			
~					

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Genuine deformations

Outline Local rigidity Genuine Rigidity Global rigidity 00000000

Singular genuine rigidity

The proofs

Genuine deformations

NOT a genuine deformation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		00000000			

Genuine deformations

NOT a genuine deformation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Genuine deformation)

Given a submanifold $f: M^n \to \mathbb{R}^{n+p}$ we say that $g: M^n \to \mathbb{R}^{n+q}$ is a *genuine deformation* of f there is no open subset $U \subset M^n$ along which the restrictions $f|_U$ and $g|_U$ extend isometrically.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		00000000			

Genuine deformations

NOT a genuine deformation

Definition (Genuine deformation)

Given a submanifold $f: M^n \to \mathbb{R}^{n+p}$ we say that $g: M^n \to \mathbb{R}^{n+q}$ is a *genuine deformation* of f there is no open subset $U \subset M^n$ along which the restrictions $f|_U$ and $g|_U$ extend isometrically.

Remark

This is a symmetric concept: for pairs and sets.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		000000000			
Geni	uine rigidi	ty			

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		00000000			

Genuine rigidity

genuine rigidity: only these exist

イロト イポト イヨト イヨト

э

Outline	Local rigidity	Genuine Rigidity ○○○●○○○○○	Global rigidity	Singular genuine rigidity	The proofs
Genı	uine rigidi	ty			

・ロット (日) (日) (日) (日) (日)

Definition (Genuine rigidity)

Given $f: M^n \to \mathbb{R}^{n+p}$ and a positive integer q, we say that f is genuinely rigid in \mathbb{R}^{n+q} if for any $g: M^n \to \mathbb{R}^{n+q}$ there is an open dense subset $U \subset M^n$ such that $f|_U$ and $g|_U$ extend isometrically. That is, g is nowhere a genuine deformation of f.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		000000000			
Con	uina rigidi	+			

Definition (Genuine rigidity)

Given $f: M^n \to \mathbb{R}^{n+p}$ and a positive integer q, we say that f is genuinely rigid in \mathbb{R}^{n+q} if for any $g: M^n \to \mathbb{R}^{n+q}$ there is an open dense subset $U \subset M^n$ such that $f|_U$ and $g|_U$ extend isometrically. That is, g is nowhere a genuine deformation of f.

Remark

Outline	Local rigidity	Genuine Rigidity ○○○●○○○○○	Global rigidity	Singular genuine rigidity	The proofs
Geni	uine rigidi	ty			

Definition (Genuine rigidity)

Given $f: M^n \to \mathbb{R}^{n+p}$ and a positive integer q, we say that f is genuinely rigid in \mathbb{R}^{n+q} if for any $g: M^n \to \mathbb{R}^{n+q}$ there is an open dense subset $U \subset M^n$ such that $f|_U$ and $g|_U$ extend isometrically. That is, g is nowhere a genuine deformation of f.

Remark

• If r = p = q, we recover the concept of isometric rigidity.

Outline	Local rigidity	Genuine Rigidity 000●00000	Global rigidity	Singular genuine rigidity	The proofs
Genı	uine rigidi	ty			

Definition (Genuine rigidity)

Given $f: M^n \to \mathbb{R}^{n+p}$ and a positive integer q, we say that f is genuinely rigid in \mathbb{R}^{n+q} if for any $g: M^n \to \mathbb{R}^{n+q}$ there is an open dense subset $U \subset M^n$ such that $f|_U$ and $g|_U$ extend isometrically. That is, g is nowhere a genuine deformation of f.

Remark

- If r = p = q, we recover the concept of isometric rigidity.
- If r = p < q, we recover the concept of compositions.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
The	main resu	ult			

Assume that the submanifolds $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ are *mutually* D^d -*ruled*, that is, D^d is a *d*-dimensional integrable distribution of M^n whose leaves are mapped by f and g onto open subsets of affine subspaces.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
The	main resu	ult			

Assume that the submanifolds $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ are *mutually* D^d -*ruled*, that is, D^d is a *d*-dimensional integrable distribution of M^n whose leaves are mapped by f and g onto open subsets of affine subspaces. Set

$$L_D = \operatorname{span}\{\alpha^f(D, TM)\}\ \text{and}\ L'_D = \operatorname{span}\{\alpha^g(D, TM)\}.$$

Outline	Local rigidity	Genuine Rigidity ○○○○●○○○○	Global rigidity	Singular genuine rigidity	The proofs
The	main resu	ılt			

Assume that the submanifolds $f: M^n \to \mathbb{R}^{n+p}$ and $g: M^n \to \mathbb{R}^{n+q}$ are *mutually* D^d -*ruled*, that is, D^d is a *d*-dimensional integrable distribution of M^n whose leaves are mapped by f and g onto open subsets of affine subspaces. Set

$$L_D = \operatorname{span}\{\alpha^f(D, TM)\}$$
 and $L'_D = \operatorname{span}\{\alpha^g(D, TM)\}.$

Then, by the Gauss equation, the map $\mathcal{T}_D: L_D \to L'_D$ given by

$$\mathcal{T}_{\scriptscriptstyle D}(lpha^f(Y,X))=lpha^g(Y,X), \ \ Y\in D^d, X\in TM,$$

is a well defined bundle isometry.

Theorem (Dajczer & F—, 2004)

Theorem (Dajczer & F-, 2004)

Let $g: M^n \to \mathbb{R}^{n+q}$ be a genuine deformation of $f: M^n \to \mathbb{R}^{n+p}$, with p + q < n and $\min \{p, q\} \leq 5$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Dajczer & F—, 2004)

Let $g: M^n \to \mathbb{R}^{n+q}$ be a genuine deformation of $f: M^n \to \mathbb{R}^{n+p}$, with p + q < n and $\min \{p, q\} \leq 5$. Then, locally f and g are mutually D^d -ruled, with $d \geq n - p - q + 3 \dim L_D$.

Theorem (Dajczer & F—, 2004)

Let $g: M^n \to \mathbb{R}^{n+q}$ be a genuine deformation of $f: M^n \to \mathbb{R}^{n+p}$, with p + q < n and $\min\{p, q\} \leq 5$. Then, locally f and g are mutually D^d -ruled, with $d \geq n - p - q + 3 \dim L_D$.

Locally = along connected components of an open dense subset.

Theorem (Dajczer & F—, 2004)

Let $g: M^n \to \mathbb{R}^{n+q}$ be a genuine deformation of $f: M^n \to \mathbb{R}^{n+p}$, with p + q < n and $\min\{p, q\} \leq 5$. Then, locally f and g are mutually D^d -ruled, with $d \geq n - p - q + 3 \dim L_D$.

Locally = along connected components of an open dense subset.

Remark

The above result generalizes and unifies several rigidity results and all the ones we know about compositions.

\exists genuine deformation \Rightarrow mutually ruled

Thus, for a pair of genuine deformations we have:

\exists genuine deformation \Rightarrow mutually ruled

Thus, for a pair of genuine deformations we have:

$$T_f^{\perp}M = L_D \oplus L_D^{\perp}$$
 $L_D := \operatorname{span} \{ \alpha^f(D, TM) \}$

$$T_g^{\perp}M = L'_D \oplus L'_D^{\perp} \qquad \qquad L'_D := \operatorname{span} \left\{ \alpha^g(D, TM) \right\}$$

\exists genuine deformation \Rightarrow mutually ruled

Thus, for a pair of genuine deformations we have:

\exists genuine deformation \Rightarrow mutually ruled

Thus, for a pair of genuine deformations we have:

\exists genuine deformation \Rightarrow mutually ruled

Thus, for a pair of genuine deformations we have:

Moreover, the estimate $d \ge n - p - q + 3 \dim L_D$ is sharp.

ne RigidityGlobal rigidity○○○○●○○○○	Singular genuine rigidity	The proofs
	e Rigidity □CO⊕O COO COO COO COO COO COO COO	le Rigidity coo ●O Coococococococococococococococococococo

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Outline	Local rigidity	Genuine Rigidity ○○○○○○●○	Global rigidity	Singular genuine rigidity	The proofs
Cons	sequences				
	11				

Corollary

Let $f: M^n \to \mathbb{R}^{n+p}$, $q \in \mathbb{N}$ with p + q < n and $\min\{p, q\} \leq 5$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
		000000000			
Con					

Corollary

Let $f: M^n \to \mathbb{R}^{n+p}$, $q \in \mathbb{N}$ with p + q < n and $\min\{p, q\} \leq 5$.

• Beez-Killing; Allendoerfer (for $\min\{p,q\} \le 5$), etc.

Outline	Local rigidity	Genuine Rigidity ○○○○○○●○	Global rigidity	Singular genuine rigidity	The proofs
Consequences					

Corollary

Let $f: M^n \to \mathbb{R}^{n+p}$, $q \in \mathbb{N}$ with p + q < n and $\min\{p, q\} \leq 5$.

- Beez-Killing; Allendoerfer (for $\min\{p,q\} \le 5$), etc.
- If f is nowhere (n-p-q)-ruled, f is genuinely rigid in \mathbb{R}^{n+q} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで
Outline	Local rigidity	Genuine Rigidity ○○○○○○●○	Global rigidity	Singular genuine rigidity	The proofs
Conse	equences				

Corollary

Let $f: M^n \to \mathbb{R}^{n+p}$, $q \in \mathbb{N}$ with p + q < n and $\min\{p, q\} \leq 5$.

- Beez-Killing; Allendoerfer (for $min\{p,q\} \le 5$), etc.
- If f is nowhere (n-p-q)-ruled, f is genuinely rigid in \mathbb{R}^{n+q} .

• If $Ric_M > 0$, then f is genuinely rigid in \mathbb{R}^{n+q} .

Outline	Local rigidity	Genuine Rigidity ○○○○○○●○	Global rigidity	Singular genuine rigidity	The proofs
_					

Corollary

Consequences

Let $f: M^n \to \mathbb{R}^{n+p}$, $q \in \mathbb{N}$ with p + q < n and $\min\{p, q\} \leq 5$.

- Beez-Killing; Allendoerfer (for $min\{p,q\} \le 5$), etc.
- If f is nowhere (n-p-q)-ruled, f is genuinely rigid in \mathbb{R}^{n+q} .
- If $Ric_M > 0$, then f is genuinely rigid in \mathbb{R}^{n+q} .
- If Mⁿ is compact, then there exists an open subset U ⊂ Mⁿ such that f|_U is genuinely rigid in ℝ^{n+q}.

Outline	Local rigidity	Genuine Rigidity ○○○○○○●○	Global rigidity	Singular genuine rigidity	The proofs
_					

Consequences

Corollary

Let $f: M^n \to \mathbb{R}^{n+p}$, $q \in \mathbb{N}$ with p + q < n and $\min\{p, q\} \leq 5$.

- Beez-Killing; Allendoerfer (for $\min\{p, q\} \le 5$), etc.
- If f is nowhere (n-p-q)-ruled, f is genuinely rigid in \mathbb{R}^{n+q} .
- If $Ric_M > 0$, then f is genuinely rigid in \mathbb{R}^{n+q} .
- If Mⁿ is compact, then there exists an open subset U ⊂ Mⁿ such that f|_U is genuinely rigid in ℝ^{n+q}.

But: it is very hard to obtain global applications from this result!

Analogously, given a manifold M^n with a *conformal* structure, we may want to understand its *conformal* immersions $f: M^n \to \mathbb{R}^{n+p}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Analogously, given a manifold M^n with a *conformal* structure, we may want to understand its *conformal* immersions $f: M^n \to \mathbb{R}^{n+p}$.

Similar rigidity and deformation results to the ones for the isometric case also exist for the conformal realm: Conformal rigidity, (Sbrana-)Cartan hypersurfaces, Conformal compositions, etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Analogously, given a manifold M^n with a *conformal* structure, we may want to understand its *conformal* immersions $f: M^n \to \mathbb{R}^{n+p}$.

Similar rigidity and deformation results to the ones for the isometric case also exist for the conformal realm: Conformal rigidity, (Sbrana-)Cartan hypersurfaces, Conformal compositions, etc.

In 2010, together with Ruy Tojeiro (UFSCar), we extended several of these conformal results by means of a genuine *conformal* rigidity framework, giving them a unified character. Actually, we obtained precisely the conformal version of the genuine rigidity theorem above, with its corresponding corollaries.

Outline	Local rigidity	Genuine Rigidity	Global rigidity ●○○	Singular genuine rigidity	The proofs
Globa	al rigidity				

The fundamental one is the beautiful Sacksteder's theorem $(n \ge 3)$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The fundamental one is the beautiful Sacksteder's theorem $(n \ge 3)$:

Theorem (Sacksteder, 1962)

Any compact Euclidean hypersurface is rigid provided its set of totally geodesic points does not disconnect the manifold.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The fundamental one is the beautiful Sacksteder's theorem $(n \ge 3)$:

Theorem (Sacksteder, 1962)

Any compact Euclidean hypersurface is rigid provided its set of totally geodesic points does not disconnect the manifold.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Sacksteder actually proved this equivalent statement:

Outline	Local rigidity	Genuine Rigidity	Global rigidity ●○○	Singular genuine rigidity	The proofs
Globa	al rigidity				

The fundamental one is the beautiful Sacksteder's theorem $(n \ge 3)$:

Theorem (Sacksteder, 1962)

Any compact Euclidean hypersurface is rigid provided its set of totally geodesic points does not disconnect the manifold.

Sacksteder actually proved this equivalent statement:

Theorem (translating Sacksteder's Theorem...)

Any compact Euclidean hypersurface is genuinely rigid.

Outline	Local rigidity	Genuine Rigidity	Global rigidity ○●○	Singular genuine rigidity	The proofs
Globa	al rigidity				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Local rigidity	Genuine Rigidity	Global rigidity ○●○	Singular genuine rigidity	The proofs
Globa	al rigidity				

Theorem (Dajczer & Gromoll, 1995)

Any pair of isometric immersions of a compact Riemannian manifold M^n into \mathbb{R}^{n+2} , $n \geq 5$, must extend isometrically along each connected component of an open dense subset of M^n

Outline	Local rigidity	Genuine Rigidity	Global rigidity ○●○	Singular genuine rigidity	The proofs
Globa	al rigidity				

Theorem (Dajczer & Gromoll, 1995)

Any pair of isometric immersions of a compact Riemannian manifold M^n into \mathbb{R}^{n+2} , $n \geq 5$, must extend isometrically along each connected component of an open dense subset of M^n , although maybe singularly.

Outline	Local rigidity	Genuine Rigidity	Global rigidity ○●○	Singular genuine rigidity	The proofs
Globa	al rigidity				

Theorem (Dajczer & Gromoll, 1995)

Any pair of isometric immersions of a compact Riemannian manifold M^n into \mathbb{R}^{n+2} , $n \geq 5$, must extend isometrically along each connected component of an open dense subset of M^n , although maybe singularly.

Why "maybe singularly"??

Outline	Local rigidity	Genuine Rigidity	Global rigidity ○●○	Singular genuine rigidity	The proofs
Globa	al rigidity				

Theorem (Dajczer & Gromoll, 1995)

Any pair of isometric immersions of a compact Riemannian manifold M^n into \mathbb{R}^{n+2} , $n \geq 5$, must extend isometrically along each connected component of an open dense subset of M^n , although maybe singularly.

Why **"maybe singularly"**?? The introduction of singularities in this result was shown to be a necessary condition in a recent local classification we made with Guilherme Freitas (2017).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline	Local rigidity	Genuine Rigidity	Global rigidity ○○●	Singular genuine rigidity	The proofs
Globa	al rigidity				

In fact, after all:

<ロ> <@> < E> < E> E のQの

Outline	Local rigidity	Genuine Rigidity	Global rigidity ○○●	Singular genuine rigidity	The proofs
Glob	al rigidity				

In fact, after all:

We should <u>not</u> try to avoid singularities when working with ruled extensions!

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Outline	Local rigidity	Genuine Rigidity	Global rigidity ○○●	Singular genuine rigidity	The proofs
Glob	al rigidity				

In fact, after all:

We should <u>not</u> try to avoid singularities when working with ruled extensions!

Singularities are not only necessary, but also natural for the problem, deeply simplify the theory, and are easy to deal with for ruled submanifolds, as we do when we classify flat and ruled surfaces in \mathbb{R}^3 .

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ●000000000	The proofs
Intro	oducing si	ngularities			

Our purpose in this joint work with Felippe Guimarães (IMPA) was then to introduce singularities in the genuine rigidity theory, mainly with the double purpose of obtaining new global rigidity results and to unify the known ones.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ●000000000	The proofs
Intro	ducing si	ngularities			

Our purpose in this joint work with Felippe Guimarães (IMPA) was then to introduce singularities in the genuine rigidity theory, mainly with the double purpose of obtaining new global rigidity results and to unify the known ones.

Yet, we got some nice surprises for the local theory...

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ○●○○○○○○○	The proofs
Defir	nitions				

All the definitions for introducing singularities are the natural ones, adapting the regular case:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ○●○○○○○○○	The proofs
Defir	nitions				

All the definitions for introducing singularities are the natural ones, adapting the regular case:

We say that f and g singularly extend isometrically if the diagram commutes, where j is an isometric embedding as before, and F and G are isometric immersions

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ○●○○○○○○○	The proofs
Defir	nitions				

All the definitions for introducing singularities are the natural ones, adapting the regular case:

We say that f and g singularly extend isometrically if the diagram commutes, where j is an isometric embedding as before, and F and G are isometric immersions, except maybe on M^n .

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ○○●○○○○○○	The proofs
Defir	nitions				

Analogously, we say that g is a *strong genuine deformation* of f if there is no open subset where they singularly extend isometrically.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ○○●○○○○○○	The proofs
Defi	nitions				

Analogously, we say that g is a *strong genuine deformation* of f if there is no open subset where they singularly extend isometrically.

Accordingly, we say that f is singularly genuinely rigid in \mathbb{R}^{n+q} if it admits no strong genuine deformation in \mathbb{R}^{n+q} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ○○●○○○○○○	The proofs
Defi	nitions				

Analogously, we say that g is a *strong genuine deformation* of f if there is no open subset where they singularly extend isometrically.

Accordingly, we say that f is singularly genuinely rigid in \mathbb{R}^{n+q} if it admits no strong genuine deformation in \mathbb{R}^{n+q} .

With these definitions we show:

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Glob	al statem	ents			

- + ロト + 母ト + ヨト + ヨト - ヨー わへぐ

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Glob	al statem	ents			

Let $f: M^n \to \mathbb{R}^{n+p}$ and $\hat{f}: M^n \to \mathbb{R}^{n+q}$ be isometric immersions of a compact Riemannian manifold with p+q < n.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Glob	al statem	ents			

Let $f: M^n \to \mathbb{R}^{n+p}$ and $\hat{f}: M^n \to \mathbb{R}^{n+q}$ be isometric immersions of a compact Riemannian manifold with p+q < n. Then, locally either f and \hat{f} singularly extend isometrically,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs

Global statements

Let $f: M^n \to \mathbb{R}^{n+p}$ and $\hat{f}: M^n \to \mathbb{R}^{n+q}$ be isometric immersions of a compact Riemannian manifold with p+q < n. Then, locally either f and \hat{f} singularly extend isometrically, or f and \hat{f} are mutually D^d -ruled, with $d \ge n - p - q + 3$.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ○○○●○○○○○○	The proofs

Global statements

Theorem (F— & Guimarães, preprint, 2018)

Let $f: M^n \to \mathbb{R}^{n+p}$ and $\hat{f}: M^n \to \mathbb{R}^{n+q}$ be isometric immersions of a compact Riemannian manifold with p+q < n. Then, locally either f and \hat{f} singularly extend isometrically, or f and \hat{f} are mutually D^d -ruled, with $d \ge n - p - q + 3$.

The proof actually works untouched for compact (or complete and bounded) submanifolds in hyperbolic space, and with a little bit of extra work we obtained a similar result for complete submanifolds in the sphere.

(日) (同) (三) (三) (三) (○) (○)

	Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					000000000	
Global consequences	Glab	al concor	uoncos			

For $p + q \le 4$ this unifies Sacksteder and Dajczer-Gromoll theorems above, and states that the only way to isometrically immerse a compact Euclidean hypersurface in codimension 3 is as a composition:

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs		
				000000000			
Clobal consequences							

For $p + q \le 4$ this unifies Sacksteder and Dajczer-Gromoll theorems above, and states that the only way to isometrically immerse a compact Euclidean hypersurface in codimension 3 is as a composition:

Corollary

Any compact (or complete and bounded) submanifold M^n of \mathbb{R}^{n+p} , $n \geq 5$, is singularly genuinely rigid in \mathbb{R}^{n+q} for $q \leq 4-p$.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity ○○○○○●○○○○	The proofs
Globa	al conseq	uences			

We also obtained a purely topological criteria for singular genuine rigidity without any restriction on the codimensions:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs		
				000000000			
Global consequences							

We also obtained a purely topological criteria for singular genuine rigidity without any restriction on the codimensions:

Corollary

Let M^n be a compact manifold whose k-th Pontrjagin class satisfies that $[p_k] \neq 0$ for some $k > \frac{3}{4}(p+q-3)$. Then, any analytic immersion $f : M^n \to \mathbb{R}^{n+p}$ (with the induced metric) is singularly genuinely rigid in \mathbb{R}^{n+q} in the C^{∞} -category.
Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
Local	analysis:	the form ϕ	9 au		

Our global results rely on a local analysis of a special bilinear form.

Our global results rely on a local analysis of a special bilinear form. Let

$$\tau: L^{\ell} \subset T_f^{\perp} M \to \hat{L}^{\ell} \subset T_{\hat{f}}^{\perp} M$$

be a vector bundle isometry that preserves the second fundamental forms and the normal connections restricted to the rank ℓ vector normal subbundles L and \hat{L} . Extend τ as Id on TM: $\bar{\tau} = Id \oplus \tau$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our global results rely on a local analysis of a special bilinear form. Let

$$\tau: L^{\ell} \subset T_f^{\perp} M \to \hat{L}^{\ell} \subset T_{\hat{f}}^{\perp} M$$

be a vector bundle isometry that preserves the second fundamental forms and the normal connections restricted to the rank ℓ vector normal subbundles L and \hat{L} . Extend τ as Id on TM: $\bar{\tau} = Id \oplus \tau$. Let $\phi_{\tau} : TM \times (TM \oplus L) \rightarrow L^{\perp} \times \hat{L}^{\perp}$ be the bilinear form

$$\phi_{\tau}(X,\eta) = \left((\tilde{\nabla}_X \eta)_{L^{\perp}}, (\tilde{\nabla}_X \bar{\tau} \eta)_{\hat{L}^{\perp}} \right),$$

Our global results rely on a local analysis of a special bilinear form. Let

$$\tau: L^{\ell} \subset T_f^{\perp} M \to \hat{L}^{\ell} \subset T_{\hat{f}}^{\perp} M$$

be a vector bundle isometry that preserves the second fundamental forms and the normal connections restricted to the rank ℓ vector normal subbundles L and \hat{L} . Extend τ as Id on TM: $\bar{\tau} = Id \oplus \tau$. Let $\phi_{\tau} : TM \times (TM \oplus L) \rightarrow L^{\perp} \times \hat{L}^{\perp}$ be the bilinear form

$$\phi_{\tau}(X,\eta) = \left((\tilde{\nabla}_X \eta)_{L^{\perp}}, (\tilde{\nabla}_X \bar{\tau} \eta)_{\hat{L}^{\perp}} \right),$$

where $\tilde{\nabla}$ stands for the connection in Euclidean space and $L^{\perp} \times \hat{L}^{\perp}$ is endowed with the semi-Riemannian metric $\langle , \rangle = \langle , \rangle |_{L^{\perp}} - \langle , \rangle |_{\hat{L}^{\perp}}$.

 Outline
 Local rigidity
 Genuine Rigidity
 Global rigidity
 Singular genuine rigidity
 The proofs

 0000000
 00000000
 000
 000000000
 000000000
 0000000000

The form ϕ_{τ} and the main local result

A subset $S \subset L^{\perp} \oplus \hat{L}^{\perp}$ is called *null* if $\langle \eta, \xi \rangle = 0$ for all $\eta, \xi \in S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A subset $S \subset L^{\perp} \oplus \hat{L}^{\perp}$ is called *null* if $\langle \eta, \xi \rangle = 0$ for all $\eta, \xi \in S$. Given a distribution D on M^n , denote by $\mathcal{O}(D)$ the smallest totally

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

geodesic distribution of M^n that contains D.

 Outline
 Local rigidity
 Genuine Rigidity
 Global rigidity
 Singular genuine rigidity
 The proofs

 Outline
 Constraints
 <

The form ϕ_{τ} and the main local result

A subset $S \subset L^{\perp} \oplus \hat{L}^{\perp}$ is called *null* if $\langle \eta, \xi \rangle = 0$ for all $\eta, \xi \in S$. Given a distribution D on M^n , denote by $\mathcal{O}(D)$ the smallest totally geodesic distribution of M^n that contains D.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Our main local result applies even to $\tau = 0$:

The form ϕ_{τ} and the main local result

A subset $S \subset L^{\perp} \oplus \hat{L}^{\perp}$ is called *null* if $\langle \eta, \xi \rangle = 0$ for all $\eta, \xi \in S$. Given a distribution D on M^n , denote by $\mathcal{O}(D)$ the smallest totally geodesic distribution of M^n that contains D.

Our main local result applies even to $\tau = 0$:

Theorem

The form ϕ_{τ} and the main local result

A subset $S \subset L^{\perp} \oplus \hat{L}^{\perp}$ is called *null* if $\langle \eta, \xi \rangle = 0$ for all $\eta, \xi \in S$. Given a distribution D on M^n , denote by $\mathcal{O}(D)$ the smallest totally geodesic distribution of M^n that contains D.

Our main local result applies even to $\tau = 0$:

Theorem

Let \hat{f} be a strongly genuine deformation of f and $\tau: L \subset T_f^{\perp}M \rightarrow \hat{L} \subset T_{\hat{f}}^{\perp}M$

a parallel v. b. isometry that preserves second fundamental forms.

The form ϕ_{τ} and the main local result

A subset $S \subset L^{\perp} \oplus \hat{L}^{\perp}$ is called *null* if $\langle \eta, \xi \rangle = 0$ for all $\eta, \xi \in S$. Given a distribution D on M^n , denote by $\mathcal{O}(D)$ the smallest totally geodesic distribution of M^n that contains D.

Our main local result applies even to $\tau = 0$:

Theorem

Let \hat{f} be a strongly genuine deformation of f and $\tau: L \subset T_f^{\perp}M \rightarrow \hat{L} \subset T_f^{\perp}M$

a parallel v. b. isometry that preserves second fundamental forms. Let $D \subset TM \oplus L$ such that $\phi_{\tau}(TM, D) \subset L^{\perp} \oplus \hat{L}^{\perp}$ is a null set.

The form ϕ_{τ} and the main local result

A subset $S \subset L^{\perp} \oplus \hat{L}^{\perp}$ is called *null* if $\langle \eta, \xi \rangle = 0$ for all $\eta, \xi \in S$. Given a distribution D on M^n , denote by $\mathcal{O}(D)$ the smallest totally geodesic distribution of M^n that contains D.

Our main local result applies even to $\tau = 0$:

Theorem

Let \hat{f} be a strongly genuine deformation of f and $\tau: L \subset T_f^{\perp}M \rightarrow \hat{L} \subset T_f^{\perp}M$

a parallel v. b. isometry that preserves second fundamental forms. Let $D \subset TM \oplus L$ such that $\phi_{\tau}(TM, D) \subset L^{\perp} \oplus \hat{L}^{\perp}$ is a null set. Then, $D \subset TM$ and locally f and \hat{f} are mutually $\mathcal{O}(D)$ -ruled.

The form ϕ_{τ} and the main local result

A subset $S \subset L^{\perp} \oplus \hat{L}^{\perp}$ is called *null* if $\langle \eta, \xi \rangle = 0$ for all $\eta, \xi \in S$. Given a distribution D on M^n , denote by $\mathcal{O}(D)$ the smallest totally geodesic distribution of M^n that contains D.

Our main local result applies even to $\tau = 0$:

Theorem

Let \hat{f} be a strongly genuine deformation of f and $\tau: L \subset T_f^{\perp}M \to \hat{L} \subset T_f^{\perp}M$

a parallel v. b. isometry that preserves second fundamental forms. Let $D \subset TM \oplus L$ such that $\phi_{\tau}(TM, D) \subset L^{\perp} \oplus \hat{L}^{\perp}$ is a null set. Then, $D \subset TM$ and locally f and \hat{f} are mutually $\mathcal{O}(D)$ -ruled.

The key advantage here over other local rigidity results: it deals with easily to construct null sets instead of nullity distributions.

A good example is the following singular version of the main result in genuine rigidity removing the assumptions on the codimensions.

The main local tool for actual applications

A good example is the following singular version of the main result in genuine rigidity removing the assumptions on the codimensions.

Recall that $Y \in TM$ is a *(left) regular element* of ϕ_{τ} if

$$\mathsf{rank}(\phi^{m{Y}}_{ au})= i(\phi_{ au}):=\mathsf{max}\{\mathsf{rank}(\phi^{m{X}}_{ au})\,:\,m{X}\in TM\},$$

where $\phi_{\tau}^{X} = \phi_{\tau}(X, \cdot)$. Denote by $RE(\phi_{\tau}) \subset TM$ the open dense subset of regular elements of ϕ_{τ} , and $K_{Y} = \ker(\phi_{\tau}^{Y})$ for $Y \in RE(\phi_{\tau})$.

The main local tool for actual applications

A good example is the following singular version of the main result in genuine rigidity removing the assumptions on the codimensions.

Recall that $Y \in TM$ is a *(left) regular element* of ϕ_{τ} if

$$\mathsf{rank}(\phi^{m{Y}}_{ au})= i(\phi_{ au}):=\mathsf{max}\{\mathsf{rank}(\phi^{m{X}}_{ au})\,:\,m{X}\in TM\},$$

where $\phi_{\tau}^{X} = \phi_{\tau}(X, \cdot)$. Denote by $RE(\phi_{\tau}) \subset TM$ the open dense subset of regular elements of ϕ_{τ} , and $K_{Y} = \ker(\phi_{\tau}^{Y})$ for $Y \in RE(\phi_{\tau})$.

Corollary

The main local tool for actual applications

A good example is the following singular version of the main result in genuine rigidity removing the assumptions on the codimensions.

Recall that $Y \in TM$ is a *(left) regular element* of ϕ_{τ} if

$$\mathsf{rank}(\phi^{m{Y}}_{ au})= i(\phi_{ au}):=\mathsf{max}\{\mathsf{rank}(\phi^{m{X}}_{ au})\,:\,m{X}\in TM\},$$

where $\phi_{\tau}^{X} = \phi_{\tau}(X, \cdot)$. Denote by $RE(\phi_{\tau}) \subset TM$ the open dense subset of regular elements of ϕ_{τ} , and $K_{Y} = \ker(\phi_{\tau}^{Y})$ for $Y \in RE(\phi_{\tau})$.

Corollary

If \hat{f} is a strongly genuine deformation of f, then locally they are mutually $\mathcal{O}(D_Y^d)$ -ruled $\forall Y \in RE(\phi_\tau)$, where $D_Y^d = \ker(\phi_\tau^Y) \subset TM$ and $d = n + \ell - i(\phi_\tau) \ge n - p - q + 3\ell$.

By allowing singular extensions we recover all the genuine rigidity corollaries, yet without the restrictions on the codimensions.

By allowing singular extensions we recover all the genuine rigidity corollaries, yet without the restrictions on the codimensions. E.g., the previous global corollary about Pontrjagin classes actually follows from our local result.

By allowing singular extensions we recover all the genuine rigidity corollaries, yet without the restrictions on the codimensions. E.g., the previous global corollary about Pontrjagin classes actually follows from our local result.

Of course, we also obtain local rigidity under any circumstance that excludes ruled submanifolds. For example:

By allowing singular extensions we recover all the genuine rigidity corollaries, yet without the restrictions on the codimensions. E.g., the previous global corollary about Pontrjagin classes actually follows from our local result.

Of course, we also obtain local rigidity under any circumstance that excludes ruled submanifolds. For example:

Corollary

Any immersed submanifold M^n of \mathbb{R}^{n+p} with Ric > 0 is singularly genuinely rigid in \mathbb{R}^{n+q} for any q < n-p.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs •0000000000
All t	he compu	itations			

Let's now carry out the complete (and a little bit long) proofs of our two main theorems.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs •0000000000
All t	he compu	itations			

Let's now carry out the complete (and a little bit long) proofs of our two main theorems.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof:

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs •0000000000
All t	he compi	itations			

Let's now carry out the complete (and a little bit long) proofs of our two main theorems.

Proof:..... Just kidding!! :oP

Thanks!!!!

ſ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					0000000000

There's nothing here.

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					000000000000000000000000000000000000000

Really!

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					000000000000000000000000000000000000000

Really really!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					00000000000

Really really reaaaally!

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					00000000000

:op

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					00000000000

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					000000000000000000000000000000000000000

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					0000000000000

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					00000000000

Outline	Local rigidity	Genuine Rigidity	Global rigidity	Singular genuine rigidity	The proofs
					0000000000