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For an isometric immersion between Riemannian manifolds f : Mn → Nn+p, the

Gauss equation says that the (sectional) extrinsic curvature of Mn in Nn+p at x ∈ Mn for

a plane σ ⊂ TxM , Kf (σ) := KM (σ) − KN (σ), is given by

Kf (σ) = 〈α(X, X), α(Y, Y )〉 − ‖α(X, Y )‖2,

where α is the second fundamental form of the immersion and {X, Y } any orthonormal

basis of σ. Superscripts always means dimension.

Chern and Kuiper ([CK]) have shown that ν ≥ n − p at the points where the extrinsic

curvature vanishes. Here ν(x) is the dimension of the subspace

∆(x) = Ker α(x) = {X ∈ TxM : α(X, Y ) = 0, ∀ Y ∈ TxM}

and is called the index of relative nullity of f at x. It is a well known fact that the

positiveness of the index of relative nullity imposes strong conditions on the metric of the

submanifold and on the structure of the immersion. Therefore, it is a natural question to

ask what happens if the extrinsic curvature is merely nonpositive.

In that direction, Borisenko had shown in [Bo] that at points where Kf ≤ 0, the

index of relative nullity verifies ν ≥ n − p2 − p. The main purpose of this paper is to prove

the following improvement of Borisenko’s result.

Theorem 1. Let f : Mn → Nn+p be an isometric immersion between Riemannian man-

ifolds. Suppose that at x0 ∈ Mn we have Kf (x0) ≤ 0. Then ν(x0) ≥ n − 2p.

The following example shows that our estimate in Theorem 1 is sharp.
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Example. Let U2 ⊂ R3 be a surface in the euclidean space with negative Gaussian curva-

ture at x0 ∈ U2. Then the product immersion of p factors U 2 × · · · × U2 → R3p satisfies

ν(x0, . . . , x0) = n − 2p = 0.

The strong restrictions that ν > 0 imposes on an isometric immersion allow us to find

several applications of Theorem 1. The following corollary is an improvement of Theorem

3 in [Bo], where a much stronger quadratic hypothesis for the codimension is needed.

Corollary 2. Let f : Mn → Sn+p
c be an isometric immersion of a complete Riemannian

manifold into the euclidean sphere of constant sectional curvature c. If KM ≤ c and

2p < n − νn, then f is totally geodesic.

In the above statement νn is defined as νn = max {k : ρ(n − k) ≥ k + 1}, where ρ(n)

is given by ρ((odd)24d+b) = 8d+2b, with d being any nonnegative integer and b = 0, 1, 2, 3.

Some values of νn are: νn = n − (highest power of 2 ≤ n) for n ≤ 24, νn ≤ 8d − 1 for

n < 16d and ν2d = 0.

At least for some dimensions, the hypothesis in the codimension in the above corollary

cannot be improved to 2p < n. For example, the simplest of Cartan’s isoparametric

hypersurfaces, i.e., the unit normal bundle of the Veronesse surface in S4
1 , is a compact

non totally geodesic submanifold of S4
1 with curvature less or equal than one.

We have the following for isometric immersions of Riemannian products.

Corollary 3. Let Mn = Nn1

1 ×Nn2

2 be the product of two Riemannian manifolds. Suppose

that there exists (x, x′) ∈ Mn such that KN1
(x), KN2

(x′) ≤ c, a positive constant. Then,

there is no isometric immersion of Mn into Sn+p
c for 2p < n.

Corollaries 2 and 3 also hold if we replace the ambient space by any manifold of

constant sectional curvature c > 0. For the case c < 0, we have the next result.

Corollary 4. Let f : Mn → Nn+p
c be an isometric immersion of a complete Riemannian

manifold of finite volume into another Riemannian manifold of constant sectional curvature

c < 0. If KM ≤ c and 2p < n, then f is totally geodesic.

By Qn
c (resp. CQn

c ) we denote the standard real (resp. complex) simply connected

space form of constant sectional (resp. holomorphic) curvature c and real (resp. complex)
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dimension n. Dajczer and Rodŕıguez ([DR2]) have shown that any isometric immersion

of a Kähler manifold with ν > 0 everywhere into CQN
c , c 6= 0, must be holomorphic. From

the proof of that theorem and our main result we conclude the following statement.

Corollary 5. Let M2n be a Kähler manifold and x0 ∈ M2n such that KM (x0) ≤ c 6= 0.

If p < n, then there exists no isometric immersion of M 2n into Q2n+p
c .

Further applications of our main result for isometric immersions of Kähler manifolds

will be given in §3.

This work is a portion of the author’s doctoral thesis at IMPA - Rio de Janeiro. The

author would like to express his gratefulness to his adviser, Prof. M. Dajczer and Prof.

L. Rodŕıguez for helpful suggestions. The author also thanks Prof. M. do Carmo for

conversations.

1. The proof of Theorem 1

Let V n and W p be real vector spaces of dimensions n and p respectively. Suppose

that W p has a positive definite inner product 〈 , 〉, and let α : V n × V n → W p be a

symmetric bilinear map with nonpositive curvature, i.e.,

Kα(X, Y ) = 〈α(X, X), α(Y, Y )〉 − ‖α(X, Y )‖2 ≤ 0,

for all X, Y ∈ V n. We recall the following version of a well-known result due to Otsuki

([Ot]).

Lemma 6. With the above assumptions, for any subspace S ⊂ V n with dim S > p there

exists 0 6= X ∈ S such that α(X, X) = 0.

We say that T ⊆ V n is an asymptotic subspace of α if α(X, Y ) = 0 for all X, Y ∈ T .

We denote the set of asymptotic vectors of α by A(α). One of the main tools in the proof

of Theorem 1 is the following generalization of Lemma 6.

Proposition 7. Let α : V n×V n → W p be a symmetric bilinear map with Kα ≤ 0. Then,

there exists an asymptotic subspace T ⊂ V n of α such that dim T ≥ n − p.

For each X0 ∈ V n, we define a linear transformation α(X0) : V n → W p by

α(X0)(Y ) = α(X0, Y ).
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Given X0 ∈ A(α), we denote

V1 = V1(X0) = Ker α(X0), W1 = W1(X0) = {Im α(X0)}
⊥

and define α1 = α|V1×V1
.

With the above notations, we claim that Im α1 ⊆ W1. To prove the claim, take

Z ∈ V1, Y ∈ V n. Then, since X0 ∈ A(α),

Kα(X0 + tY, Z) = 〈2tα(X0, Y ) + t2α(Y, Y ), α(Z, Z)〉 − t2‖α(Y, Z)‖2

= 2t〈α(X0, Y ), α(Z, Z)〉+ t2Kα(Y, Z),

for all t ∈ R. Then, we have that 〈α(X0, Y ), α(Z, Z)〉 = 0, for all Z ∈ V1, Y ∈ V n, because

Kα ≤ 0. The claim follows easily using the symmetry of α.

The above claim allows us to make an inductive process as follows. Set V0 = V

and W0 = W . Given k ≥ 0, for the symmetric bilinear map of nonpositive curvature

αk = α|Vk×Vk
: Vk × Vk → Wk, define

rk = max {dim Im αk(X) : X ∈ A(αk)},

and suppose that if k ≥ 1, nk = dim Vk = n−
∑k−1

i=0 ri and pk = dim Wk = p−
∑k−1

i=0 ri.

Picking Xk ∈ A(αk) such that dim Im αk(Xk) = rk, set

Vk+1 = Vk+1(X0, . . . , Xk) = Ker αk(Xk),

and then

nk+1 = dim Vk+1 = n −
k∑

i=0

ri .

The above claim implies that Im αk+1 ⊆ Wk+1, where

Wk+1 = Wk+1(X0, . . . , Xk) = {Im αk(Xk)}⊥ ⊆ Wk,

and αk+1 = αk|Vk+1×Vk+1
.

Since 0 ≤ pk+1 = dim Wk+1 = p −
∑k

i=0 ri , there exists a positive integer m such

that rm = 0. This tells us that

A(αm) = Ker αm.
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Set T = Ker αm. By Lemma 6, for all subspace S ⊂ Vm such that dim S > pm, we have

that S ∩ T = S ∩ A(αm) 6= {0}. Hence,

dim T ≥ nm − pm = n − p.

Moreover, since αm = α|Vm×Vm
, then T is an asymptotic subspace of α and this concludes

the proof. ut

Let β : V ′ × V → V ′′ be a bilinear map. We say that X ∈ V ′ is a regular element

of β if dim Imβ(X) = max {dim Imβ(Z) : Z ∈ V ′}. The set of regular elements of β is

denoted by RE(β). For the proof of Proposition 9 we need the following result which is

essentially due to Moore ([Mo]).

Lemma 8. Let β : V ′ × V → V ′′ be a bilinear map and Y0 ∈ RE(β). Then,

β(Y, Kerβ(Y0)) ⊆ Imβ(Y0)

for all Y ∈ V ′.

Let Z1, . . .Zr be vectors in V with r = dim Imβ(Y0) and

Imβ(Y0) = span {β(Y0, Zj), 1 ≤ j ≤ r}.

It is easy to see that the vectors β(Y0 + tY, Zj), 1 ≤ j ≤ r, are linearly independent

except for a finite number of values of t. Hence, they generate a family of r-dimensional sub-

spaces that varies continuously with t if |t| < ε, for some ε > 0. But if Z ∈ Kerβ(Y0), then

β(Y0 + tY, Z) = tβ(Y, Z). Therefore, by continuity, β(Y, Z) ∈ Imβ(Y0). ut

Proposition 9. Let α : V n × V n → W p be a symmetric bilinear map with Kα ≤ 0. Let

T be an asymptotic subspace of α. Then ν ≥ dim T − p.

Let T ′ ⊆ V n be a subspace such that T ′ ⊕ T = V n, and define β : T ′ × T → W p by

β = α|T ′×T . Take Y0 ∈ RE(β), Z ∈ T, Z ′ ∈ Kerβ(Y0) ⊆ T and Y ∈ T ′. Using only the

assumption on T , we have for all s, t ∈ R that

Kα(Y0 + tZ, Y + sZ ′) = 〈α(Y0, Y0) + 2tα(Y0, Z), α(Y, Y ) + 2sα(Y, Z ′)〉

− ‖α(Y0 + tZ, Y + sZ ′)‖2.
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Since α(Y0, Z
′) = 0, we get that

Kα(Y0 + tZ, Y + sZ ′) = Kα(Y0, Y ) − t2‖α(Z, Y )‖2

+ 2t( 〈α(Y0, Z), α(Y, Y )〉 − 〈α(Y0, Y ), α(Z, Y )〉 )

+ 2s( 〈α(Y0, Y0), α(Y, Z ′)〉 + 2t〈α(Y0, Z), α(Y, Z ′)〉 ),

which is linear in s. This implies, in view of the hypothesis on Kα, that

〈α(Y0, Y0), α(Y, Z ′)〉 + 2t〈α(Y0, Z), α(Y, Z ′)〉 = 0,

for all t ∈ R, which says that 〈α(Y0, Z), α(Y, Z ′)〉 = 0. From the arbitrariness of Z and Z ′,

it follows that

β(Y, Kerβ(Y0)) ⊆ {Imβ(Y0)}
⊥,

for all Y ∈ T ′. This, together with Lemma 8, tells us that α(Y, X) = 0, for all Y ∈ T ′,

X ∈ Kerβ(Y0). But since Kerβ(Y0) ⊆ T , we obtain

Kerβ(Y0) ⊆ Ker α.

Then,

ν ≥ dim Kerβ(Y0) = dim T− dim Imβ(Y0) ≥ dim T − p,

which concludes the proof. ut

The proof of Theorem 1 follows immediately from the Gauss equation and the next

result.

Proposition 10. Let α : V n ×V n → W p be a symmetric bilinear map such that Kα ≤ 0.

Then ν ≥ n − 2p.

It is clear from Propositions 7 and 9. ut

2. Some applications

First of all, we give the proofs of the three corollaries stated in the Introduction.

It is a well-known fact (see e.g. [Fe2]) that when the ambient space has constant sectional

curvature, i.e., Nn+p = Nn+p
c , the minimum relative nullity distribution of an isometric
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immersion f : Mn → Nn+p
c is smooth and integrable with totally geodesic leaves in both

Mn and Nn+p
c . If in addition Mn is complete, then the leaves are also complete. Now,

the proof is a direct consequence of Theorem 1 in [Fe1] and our Theorem 1. ut

Suppose that such an immersion exists. Since the product manifold satisfies KM ≤ c

at (x, x′), by Theorem 1, there exists a unit vector X ∈ T(x,x′)M such that KM (X, Y ) ≡

c > 0, for all unit vector Y ∈ T(x,x′)M normal to X. But this is a contradiction because

KM (Z, Z ′) = 0 if Z ∈ TxN1 and Z ′ ∈ Tx′N2. ut

Is a direct consequence of Theorem 1 and Theorem 2.2 in [Ze]. ut

The following is the same argument as the one in the proof of Theorem 3 in [DR2].

Suppose that such an immersion exists and call it f . Composing f with the totally

geodesic and totally real inclusion i : Q2n+p
c → CQ2n+p

c , we conclude from Theorem 1 that

ν(i◦f)(x0) > 0. But the proof of the main result in [DR2] tells us that Tx0
M must be J

invariant, where J is the almost complex structure of M . This is a contradiction, because

i◦f is totally real. ut

In [Ab], Abe had shown that any holomorphic isometric immersion of a complete

Kähler manifold into the complex projective space with ν > 0 everywhere must be totally

geodesic. But by the main result of [DR2], the holomorphic hypothesis is superfluous.

Therefore, from Theorem 1, we conclude:

Corollary 11. Let f : M2n → CP n+p
c , 2p < n, be an isometric immersion of a complete

Kähler manifold into the complex projective space. Suppose that Kf ≤ 0. Then M2n =

CP n
c and f is a totally geodesic inclusion.

Given an isometric immersion of a Riemannian manifold into the euclidean space

with ν > 0 everywhere, it is an interesting question to ask whether the relative nullity

distribution gives rise to an euclidean factor of the submanifold. The next result follows

directly from Theorems 3 and 4 of [DR1]. We say that the scalar curvature s of a

Riemannian manifold M has subquadratic grow along geodesics if it satisfies limt→∞

s(t)
t2

=

0, where t is the parameter of any geodesic γ and s(t) is the scalar curvature of M at γ(t).
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Corollary 12. Let f : M2n → R2n+p be a minimal isometric immersion of a complete

Kähler manifold of nonpositive sectional curvature. Suppose that p < n and one of the

following holds:

a) s has subquadratic grow along geodesics, or

b) there exists x0 ∈ M2n where all the holomorphic curvatures of planes in ∆(x0)
⊥ are

negative.

Then M2n = N2p × R2(n−p) and f = f1 × id splits.
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