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Preface

It is always important to obtain parametric descriptions of certain class of
geometric object. First, of course, to have a classification of a complicate ob-
ject by means of simpler ones, that is, to understand the class, to construct
examples, etc. Secondly and perhaps more important, because of applica-
tions.

The usual way to deal with a class of submanifolds is to make use of the
fundamental equations ((1.5), (1.6) and (1.7)) which completely determine
its structure. However, these equations are very complicated and usually it
requires a lot of work with them to prove simple statements. Here is where
parametrizations can help, since in some sense they carry implicitly all the
information of the fundamental equations in one package.

Many natural geometric restrictions on a submanifold in a space form
(in reasonable codimension) imply the existence of nontrivial nullity dis-
tributions, like deformability or conformally flatness. In this setting, the
hypersurface situation for relative nullity was completely understood with
the Gauss parametrization ([Sb], [DG]; cf. Chapter 2), which turned out
to be extremely useful as a tool. The same holds for conformal nullity and
codimension less than or equal to two ([AD], [DF1]). If a certain geometric
restriction implies the existence of a nullity distribution on a class of subman-
ifolds, it thus seems to be a good idea to try first to describe parametrically
the class (or even a broader one) with a Gauss-type of parametrization, and
then to study the object with the strong help of this tool. The same can be
said about submanifolds foliated by extrinsic subspaces or spheres.

Although there is still no satisfactory Gauss-type of parametrization for
higher codimensions, we discuss in this notes some results developing and
using different representations of submanifolds to solve some geometric prob-
lems, often in an unexpected way. Our purpose here is to try to convince
the reader throughout several examples contained in recent research papers
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about the strength of this simple and useful technique.

The prerequisites for the reader are some basic knowledge about the the-
ory of differentiable manifolds, like vector bundles, tensors, metric and cur-
vature, connections and covariant derivatives, etc.

These notes are organized as follows. In the first chapter we included
some definitions and basic facts about submanifold theory that will be used
throughout this notes.

The second chapter is dedicated to develop the Gauss parametrization for
hypersurfaces with relative nullity together with several applications, mostly
to rank two hypersurfaces and isometric rigidity.

In Chapter 3 we construct a similar representation for hypersurfaces with
conformal nullity. We call it the umbilic Gauss parametrization. Then, we
use it to give a description of all conformally flat hypersurfaces, and we talk
a little bit about conformal rigidity.

Generalizations of this two parametrizations for higher codimensions are
done in Chapter 4. We use them to solve the problem of whether a subman-
ifold with conformal rank two is rotational.

Chapter 5 is devoted to submanifolds with some kind of integrability of
the orthogonal complement of the nullity distribution. We use it to make a
quick proof of the conformal classification of all submanifolds for which the
conullity is umbilic in the submanifold.

I would like to thank the organizers of the Coloquio Brasileiro de Mate-
mática for inviting me to give this course.
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Chapter 1

Preliminaries and notation

Although most of the topics in this notes can be done with more generality
(for example in space forms of arbitrary constant sectional curvature), we
have chosen to work with submanifolds in euclidean space, not only for sim-
plicity, but also because all the ideas, problems and interesting phenomena
already occur in this setting. We need first to fix some notations and to recall
basic facts about the theory of submanifolds.

Let Mn be a differentiable (C∞) manifold (superscripts will always denote
dimensions). Let π : TM = ∪x∈MTxM → Mn be its tangent bundle whose
(smooth) sections are Γ(TM) = {X : Mn → TM : π ◦ X = id}, the
vector fields of Mn. A differentiable map between differentiable manifolds
f : Mn → M̃m is an immersion if the differential of f at x,

df(x) = f∗x : TxM → Tf(x)M̃

is nonsingular, for all x ∈ Mn. The number p = m − n ≥ 0 is called the
codimension of f . We say that f is a hypersurface when p = 1.

It is important to recall that every immersion f as above is locally an
embedding, that is, for every x ∈ Mn there exists a neighborhood U ⊂ Mn

of x such that f |U : U → M̃n+p is injective and the open subsets V ⊂ U
coincide with the preimage under f |U of open subsets of f(U), that is,
V = (f |U)−1(f(U) ∩W ), for some open subset W ⊂ M̃n+p. This implies
that f(U) is an embedded submanifold of M̃n+p, diffeomorphic to U under
f |U . According to this, we always identify U with f(U) and the tangent
space TU with f∗TU = Tf(U) not to overload with notations. Therefore,
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8 CHAPTER 1. PRELIMINARIES AND NOTATION

the identifications x = f(x), X = f∗X, for any x ∈ Mn and X ∈ TM shall
not make confusion.

A riemannian manifold is a differentiable manifold Mn together with a
symmetric tensor

〈 , 〉 = 〈 , 〉M : TM × TM → R

which is positive definite at every point, called the (riemannian) metric of
Mn. It is a well known and remarkable fact that every riemannian manifold
(Mn, 〈 , 〉) possesses a unique Levi-Civita connection: a R-bilinear map

∇ : Γ(TM) × Γ(TM) → Γ(TM),

∇(X, Y ) = ∇XY, which satisfies for all X, Y, Z ∈ Γ(TM), r ∈ C∞(M):

• ∇ is tensorial in the first variable: ∇(rX)Y = r∇XY ,

• ∇ is a derivation in the second variable: ∇X(rY ) = r∇XY +X(r)Y ,

• ∇ is torsion-free: T (X, Y ) := ∇XY −∇YX − [X, Y ] = 0,

• ∇ is compatible with the metric of Mn:

(∇〈 , 〉)(X, Y, Z) := Z〈X, Y 〉 − 〈∇ZX, Y 〉 − 〈X,∇ZY 〉 = 0.

We denote by R = R∇ = [∇,∇] −∇[ , ] the curvature tensor of ∇:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ TM.

An immersion f : Mn → M̃n+p between riemannian manifolds is called
an isometric immersion if 〈 , 〉M = f ∗〈 , 〉M̃ , that is, if

〈X, Y 〉M = 〈f∗X, f∗Y 〉M̃ , ∀ X, Y ∈ TM. (1.1)

Observe that if f : Mn → M̃n+p is an immersion and M̃n+p is a riemannian
manifold, we can always define a metric on Mn using (1.1), the so-called
induced metric by f , which makes f an isometric immersion. An immersion
f as above is called conformal if there is a positive function r ∈ C∞(M) such
that 〈 , 〉M = rf ∗〈 〉M̃ .

For an isometric immersion f : Mn → M̃n+p, at each point x ∈ Mn we
have the ortogonal decomposition

TxM̃ = TxM ⊕⊥ T⊥
x M. (1.2)
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The subbundle T⊥
f M = T⊥M = ∪x∈MT⊥

x M of TM̃ along Mn is called the
normal bundle of f . Sections and vector of the tangent bundle will be denoted
by upper case latin letters, X, Y, Z... ∈ TM and lower case greek letters will
stand for sections and vectors of the normal bundle: ξ, η... ∈ T⊥M . We
denote by ∇ and ∇ the Levi-Civita connections of Mn and M̃n+p, whose
curvature tensors will be denoted by R and R, respectively.

By uniqueness of the Levi-Civita connection, it is easy to check that ∇ is
the tangent part of ∇ along Mn, and that the normal component of ∇Xξ is
a well defined compatible connection over the normal bundle, the so-called
normal connection of f :

∇⊥
Xξ = (∇Xξ)

⊥, X ∈ TM, ξ ∈ T⊥M, (1.3)

whose normal curvature tensor is denoted by R⊥ = [∇⊥,∇⊥]−∇⊥
[ , ]. We say

that f has flat normal bundle when R⊥ ≡ 0.
The main algebraic object in submanifold theory is the (vector valued)

second fundamental form of the submanifold, α = αf : TM × TM → T⊥M
given by

α(X, Y ) = (∇XY )⊥, X, Y ∈ TM.

Since Levi-Civita connections are torsion-free, we get that the second funda-
mental form is a symmetric tensor and then the shape operator Aξ = Afξ of f

in the direction ξ ∈ T⊥M given by 〈AξX, Y 〉 = 〈α(X, Y ), ξ〉 is a self-adjoint
tensor in Mn. Thus, according with (1.2) and (1.3) we have

∇XY = ∇XY + α(X, Y ),
∇X ξ = −AξX + ∇⊥

Xξ,
(1.4)

for all X, Y ∈ TM , ξ ∈ T⊥M .
Suppose from now on that f : Mn → Qn+p

c is an isometric immersion into
a complete simply connected space Qc of constant sectional curvature c ∈ R,
that is,

R(X, Y )Z = c(X ∧ Y )Z = c(〈Y, Z〉X − 〈X,Z〉Y ).

We will denote by Sn = Qn
1 and Hn = Qn

−1 the euclidean unit sphere and
the hyperbolic space, respectively. Taking tangent and normal components
of R(X, Y )Z and R(X, Y )ξ using (1.4), we have the fundamental equations
of the submanifold f :
the Gauss equation

〈R(X, Y )Z,W 〉 = c〈(X ∧ Y )Z,W 〉
+〈α(X,W ), α(Y, Z)〉 − 〈α(X,Z), α(Y,W )〉, (1.5)
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the Ricci equation

〈R⊥(X, Y )ξ, η〉 = 〈[Aξ, Aη]X, Y 〉 (1.6)

and the Codazzi equation

(∇⊥
Xα)(Y, Z) = (∇⊥

Y α)(X,Z), (1.7)

where, by the usual definition of the covariant derivative of a tensor field,
(∇⊥

Xα)(Y, Z) = (∇⊥α)(Y, Z,X) = ∇⊥
Xα(Y, Z) − α(∇XY, Z) − α(Y,∇XZ).

The relative nullity ∆(x) ⊂ TxM of f at x ∈Mn is the subspace

∆(x) = kerα(x) = {Y ∈ TxM : α(Y, Z) = 0 ∀ Z ∈ TxM},

whose dimension ν(x) is called the index of relative nullity of f at x. The rank
of f at x is the integer n−ν(x). It is easy to check that the function ν is lower
semi-continuous. Thus, along connected components of an open dense subset
of Mn, ν is constant and then the relative nullity is a smooth distribution.
It is also a well known fact easily cheched with the Codazzi equation (1.7)
that if f is an euclidean submanifold, ∆ is an integrable distribution whose
leaves are open subsets of affine ν-dimensional subspaces of Rn+p. Moreover,
along the (open!) subset of minimal index of relative nullity the leaves are
complete whenever Mn is complete (see Theorem 5.3 of [Da]).

Similar phenomena occurs with umbilic distributions. For any integer
2 ≤ k ≤ n, the submanifold f is said to be k-umbilic if there exists a
smooth normal section 0 6= γ ∈ Γ(T⊥M) such that the umbilic distribution
(associated to γ)

∆γ(x) = ker (α− 〈 , 〉γ) = {Y ∈ TxM : α(Y, Z) = 〈Y, Z〉γ, ∀ Z ∈ TxM}

has constant dimension k. Observe that ∆ = ∆γ for γ = 0. In this situation,
η = γ

‖γ‖
will be called an umbilic direction of f and the function λ = ‖γ‖ > 0

the umbilic eigenvalue (associated to η) of the submanifold. The (conformal)
conullity of f is the distribution ∆⊥

γ . We denote by

νc(x) = max
γ∈T⊥

x M
dim ∆γ(x)

the index of conformal nullity of f at x. The integer n−νc(x) is the conformal
rank of f at x. The function νc is also semicontinuous and thus it is constant
along connected components of an open dense subset of Mn.
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The submanifold f is said to be totally umbilic if every point is an umbilic
point, νc ≡ n, and totally geodesic if every point is totally geodesic, ν ≡ n,
that is, α ≡ 0. It is a classic result that totally umbilic (geodesic) euclidean
submanifolds are open subsets of round spheres (affine subspaces). We re-
sume in the following proposition the main facts about the distribution ∆γ

which will be crucial all along this notes (cf. Proposition 4 of [DFT2]). Sim-
ilar result holds for submanifolds in spaces with constant sectional curvature.

Proposition 1. Let f : Mn → Rn+p be an isometric immersion, and a
smooth section γ ∈ Γ(T⊥M) such that ∆γ has constant dimension k ≥ 1.
Assume further that k ≥ 2 if γ 6= 0. Then, the following hold:

1) ∆γ is a smooth integrable distribution.

2) The leaves of ∆γ are (open subsets of):
• k-dimensional affine subspaces of Rn+p if γ = 0, or,
• round spheres in some (k + 1)-dimensional affine subspaces if γ 6= 0.

3) γ is normal parallel along ∆γ, that is, ∇⊥
Xγ = 0 for all X ∈ ∆γ.
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Chapter 2

The Gauss parametrization

This chapter is devoted to the study of the Gauss parametrization for hy-
persurfaces. Developped by Sbrana just for the study of local isometric de-
formations of euclidean hypersurfaces ([Sb]), it was rediscovered by Dajczer
and Gromoll in [DG]. They already observed in that paper that the tool
has a lot of applications, in particular in rigidity problems. The idea of this
representation is to describe a hypersurface with relative nullity by means of
its Gauss map and its ‘support’ function.

2.1 The parametrization

Let f : Mn → Rn+1 be an orientable euclidean hypersurface with constant
index of relative nullity k. For a “saturated” open connected subset Un ⊂Mn

(meaning each leaf of relative nullity in Un is maximal in Mn) we consider
the quotient space Un/∆ of leaves in Un with projection π : Un → Un/∆. It
is an (n− k)-dimensional manifold (it could fail to be Hausdorff) at least in
two situations:

• Locally. This is clear since we can take Un as a saturation of some local
cross section to the leaves.

• If all leaves through points in Un are complete, in which case the pro-
jection map π is a “linear” vector bundle.

Take Un as above orientable, and let ξ : Un → Sn be a unit normal vector
field of Un, the so-called Gauss map of f |U . We call here A = Af

ξ its second
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fundamental form. The support function λ ∈ C∞(U) of f |U is defined as

λ(x) = 〈x, ξ(x)〉.
Now, the key point in the parametrization: since AY = −∇Y ξ = −ξ∗Y ,

we get that ξ is constant along each leaf of Un. Thus, there is an immersion

ϕ : V n−k = Un/∆ → Sn

given by ϕ ◦ π = ξ, that is, ξ(Un) = ϕ(V n−k) ⊂ Sn is a (n− k)-dimensional
submanifold. For now on, we consider in V n−k the metric induced by ϕ which
makes it an isometric immersion. Moreover, for each Y ∈ ∆ we have that
Y (λ) = 〈Y, ξ〉 − 〈x,AY 〉 = 0 and then there is a function µ ∈ C∞(V ) such
that µ ◦ π = λ.

On the other hand, for each x ∈ Un and y = π(x) ∈ V n−k we have the
orthogonal decomposition

TxR
n+1 = Rn+1 = span {ϕ(y)} ⊕ Tϕ(y)V ⊕ T⊥

ϕ(y)V.

According to this decomposition, we obtain that

x = λ(x)ξ(x) + Z(x) + η(x)

= µ(y)ϕ(y) + Z(x) + η(x),

for some Z(x) ∈ Tϕ(y)V and η(x) ∈ T⊥
ϕ(y)V . But taking derivatives in the

above with respect to Y ∈ TxU we have that

0 = 〈Y, ξ(x)〉
= Y (λ) + 〈∇YZ, ξ(x)〉
= π∗x(Y )(µ) − 〈Z(x), ϕ∗y(π∗x(Y ))〉.

Hence,
Z = (∇µ) ◦ π, (2.1)

where ∇µ stands for the gradient vector field of µ with respect to the metric
in V n−k: 〈∇µ,X〉 = X(µ). In particular, Z is also parallel along the leaves
of Un and we get

x = (µϕ+ ∇µ)(y) + η(x).

Now, by Proposition 1 we know that when x stays in a leaf of Un it shoud
fill an open subset of an k-dimensional affine subspace. But since η(x) ∈
T⊥
ϕ(y)V , which is itself also an k-dimensional affine subspace, we conclude

that η(x) is a local parametrization of the leaves of the normal bundle of ϕ.
We thus have the following theorem.
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Theorem 2. ([Sb], [DG]) Let ϕ : V n−k → Sn be an isometric immer-
sion and µ ∈ C∞(V ). Then, on the open set of regular points, the map
Ψ : T⊥V → Rn+1 on the normal bundle π : T⊥V → V n−k of ϕ given by

Ψ(ω) = (µϕ+ ∇µ)(y) + ω, ω ∈ T⊥
y V, (2.2)

is an immersed euclidean hypersurface with constant index of relative nullity
k, Gauss map ϕ ◦ π and support function µ ◦ π. Conversely, any such hyper-
surface can be parametrized locally this way. Moreover, the parametrization
is global provided Mn is complete and orientable.

Proof: We have already proved the converse. For the direct statement, we
just invert the above process. We only have to show that Ψ maps the leaves
of T⊥V into relative nullity. But this is clear since ϕ(y) is the Gauss map of
Ψ at any point ω ∈ T⊥

y V . To see this, first observe that Ψ∗ω is the identity
on tangent space to the leaf of T⊥

y V , which as usual we identify with the leaf
itself. Any tangent vector of T⊥V transversal to the leaves can be written
as γ∗Y , where γ is a local section of T⊥V and Y ∈ TV . We thus have that

Ψ∗(γ∗Y ) = PγY +
(

∇′⊥
Y γ + β(Y,∇µ)

)

, (2.3)

where β is the second fundamental form of ϕ, ∇′⊥ its normal connection
(both in Sn) and Pγ : TV → TV the tensor given by

Pγ = µI + Hessµ −Bγ . (2.4)

Here Hessµ stands for the hessian of the function µ and Bγ for the shape
operator of ϕ in the direction of γ. This proves that Im Ψ∗ ⊥ ϕ ◦ π.

Remarks 3. 1) According to (2.3), the regular points of Ψ are precisely the
vectors ω ∈ T⊥

y V such that the self adjoint operator Pω is nonsingular, since
Im Ψ∗ω = Im Pω ⊕⊥ T⊥

y V . Moreover, since ϕ ◦ π is the Gauss map of Ψ, we
get for the second fundamental form A of Ψ along γ ∈ Γ(T⊥V ) that

−Y = −ϕ∗Y = −(ϕ ◦ π)∗(γ∗Y ) = A(γ)(Ψ∗γ∗Y ) = A(γ)PγY, ∀ Y ∈ TV,

because the leaves of T⊥V are the relative nullity distribution of Ψ. Thus,

A(ω) = −P−1
ω on ∆⊥(ω). (2.5)

2) We should point out that the Gauss parametrization naturally extends
to hypersurfaces of the euclidean sphere and hyperbolic space.
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2.2 Some applications

The first thing we realize about the Gauss parametrization (2.2) is that any
immersed spherical submanifold ϕ : V n−k → Sn is locally the Gauss map of
an n-dimensional euclidean hypersurface with constant index of nullity k. In
fact, for every y ∈ V n−k and every ω ∈ T⊥

y V it is not difficult to see that
there is µ ∈ C∞(V ) such that Pω in (2.4) is nonsingular. We also observe
that the set of euclidean hypersurfaces with the same Gauss map ϕ is in
correspondence with support functions µ ∈ C∞(V ).

2.2.1 Nonpositively curved euclidean hypersurfaces

Let f : Mn → Rn+1 be a hypersurface with principal curvatures (the eigen-
value functions of the second fundamental operator of f) λ1, . . . , λn and
principal directions (their corresponding eigenvectors) e1, . . . , en. The Gauss
equation (1.5) implies that, for 1 ≤ i 6= j ≤ n, the sectional curvature KM

of Mn of the plane σij = span {ei, ej} is

KM(σij) := 〈R(ei, ej)ej, ei〉 = λiλj. (2.6)

We want now to use the Gauss parametrization to characterize two important
classes of euclidean submanifolds:

• Mn is flat, that is, KM ≡ 0.
• Mn is nonpositively curved, that is, KM ≤ 0.

The flat case. For a connected component U of the interior of the set of
totally geodesic points of f , we know that f(U) is just an open subset of
an affine hyperplane of Rn+1. Thus, assume that f has no totally geodesic
points, i.e., λ1 6= 0. But from (2.6) we get that λ2 = · · · = λn = 0. Therefore,
f has constant index of relative nullity n− 1 and by the Gauss equation any
submanifold with index of relative nullity n− 1 should be flat. Hence, there
is a smooth arc length parametrized spherical curve c : I ⊂ R → Sn and a
function r ∈ C∞(I) such that f can be parametrized over the normal bundle
of c as

Ψ(t, w) = (rc+ r′c′)(t) + w. (2.7)

Its regular points are the vectors w ∈ T⊥
c(t)I such that 〈w, c′′(t)〉 6= r(t)+r′′(t).

In particular, if Mn is complete and orientable, then (c′′)⊥ = c′′ + c = 0, that
is, c parametrizes a maximal circle S1 = R2 ∩ Sn and f is a cylinder over the
plane curve c̃ = (rc+ r′c′) : I → R2: f(Mn) = c̃(I) × Rn−1.
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The nonpositively curved case. Assume that Mn is nowhere flat. In view of
(2.6) we can suppose that λ1 < 0 < λ2. But from (2.6) and KM ≤ 0 we see
that λ3 = · · · = λn = 0, that is, f has constant index of relative nullity n−2.
Thus, we parametrize f with a spherical surface ϕ : V 2 → Sn and a smooth
function µ on V 2 by (2.2). According to (2.5) and the Gauss equation, Ψ has
nonpositive sectional curvature and is regular precisely at the normal vectors
ω ∈ T⊥V which satisfies detPω < 0.

In [F1], we showed that any isometric immersion f : Mn → Rn+p of a
nonpositively curved riemannian manifold must have index of relative nullity
ν ≥ n − 2p everywhere, which is a good information since by Proposition 1
to have relative nullity imposes strong restrictions on the manifold and on
its isometric immersion. In this sense, the ‘worst’ case might be ν = n− 2p.
A simple example shows that this estimate is sharp:

Example. For each 1 ≤ i ≤ p, let gi : Hni

i → Rni+1 be a nowhere flat
euclidean hypersurface of nonpositive sectional curvature which, as we saw,
has constant index of relative nullity ni−2. Therefore, the product manifold
Mn = Hn1

1 × · · · ×H
np
p has nonpositive sectional curvature and its product

immersion g = g1 × · · · × gp into Rn+p verifies ν ≡ n − 2p. In fact, it is
easily checked that its relative nullity is the sum of the relative nullity of the
hypersurfaces because the second fundamental form of a product immersion is
the direct sum of the second fundamental forms of the factors. In particular,
the product immersion can be parametrized using the Gauss parametrization
(2.2) for each factor.

Surprisingly, it is shown in [FZ1] that this is the only possible case: any
nowhere flat euclidean submanifold with nonpositive curvature and minimal
index of relative nullity should be (locally) a product of nowhere flat nonpos-
itively curved hypersurfaces, and thus it can always be parametrized using
the Gauss parametrization for each factor. The case of index of relative nul-
lity ν = n − 2p + 1 is much more complicated and was classified in [FZ2].
See [F2] for the flat normal bundle case.

2.2.2 Hypersurfaces of rank two

Let us recall the classical Beez-Killing theorem ([B], [K]). Any connected hy-
persurface f : Mn → Rn+1, n ≥ 3, with rank greater than or equal to three
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is locally isometrically rigid: for every connected open subset Un ⊂ Mn,
f |U : Un → Rn+1 is the unique isometric immersion (up to rigid motions of
the ambient space Rn+1) of Un into Rn+1. Since a hypersurface to be flat
(highly deformable and classified in (2.7)) is equivalent to have ν ≥ n − 1,
the study of the local isometric deformations of hypersurfaces is restricted to
the rank two case. As we saw, examples of euclidean hypersurfaces of rank
two are the nowhere flat nonpositively curved ones. Sbrana ([Sb]) devel-
oped the Gauss parametrization precisely to classify the locally isometrically
deformable hypersurfaces in euclidean space. For a modern version of his
work and other applications of the Gauss parametrization to the theory of
deformable hypersurfaces, see [DFT1].

The following result is an application of the global Gauss parametrization.
Recall first that the mean curvature vector vector of an isometric immersion
f : Mn → Rn+p with second fundamental form α is H = 1

n

∑n
i=1 α(ei, ei),

where {e1, . . . , en} is a local orthonormal tangent frame. It is independent of
the frame we choose since

nH =
n

∑

i=1

(∇ei
f∗ei)

⊥ =
n

∑

i=1

(∇ei
df(ei) − df(∇ei

ei)) = ∆f,

where ∆ = tr Hess is the Laplacian of Mn and ∆f = (∆f1, . . . ,∆fn+p).
Hence, every minimal immersion (H = 0) is real analytic as well as every eu-
clidean hypersurface with constant mean curvature h = (1/n)trAξ = ±‖H‖.

Theorem 4. ([DG]) Suppose that the mean curvature h of a complete
rank two hypersurface f : Mn → Rn+1 does not change sign. Then f(M)
splits isometrically as a product f(M) = L3 × Rn−3, where L3 ⊂ R4.

Proof: We consider the global Gauss parametrization for f . First, we claim
that the Gauss map ϕ of f is a spherical minimal surface. To see this, observe
that for the second fundamental operator A of f we have using (2.5) that

nh(w) = trA(w) = −trP−1
w = −trPw detP−1

w . (2.8)

Since detPw 6= 0 and trPw is linear in w, we conclude that h must change
sign unless trBw = 0 for every normal vector w to ϕ, that is, ϕ is minimal.

We have that the set N (y) = {Bw : w ∈ T⊥
y V } is a linear subspace of

the trace free symmetric endomorphisms of the two dimensional vector space
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TyV . In particular, dimN (y) ≤ 2. If for some y ∈ V 2 we have dimN (y) = 2,
then the set

{Pw(y) = µ(y)I + Hessµ(y) − Bw = B − Bw : Bw ∈ N (y)}

is the affine plane of 2× 2 symmetric endomorphisms with trace trB. Then,
there must be Bw ∈ N (y) such that Pw(y) is singular, which contradicts the
completeness of f . We conclude that dimN (y) ≤ 1 for all y ∈ V 2.

We claim that in this situation, the real analyticity of ϕ implies that
ϕ(V 2) ⊂ S3 ⊂ Sn and then the proof follows from the Gauss parametrization.
Proof of the claim: If ϕ is not totally geodesic, there is an open subset U ⊂ V 2

such that dimN (y) = 1 for all y ∈ U . Consider the normal subbundle
Σ = {w ∈ T⊥V : Bw = 0} and a unit normal vector η which spans the
line bundle orthogonal to Σ. The second fundamental form β of ϕ is then
β(X, Y ) = 〈BηX, Y 〉η. The Σ-component of the Codazzi equation (1.7) for
ϕ is

〈BηY, Z〉∇
′⊥
X η = 〈BηX,Z〉∇

′⊥
Y η, (2.9)

where ∇′⊥ is the normal connection ∇′⊥ of ϕ. Since Bη 6= 0 has trace 0, for
all Y ∈ TV there exist X,Z ∈ TV such that 〈BηY, Z〉 = 0 and 〈BηX,Z〉 6= 0.
We conclude from (2.9) that η is normal parallel, ∇′⊥η = 0, and so it is its
orthogonal complement Σ: ∇′⊥Σ ⊂ Σ. But then, if w is a smooth section of
Σ, as a map onto Rn+1 it satisfies

dw(X) = 〈dw(X), ϕ〉ϕ+ (∇Xw)> + ∇⊥
Xw

= −〈w, ϕ∗X〉ϕ− Bw(X) + ∇⊥
Xw = ∇⊥

Xw ∈ Σ,

for all X ∈ TV . We conclude that Σ = Rn−3 is constant in Rn+1 and that
ϕ(U) ⊂ S3 ⊂ R4. The claim is proved.

Remark 5. The argument that the Gauss map ϕ is a minimal surface at
the beginning of the proof of the above theorem clearly shows the strength
of the parametrization technique as a tool. We wrote in (2.8) a geometric
quantity of the submanifold (the mean curvature h of f) expressed in terms
of the parametrization. Then we use the hypothesis on it (that it does not
change sign) to conclude that trBw could not depend on w, thus has to be
zero. As another example of this idea, show using the same argument that if
a rank two euclidean hypersurface f is minimal (h = 0) then its Gauss map
ϕ is a minimal surface, even if Mn is not complete. This kind of simple idea
is extremely useful, as we will see several times in this notes.
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Corollary 6. Let f : Mn → Rn+1 be a complete submanifold without flat
points which mean curvature does not change sign. Then, f(M) = L3×Rn−3

splits isometrically or there exists an open subset U ⊂ Mn such that f |U is
rigid.

Proof: It is a direct consequence of Theorem 4 and the Beez-Killing theo-
rem.

The proof of the next result also from [DG] is another example of what
we observed in Remark 5. Look again at the simplicity of the argument.

Theorem 7. Any isometric immersion f : Mn → Rn+1 of a connected
riemannian manifold with constant mean curvature h 6= 0 is rigid, unless
f(M) ⊂ L2 × Rn−2 or f(M) ⊂ S1 × Rn−1 splits.

Proof: Suppose there is a connected open subset U where ν = n− 2. Since
nh = −trPw detP−1

w and det(A + B) = detA + detB + trA trB − tr (AB)
for any 2 × 2 matrices A,B, we have

nh (detP0 + detBw − trP0 trBw + tr (P0Bw)) = trBw − trP0. (2.10)

Because the only term in the above quadratic in w is detBw, we obtain
detBw = 0. If the Gauss map ϕ of f is not totally geodesic, there is w and an
orthonormal basis of TV , {e1, e2}, such that Bwe2 = 0 and Bwe1 = re1 6= 0.
We get in (2.10) for sw, s ∈ R, that

nh detP0 + trP0 = sr(nh〈P0e2, e2〉 + 1).

Since the left hand side does not depend on s, both sides must vanish. There-
fore, 0 = nh(nh detP0 + trP0) = −(nh〈P0e1, e2〉)2 − 1 < 0, which is a con-
tradiction. Thus, ϕ is totally geodesic, and f(U) ⊂ L2 × Rn−2. The real
analyticity of f yields that f(M) ⊂ L2 × Rn−2.

We left as an exercise the case that there is an open subset U with
ν = n− 1, which is similar, easier and gives f(M) ⊂ S1 ×Rn−1. If ν ≤ n− 3
almost everywhere, from the Beez-Killing theorem we get that f is rigid al-
most everywhere. Hence, any other local immersion of Mn in Rn+1 should
have constant mean curvature h everywhere. We conclude from the real
analyticity of f that it must be rigid.

Question: What can you say about rank two euclidean hypersurfaces with
constant scalar curvature s 6= 0? (Hint: use that, in this case, s = detP −1

w ).



Chapter 3

Hypersurfaces with conformal
nullity

We will describe here k-umbilic euclidean hypersurfaces, that is, hypersur-
faces with constant index of conformal nullity k. In the process, we will
see a way to obtain parametric descriptions of submanifolds caring umbilic
distributions as we saw for the Gauss parametrization. Let us call this
parametrization the umbilic Gauss parametrization.

3.1 The parametrization

Let f : Mn → Rn+1 be an connected euclidean hypersurface with Gauss map
ξ : Mn → Sn and second fundamental operator A = Af

ξ . Assume that f is
k-umbilic, k ≥ 2, with umbilic eigenvalue λ > 0:

∆λ = ker(A− λI) satisfies that dim ∆λ = k on Mn.

By Proposition 1, ∆λ is a smooth integrable distribution whose leaves are
open subsets of k-dimensional round spheres, Sks ⊂ Rk+1 ⊂ Rn+1, along which
λ is constant. As in the relative nullity case, we consider the quotient space
of leaves of ∆λ in Un ⊂ Mn with projection π, π : Un → V n−k = Un/∆λ,
which is a manifold in the same conditions that of Un/∆. In particular,
there is a function r ∈ C∞(V ) such that λ−1 = r ◦ π. The same holds for
any codimension, a fact that we are going to use in the next sections.

Define the map h : Un → Rn+1 by

h = f + λ−1ξ. (3.1)

21
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If X ∈ ∆λ we obtain dh(X) = X +X(λ−1)ξ − λ−1AX = (I − λ−1A)X = 0.
Therefore, h is constant along the leaves of ∆λ and there is an immersion
g : V n−k → Rn+1 such that h = g ◦ π. We consider on V n−k the metric
induced by g.

For each x ∈ Un, y = π(x), decompose ξ(x) = Z(x) + η(x), where
Z(x) ∈ Tg(y)V and η(x) ∈ T⊥

g(y)V . Since ξ is the gauss map of f , for any
Y ∈ TU we have

0 = 〈f∗Y, ξ〉 = 〈h∗Y − Y (λ−1)ξ − λ−1ξ∗Y, ξ〉 = 〈g∗(π∗(Y )), Z〉 − π∗(Y )(r),

or,

Z = (∇r) ◦ π. (3.2)

As in the Gauss parametrization, we know that when x stays in a leaf of ∆λ,
say, through y, it fills an open subset of a k-dimensional round sphere in some
(k+ 1)-dimensional affine subspace. Since f(x) = g(y)− r(y)(∇r(y)+ η(x))
and η(x) ∈ T⊥

g(y)V which is itself a (k + 1)-dimensional affine subspace, we

get that η(x) = η0(y) + s(y)Φ(y, u), where η0 ∈ T⊥V , 0 < s ∈ C∞(V ) and
Φ(y, ·) is a local parametrization of the unit sphere in T⊥

g(y)V . But

1 = ‖ξ(x)‖2 = ‖∇r(y)‖2 + ‖η0(y)‖2 + s(y)2 + 2s(y)〈η0(y),Φ(y, u)〉.

Hence, η0 = 0 and s =
√

1 − ‖∇r‖2. Taking µ = r2/2, we conclude the
following result.

Theorem 8. ([AD]) Let g : V n−k → Rn+1 be an isometric immersion and
0 < µ ∈ C∞(V ) such that ‖∇µ‖2 < 2µ. Then, on the open set of regular
points, the map on the unit normal bundle of g, Ψ : T⊥

1 V → Rn+1 given by

Ψ(ω) = g(y)−∇µ(y) +
√

2µ(y) − ‖∇µ(y)‖2 ω, w ∈ T⊥
1 V (y), (3.3)

is an immersed k-umbilic hypersurface with umbilic eigenvalue λ = 1/
√

2µ
and Gauss map

ξ(w) =
1√
2µ

(

∇µ−
√

2µ− ‖∇µ‖2 ω
)

.

Conversely, any such hypersurface can be parametrized locally this way. The
parametrization is global provided Mn is complete and orientable.
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Proof: We proceed as in the proof of Theorem 2. The converse was already
proved. For the direct statement, take a smooth section ω ∈ Γ(T⊥

1 V ) and
set µ̃ =

√

2µ− ‖∇µ‖2 and ω(y)⊥ = {v ∈ T⊥
y V : 〈v, ω(y)〉 = 0}, the tan-

gent space to the leaf of T⊥
1 V at ω(y). For any vector v ∈ ω(y)⊥ we have

Ψ∗w(y)(v) = µ̃(y)v and for Y ∈ TV we obtain

Ψ∗(ω∗Y ) = PωY +
1

µ̃
〈PωY,∇µ〉ω +Qω(Y ),

where Qω(Y ) ∈ ω⊥ and

Pω = I − Hessµ −
√

2µ− ‖∇µ‖2Bω,

being Bω the shape operator of g in the direction of ω. We conclude that ξ is
the Gauss map of Ψ and A(v) = −∇vξ = λ∇vΨ = λΨ∗(v), for all v ∈ ω⊥.

As before, observe that the regular points of Ψ are precisely the vectors
ω ∈ T⊥

1 V such that Pω is nonsingular, and

Y = g∗Y = (Ψ ◦ ω + λ−1ξ ◦ ω)∗Y = (I − λ−1A)Ψ∗(ω∗Y ) + Y (λ−1)ξ ◦ ω.

Hence, (I − λ−1A)(UωPωY ) = UωSY, where S and Uω are the nonsingular
operators SY = Y − (1/2µ)〈Y,∇µ〉∇µ and UωY = Y + (1/µ̃)〈Y,∇µ〉ω. We
conclude that

A = λUω(I − SP−1
ω )U−1

ω in ∆⊥
λ .

Remark 9. We can prove the Gauss parametrization (2.2) using the umbilic
Gauss parametrization. To do this, apply an inversion iq relative to a unit
sphere centered at q ∈ Rn+p\Mn, iq(x) = (x − q)/‖x − q‖ + q, which is a
conformal map of Rn+1, to an isometric immersion f : Mn → Rn+p. Then,
the relative nullity of f becomes an umbilic distribution of iq ◦ f all of whose
umbilic leaves pass through a fixed point, and then we can apply the umbilic
Gauss parametrization to it. We are going to do this for higher codimensions.

3.2 Some applications

Isometric immersions f : Mn → Rn+p with umbilic distributions arise in
several different geometric situations. As for the isometric case, there is a
completely analogous theorem to that of Beez-Killing for conformal rigid-
ity of hypersurfaces, due to E. Cartan ([C1]): any conformal immersion
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f : Mn → Rn+1, n ≥ 5, of a connected riemannian manifold with index of
conformal nullity νc ≤ n − 3 is locally conformally rigid, that is, f |U is the
unique conformal immersion (up to conformal transformations of Rn+1) of
any connected open subset U ⊂ Mn into Rn+1. Moreover, Cartan locally
classified all conformally deformable euclidean hypersurfaces as he did for
the isometric case. More in the spirit of Sbrana’s description ([Sb]), a para-
metric classification in terms of the umbilic Gauss parametrization (3.3) was
done in [DT2], quite similar to the isometric case.

Another situation where it appears umbilic distributions is when a sub-
manifold admits two isometric immersions into space forms with different
curvature ([DdC]): if there are isometric immersions f : Mn → Rn+1 and
f̃ : Mn → Sn+p, p ≤ n − 3, then νc ≥ n − p everywhere. With the crucial
help of the umbilic Gauss parametrization (3.3), a study for the codimension
two case was done in [AD].

But the easiest application of the umbilic Gauss parametrization is per-
haps the local characterization of all conformally flat euclidean hypersurfaces,
that is, each point of the submanifold has a neighborhood which is conformal
to euclidean space. It is known that if f : Mn → Rn+p is conformally flat,
n ≥ 5 and p ≤ n− 3, then there is an open dense subset of Mn so that each
connected component has constant index of conformal nullity νc ≥ n − p;
cf. [Mo]. Around 1919, nonflat conformally flat hypersurfaces for n ≥ 4
were completely described by E. Cartan ([C2]) as being any envelope of a
1-parameter family of spheres. This means that the condition νc ≥ n − 1
is in fact an equivalent condition for an euclidean hypersurface to be con-
formally flat. Since any connected open subset with νc = n (i.e., a totally
umbilic subset) must be an open subset of a round sphere Snc ⊂ Rn+1, let us
consider a connected open subset along which νc = n−1. The umbilic Gauss
parametrization (3.3) says in this case that any conformally flat hypersurface
without umbilic and flat points can be locally described with an arc length
parametrized curve γ : I → Rn+1 and a smooth function k ∈ C∞(I) such
that (k′)2 > 2k by

Ψ(w) = γ(s) − k′(s)γ′(s) +
√

2k(s) − k′(s)2 w, w ∈ T⊥
1 I(s).



Chapter 4

Higher codimensions

In this section, we give generalizations to higher codimensions of the Gauss
parametrization in Theorem 2 and its umbilic version, Theorem 8. We are
going to see that these parametrizations are not so nice than the previous
ones, since they are related to subbundles with solutions of certain partial
differential equations. Nevertheless, they are still very useful. We are going
to develop first the umbilic one, and then we will use it to obtain the one for
relative nullity.

4.1 The parametrizations

Consider a k-umbilic isometric immersion f : Mn → Rn+p with umbilic
direction η and umbilic eigenvalue λ. Set γ = λη 6= 0 and then

∆γ = ker(α− 〈·, ·〉γ) ⊂ ker(Aη − λI). (4.1)

We say that f is generic if ∆γ = ker(Aη − λ I). Any k-umbilic hypersurface
is trivially generic. As before, we have for Un ⊂ Mn that V n−k = Un/∆γ is
a manifold and there is 0 < r ∈ C∞(V ) such that λ−1 = r ◦ π. As in (3.1),
we easily see that the map

h = f + λ−1η (4.2)

is constant along the leaves of ∆γ , and then there is a map g : V n−k → Rn+p

such that h = g ◦ π. Moreover, since f is generic g is an immersion and we
endow V n−k with the metric induced by g. In view of (4.2), f to be generic
is equivalent to

Tg◦πV ∩ T⊥
f M = 0. (4.3)

25
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Being η normal to f , we have that

0 = 〈η, f∗X〉 = 〈η, g∗(π∗X)〉 − π∗X(r), ∀ X ∈ TM.

Again, the TV -component of η is ∇r. Since the leaves of ∆γ are k-di-
mensional umbilic spheres in Rn+p and ‖η‖ = 1, we obtain that there is
a rank (k + 1) normal subbundle of g, Λk+1 ⊂ T⊥

g V , and a smooth section
ξ ∈ Λ⊥ with ‖∇r‖2 + ‖ξ‖2 < 1 so that the map φ: Λ1 → Rn+p given by

φ(w) = g − rη, η = ∇r + ξ + Ωw, (4.4)

is a local parametrization of f , where Ω = (1−‖∇r‖2−‖ξ‖2)1/2 and Λ1 stands
for the unit bundle of Λk+1. (From now on, we are going to omit the base
point y of w ∈ TyV in the parametrizations, as we did in (4.4)). Although
at regular points φ parametrizes a submanifold foliated by k-dimensional
spheres (the images under φ of the leaves of Λ1), it is not in general a k-umbilic
submanifold. Our next goal is to compute the actual restrictions on (g, r, ξ,Λ)
in order for f to be k-umbilic. We are not going to strongly use this in our
notes, but we give it to show another way to obtain parametric descriptions
using geometric data.

Let us first fix some notations. For a submanifold G : V n−k → Qn+p
c and

ϕ ∈ T⊥
GV , let Bϕ denote the second fundamental form of G in the direction ϕ.

Define for any normal subbundle Λ ⊂ T⊥
G V the tensors BΛ : Λ → End(TV ),

αΛ
G : TV → End(TV,Λ) and ∇⊥

Λ : Λ → End(TV,Λ⊥) by

αΛ
G(X)(Y ) = αG(X, Y )Λ, BΛ(w)(X) = BwX, ∇⊥

Λ(w)(X) = (∇⊥
Xw)Λ⊥

.

For a tensor field D : Λ → TV , we set Dc(w)(X) = (Dw)c(X) = 〈Dw,X〉,
and ∇D(w)(X) = ∇XDw−D(∇⊥

Xw)Λ for all X, Y ∈ TV , w ∈ Λ⊥, where ∇⊥

stands for the normal connection of G, and (·)Λ for the orthogonal projection
to the Λ–component. Associated to D, we also consider the tensor field
ΨD : Λ → End(TV ),

ΨD(w) = ΨD
w = DαΛ

G(Dw) +Bw − (∇D)w.

Theorem 10. ([DFT3]) Let g : V n−k → Rn+p be an isometric immersion
with a rank (k+1) normal subbundle Λk+1 ⊂ T⊥

g V such that there is a tensor
field T : Λ⊥ → TV which satisfies

T ∗BΛ = ∇⊥
Λ . (4.5)
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Assume further that there is a smooth function ρ ∈ C∞(V ) which satisfies
2ρ− ‖∇ρ‖2 − ‖T ∗∇ρ‖2 > 0 such that

T c = dρ ◦ ΨT . (4.6)

Then, at regular points, the map φ : Λ1 → Rn+p given by

φ(w) = g −∇ρ+ T ∗∇ρ− (2ρ− ‖∇ρ‖2 − ‖T ∗∇ρ‖2)1/2w (4.7)

parametrizes a generic k-umbilic n-dimensional euclidean submanifold. Con-
versely, any such submanifold can be parametrized locally this way.

Proof: Since η is parallel in the normal connection of f along ∆γ , the rank
(p − 1) normal subbundle F = (span {η})⊥ ⊂ T⊥M is also normal parallel
along ∆γ : ∇⊥

∆γ
F ⊂ F . We see from the definition of ∆γ that

Aϕ(∆γ) = 0, ∀ ϕ ∈ F. (4.8)

Hence, ∇∆γ
F ⊂ F , i.e., F is constant along the leaves of ∆γ in Rn+p. Thus,

we can consider F as a rank (p− 1)–subbundle of g, F ⊂ TgV ⊕T⊥
g V , which

is normal to f and η:

F (π(x)) ⊕⊥ span {η(x)} = T⊥
f(x)M, ∀x ∈Mn. (4.9)

Now, for all u, w ∈ Λ(y), u ⊥ w, y = π(x), we have from (4.4) that

0 = 〈F (y), φ∗(y,w)(0, u)〉 = −r(y)Ω(y)〈F (y), u〉.

Therefore, in view of (4.3) we conclude that

F ⊂ TgV ⊕ Λ⊥, F ∩ TgV = 0 (4.10)

Equation (4.8) now says that

0 = 〈∇Xϕ, φ∗(y,w)(0, u)〉 = −r(y)Ω(y)〈∇Xµ, u〉,

for all ϕ ∈ F,X ∈ TV , where ∇ stands for the canonical connection on Rn+p.
Thus,

∇F ⊂ TgV ⊕ Λ⊥. (4.11)

By dimension reasons, (4.10) implies that the orthogonal projection from
F onto Λ⊥ is a bundle isomorphism. For µ ∈ Λ⊥, denote by µ ∈ F the
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corresponding element under the inverse of this isomorphism. Thus, there
exists a unique tensor T : Λ⊥ → TV such that

F = {µ = Tµ+ µ : µ ∈ Λ⊥}.

For X ∈ TV , µ ∈ Λ⊥, w ∈ Λ we have from (4.11) that

0 = 〈∇Xµ, w〉 = 〈BwTµ,X〉 − 〈∇⊥
Xw, µ〉 = 〈µ, T ∗BwX −∇⊥

Xw〉,

which is equivalent to (4.5). From F ⊥ η we easily get in (4.4) that

ξ = −T ∗∇r. (4.12)

Let ρ := r2/2. Then, for w ∈ Γ(Λ), X ∈ TV and µ ∈ Λ⊥, we get using (4.9),
(4.5) and (4.12) that

0 = 〈µ, φ∗(w∗X)〉 = X〈µ, g〉 − 〈∇Xµ, g − rη〉
= 〈Tµ,X〉 + 〈∇X(Tµ+ µ),∇ρ− T ∗∇ρ〉
= 〈Tµ,X〉 − 〈Bµ∇ρ+BT ∗∇ρTµ,X〉 + (dρ ◦ ∇T )(µ)(X),

which is equivalent to (4.6). The direct statement is now straightforward.

Remark 11. Equation (4.6) implies that T has kernel of codimension at
most one. Thus, there exist ϕ ∈ Λ⊥

1 and Z ∈ TV such that T (w) = 〈w, ϕ〉Z.
We can now write equations (4.5) and (4.6) in terms of ϕ, Z and ρ.

Although equations (4.5) and (4.6) are not precisely friendly, we can still
use the parametrization in particular cases, even without tough work with
this equations. As a simple example of this, let us answer the question of
which k-umbilic submanifold have constant umbilic eigenvalue λ = (2ρ)−1/2.

Corollary 12. Let g : V n−k → Rn+p be an isometric immersion with a rank
(k + 1) normal parallel subbundle Λk+1 ⊂ T⊥

g V , and let r ∈ R+. Then, the
map φ : Λ1 → Rn+p given by

φ(w) = g − r w

parametrizes a generic k–umbilic n–dimensional submanifold with constant
umbilic eigenvalue λ = 1/r. Conversely, any such submanifold can be para-
metrized locally this way.
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Proof: Just observe that by (4.6) we have that T = 0, and hence by (4.5) Λ
is normal parallel.

We now give the version for relative nullity of Theorem 10, that is, a
generalization to higher codimensions of the Gauss parametrization. We say
that a rank n− k submanifold f : Mn → Rn+1 is generic if

max{rankAf
ϕ : ϕ ∈ T⊥

f M} = n− k.

Theorem 13. ([DFT3]) Let ξ : V n−k → Sn+p−1 be an isometric immersion
with a rank k normal subbundle Λk ⊂ T⊥

ξ V such that there is a tensor field

T : Λ⊥ → TV which satisfies

T ∗BΛ = ∇⊥
Λ . (4.13)

Assume further that there is a positive smooth function ρ ∈ C∞(V ) such that

T c = d(− ln ρ) ◦ ΨT . (4.14)

Then, at regular points, the map φ : Λ → Rn+p given by

φ(w) = ρξ + ∇ρ− T ∗∇ρ + w (4.15)

parametrizes a generic n–dimensional euclidean submanifold of rank n − k.
Conversely, any such submanifold f can be parametrized locally this way.

Proof: For almost all inversion of a generic rank n − k submanifold, we get
a generic k-umbilic submanifold such that all the spheres of the umbilic
foliation pass through a fixed point, say, 0 ∈ Rn+p. (In fact, these are
precisely the k-umbilic immersions that come from inversion of submanifolds
with index of relative nullity k). Then, we have that ρ = ‖g‖2/2 and there is
w0 ∈ Γ(Λ1) such that g = ∇ρ− T ∗∇ρ + Ω′w0. Now, it is not hard to check
that (4.5) and (4.6) translate to (4.13) and (4.14).

Another proof: To prove the converse, split the position vector of the im-
mersion as f = f> + f⊥ ∈ TfM ⊕ T⊥

f M . Then, we have for all X ∈ ∆γ

that
X = f∗X = ∇Xf

> + ∇⊥
Xf

⊥ ∈ TfM.

Thus, f⊥
∗ X = −Af

f⊥
X+∇⊥

Xf
⊥ = 0 and hence f⊥ is parallel along the relative

nullity distribution ∆γ. Define ρ = ‖f⊥‖, ξ = −ρ−1f⊥. Since f is generic,
there is P ∈ Rn+p such that we can change f by f + P in order to make ξ
an immersion and rank Af

ξ = n − k. The remaining of the proof follows as
in Theorem 10.
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4.2 Rotational (n− 2)-umbilic submanifolds

For an isometric immersion f : Mn → Rn+p, it was shown by B. Y. Chen
([Ch]) that the inequality

δM ≤ n− 2

2(n− 1)
‖H‖2 (4.16)

holds pointwise. Here, δM stands for the intrinsic invariant defined as

δM(x) = s(x) − inf {KM(σ) : σ ⊂ TxM},
where s denotes the scalar curvature of Mn: s =

∑

i6=jKM(ei, ej) for any
local orthonormal frame {e1, . . . , en} of TM .

It is then natural to try to understand all submanifolds for which equal-
ity in (4.16) holds everywhere. In euclidean space, Chen showed that the
trivial examples satisfying his basic equality are either affine subspaces or ro-
tational hypersurfaces obtained by rotating a straight line, that is, cones and
cylinders. Nontrivial examples for n ≥ 4 divide in two classes, namely, any
minimal submanifold of rank two, which are completely described in [DF3],
and the generic (n− 2)-umbilic submanifolds satisfying

H = (n− 1)λη, (4.17)

where η and λ are the umbilic direction and eigenvalue of f , respectively.
At a first glance, elements in the second nontrivial class are more abundant,
since the first class is just the second one for λ = 0. We are going to see here
that, surprisingly, this is not true.

In fact, in [DF2] the authors showed that connected elements in Chen’s
second nontrivial class have the simplest possible geometric structure among
submanifolds foliated by totally umbilic spheres, namely, they are rotational
submanifolds over surfaces. This means that Mn is isometric to an open
subset of a warped product V 2 ×ϕ Sn−2, ϕ ∈ C∞(V ) positive, and

f(x, y) = (h(x), ϕ(x) y) (4.18)

being h: V 2 → Rp+1 an immersion. The surface k := (h, ϕ): V 2 → Rp+2 is
the profile of f , and we consider on V 2 the metric induced by k.

But we want to discuss first the much more general problem whether a
(n− 2)-umbilic submanifold is rotational, and present necessary and suffi-
cient conditions for this to occur. That the nontrivial nonminimal submani-
folds satisfying the basic equality (4.16) are rotational will follow immediately
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from the following two results. For this purpose, we are going to make use
of parametrization (4.7), again in the spirit of Remark 5. Actually, we will
use the weaker representation (4.4), which implies two things. First, even
the simplest parametrizations are useful. Secondly, the next results hold
for certain submanifolds just foliated by round spheres and not only for the
k-umbilic ones.

Theorem 14. ([DF2]) Let f : Mn → Rn+p, n ≥ 4, be a generic (n − 2)-
umbilic submanifold and assume that trAη 6= nλ, where η and λ are the
umbilic direction and umbilic eigenvalue of f , respectively. Then f is a ro-
tational submanifold over a surface if and only if trAη is constant along the
leaves of the umbilic distribution ∆γ, with γ = λη.

Proof: The direct statement is a straightforward computation. For the con-
verse we use (4.4). It suffices to show that Λn−1 is constant in ambient space.
Then g reduces codimension to p + 1, and the result easily follows.

From (4.2), we have

f∗X = g∗X −X(r) η − r η∗X, ∀X ∈ TM, (4.19)

where we are writing g instead of h = g ◦ π and r instead of r ◦ π not to
overload with notations. Denote by PM and PV the orthogonal projections
on TM and TV , respectively. We get

rPMη∗X = PMg∗X − f∗X (4.20)

and
PV f∗X = (S − rQw)g∗X, (4.21)

being S,Qw : TV → TV the tensors on V 2 given by S = I−〈∇r, ∗ 〉∇r and

Qw = Hessr −Bξ − ΩBw, w ∈ Λn−1,

where Bτ denotes the second fundamental form of V 2 relative to τ .
We claim that T = PV PM |TV is a well defined tensor on V 2. From

g∗X = (I − rAη)f∗X + ∇⊥
Xrη, (4.22)

we get

Tg∗X = g∗X − PV (I − PM)g∗X = g∗X − PV (∇⊥
Xrη)

= (S − PV P〈η〉⊥)g∗X
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where 〈η〉 = span {η} and 〈η〉⊥ stands for its orthogonal complement in
T⊥
f M . The claim follows from the fact that the subbundle 〈η〉⊥ is con-

stant in Rn+p along leaves of ∆γ , as we saw in the beginning of the proof of
Theorem 10.

Fix a point x ∈ Mn, and let λ1, λ2 be the eigenvalues of Aη different from
λ corresponding to the eigenvectors X1, X2. We want to compute λ1 + λ2

in terms of g and r. Taking the TV -component of −PM η∗Xi = λif∗Xi and
using (4.20) and (4.21), we get

Tg∗Xi = (S − rQw)(1 − rλi)g∗Xi, 1 ≤ i ≤ 2,

Now observe that T > 0. In fact, this is equivalent to T⊥
f M ∩TgV = 0, which

follows from (4.22) and λj 6= λ. We conclude that S − rQw is nonsingular.
Our assumption yields

0 6= θ := (2λ− λ1 − λ2)r = tr (S − rQw)−1T = tr (P + νBw)−1T

is independent of w. Here, P = S − rHessr + rBξ and ν = rΩ. For a pair
C,D of 2 × 2 matrices, we have

tr (C−1D) detC = trC trD − tr (CD) = det(C +D) − detC − detD,

where we assume that C is not singular only for the first equality. Therefore,

θ det(P + νBw) = trT tr (P + νBw) − tr (T (P + νBw)).

Thus,

θν2 detBw = ν tr (T − θP )trBw − ν tr ((T − θP )Bw) + trT trP

−tr (TP ) − θ detP, ∀w ∈ Λ1.

Since dim Λn−1 ≥ 3, we easily obtain that detBw = 0,

tr (T − θP )trBw = tr ((T − θP )Bw), and (4.23)

det(T − θP ) = detT > 0. (4.24)

Suppose that Bw0
6= 0 for some w0 ∈ Λn−1. Then equation (4.23) yields

〈(T − θP )v, v〉 = 0 for 0 6= v ∈ kerBw0
, which is in contradiction with (4.24)

and proves that
Bw = 0, ∀w ∈ Λn−1. (4.25)
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Since leaves of ∆γ are the images of Λ1 under (4.4), we have

〈η〉⊥ ⊂ Tg(x)V ⊕ Λ⊥
g(x), ∀ x ∈ Mn. (4.26)

Observe that T⊥
f(x)M ∩Tg(x)V = 0 implies that 〈η〉⊥∩Tg(x)V = 0. Hence, the

orthogonal projection

π′(x): 〈η(x)〉⊥ ⊂ T⊥
x M → Λ⊥

g(x) ⊂ T⊥
g(x)V

is an isomorphism. On the other hand, we have using (4.19) that

〈g∗Y − r∇Y (∇r + ξ + Ωw), δ〉 = 0, ∀Y ∈ TV, w ∈ Λn−1 and δ ∈ 〈η〉⊥.

It follows from (4.25), (4.26) and that 〈η〉⊥ is constant along the leaves that

〈∇Yw, δ〉 = 0, ∀Y ∈ TV, w ∈ Λn−1 and δ ∈ 〈η〉⊥.

Being π′ an isomorphism, we conclude from (4.25) that Λn−1 is constant and
this proves the theorem.

It is easy to prove a completely analogous theorem as the above for sub-
manifolds in the sphere Sn+p just includding Sn+p ⊂ Rn+p+1. For nongeneric
(n−2)-umbilic submanifolds we have the next result. Its proof uses standard
techniques in submanifold theory, but we give it for completeness. We follow
the notations of Theorem 14.

Theorem 15. ([DF2]) Assume that f is a (n−2)-umbilic submanifold with

dim{ker(Aη − λ I)(x)} = n− 1, ∀ x ∈Mn.

Then f is a rotational submanifold over a surface if and only if the mean
curvature vector is parallel in the normal connection along the leaves of ∆γ .

Proof: The direct statement is trivial. For the converse, let X, Y ∈ ∆⊥
γ

be orthonormal eigenvectors for Aη with eigenvalues µ and λ, respectively.
By assumption, there is a smooth field of unit length ξ ∈ T⊥

f M, ξ ⊥ η,
parallel along ∆γ with AξY 6= 0 and trAξ constant along ∆γ. Taking the
∆⊥
γ -component of the Codazzi equation (1.7) for (X, T, η), i.e.,

(∇XAη)T − A∇⊥

X
ηT = (∇TAη)X − A∇⊥

T
ηX, T ∈ ∆γ,
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we get
∇v
XX = 0, (4.27)

where Zv (respectively, Zh) denotes taking the ∆γ (respectively, ∆⊥
γ ) compo-

nent of Z. Similarly, the X-component of the Codazzi equation for (Y, T, η)
yields

∇v
YX = 0. (4.28)

Now, a straightforward computation of the Codazzi equations for (X, T, ξ)
and (Y, T, ξ) gives

〈∇Y Y, T 〉〈AξY, Y 〉 + 〈∇XY, T 〉〈AξY,X〉 = 0

and
〈∇XY, T 〉〈AξY, Y 〉 − 〈∇Y Y, T 〉〈AξY,X〉 = 0,

from which we conclude that ∇v
Y Y = 0 = ∇v

XY . This, (4.27) and (4.28) say
that the distribution ∆⊥

γ is totally geodesic (autoparallel) in Mn. It is not
difficult to see (cf. Lemma 6 of [DF2]) that this implies that f is a rotational
submanifold and the proof is complete.

Remarks 16. 1) For a connected nontrivial nonminimal euclidean subman-
ifold f : Mn → Rn+p, n ≥ 4, satisfying everywhere the basic equality, by
Lemmas 3.2 and 3.3 of [Ch] there are two possibilities along each connected
component of an open dense subset. Namely, f is either (n − 1)-umbilic or
is (n− 2)-umbilic. Moreover, in both situations equation (4.17) holds. Then
f is trivial in the first case and, in the second case, it follows from Theorems
14 and 15 that f is a rotational submanifold.

2) It is shown in [DF2] that a rotational submanifold f as in (4.18)
satisfies the basic equality (4.16) if and only if ϕ is a solution on V 2 of the
second order quasilinear elliptical differential equation

ϕ tr (RHessϕ) + 1 = 0, (4.29)

and the second fundamental form of h: V 2 → Rp+1 satisfies

tr (RBh
ξ ) = 0, ∀ ξ ∈ T⊥

h V, (4.30)

where R = I − (1 + ‖∇ϕ‖2)−1〈∇ϕ, · 〉∇ϕ.



Chapter 5

Submanifolds with integrable
conullity

Let f , γ and k as in Proposition 1. As we have seen, there is a clear dif-
ference between the Gauss parametrizations (2.2) and (3.3) and its versions
for higher codimensions (4.7) and (4.15), since it appears certain PDE’s as-
sociated with normal subbundles in the later ones. The main reason on
the beauty of the hypersurface situation relies in the fact that the nullity
distribution ∆γ coincides with the normal space of an immersion of the quo-
tient space V n−k = Mn/∆γ . We can think this phenomena as a kind of
‘integrability’ of the conullity of f . In this section we see how the general
representations can be improved when some integrability is assumed on the
conullity of f . It is interesting how parametrizations are used here to obtain
better parametrizations in a sequence. We should point out that some of
the results in this chapter can be generalized under even weaker concepts of
integrability.

Let f as above and assume for simplicity that the quotient space of leaves
of ∆γ, V

n−k = Mn/∆γ, is a manifold as in the Gauss parametrization. As
we saw, this is not a restriction when working locally, since we can take a
local cross section Ṽ n−k ⊂ Mn to the leaves of ∆γ and for a saturated open
subset Un ⊂Mn to the leaves, the space V n−k = Un/∆γ is diffeomorphic to
Ṽ n−k. Therefore, we can always think that V n−k = Ṽ n−k ⊂ Mn is a cross
section to the umbilic foliation.

Although general parametrizations can be difficult to work with, they
also can be used to obtain better representations when further conditions

35
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on the immersion are assumed. This is the case of the following result. We
found the representation (5.2) using (4.7) for generic k-umbilic immersions,
and then with the result in mind we made a nicer geometric proof (without
the generic condition!), the one we give here.

We say that f has integrable conullity at one point if there is an immersion
h : V n−k → Mn such that Th(y)V = ∆⊥

γ (h(y)), that is, if ∆⊥
γ posseses just

one leaf. For a vector subbundle F ⊂ T⊥V and a map µ : V n−k → Rn+p we
denote by (µ)F = (µ)F (y) the orthogonal projection of µ(y) to F (y) ⊂ Rn+p.

Theorem 17. ([DFT3]) Let h : V n−k → Rn+p be an isometric immersion
with a rank k parallel normal subbundle F ⊂ T⊥

h V . Let µ : V n−k → Rn+p be
a map transversal to F k which satisfies the first order system of PDE

(dµ)F
⊥

= 〈µ, dh〉(µ)F
⊥

. (5.1)

Then, the map ψ : F → Rn+p given by

ψ(t) = h + 2
µ+ t

‖µ+ t‖2
(5.2)

parametrizes, at regular points, an n-dimensional s-umbilic euclidean sub-
manifold with conformal conullity integrable at one point and s ≥ k. Con-
versely, any such n–dimensional k-umbilic euclidean submanifold f with in-
tegrable conullity at one point can be locally parametrized this way.

Proof: First observe that we may always consider µ ⊥ F . In fact, if µ is
a solution of (5.1) then also its orthogonal projection to F⊥, (µ)F

⊥

, is a
solution. Moreover, by the change of parameters t̃ = t+ (µ)F in (5.2) we see
that the submanifold ψ(F ) does not change.

For the converse, consider a k-umbilic immersion f which has a conullity
leaf V n−k, and take h = f |V . Let η and r = λ−1 as in (4.2) and ξ = η|V .
We know that, for each x ∈ V n−k, there is an extrinsic k-dimensional sphere
Sk(x) passing through h(x). Then F (x) = Th(x)S

k(x) ⊂ T⊥
h V since V n−k is

orthogonal to the umbilic distribution. Let us say that the extrinsic spheres
are centered at h + µ/‖µ‖2, where µ ⊥ F and ‖µ‖−1 is its radious. This
yields (5.2) but it remains to prove the assertions on F and µ.

By definition of µ, we have that µ = Z+λξ for some Z ∈ ThV since λξ is
the orthogonal projection of µ onto T⊥

f M . Since, as we saw in (4.2), ψ + rη
does not depend on t ∈ F , we get from (5.2) that

r(ξ − η) = 2‖µ+ t‖−2(µ+ t). (5.3)
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Now, since (span {η})⊥ ⊂ T⊥
f M is constant along the umbilic leaves, we have

(span {η})⊥ = F⊥ ∩ (span {ξ})⊥ ⊂ T⊥
h V.

In particular, F⊥ ∩ span {ξ}⊥ ⊥ d(ψ ◦ t) for any smooth section t ∈ Γ(F ).
Equation (5.2) yields

d(ψ ◦ t) = dh+ 2d(‖µ+ t‖−2)(µ+ t) + 2‖µ+ t‖−2(dµ+ dt).

Hence, (dµ+ dt) ⊥ F⊥ ∩ (span {ξ})⊥ for all t ∈ Γ(F ), or equivalently,

(dµ)F
⊥ ∈ span {ξ} = span {(µ)F

⊥} (5.4)

and
(dt)F

⊥ ⊂ span {ξ}, (5.5)

for every t ∈ Γ(F ), since µ does not depend on t. We also have that

0 = 〈d(ψ ◦ t), rη〉 = 〈d((h+ rξ) − rη), rη〉
= 〈d((h+ rξ), rξ − 2‖µ+ t‖−2(µ+ t)〉 − rdr

= −2‖µ+ t‖−2 (〈dh, µ〉 − r〈dµ, ξ〉+ r〈dξ, t〉) .
This together with (5.4) and (5.5) imply that F is parallel in the normal
connection of h and µ satisfies equation (5.1). The direct statement is easy.

Remark 18. The condition on µ to be transversal to F is just for γ to be
nonvanishing, that is, for the conformal nullity not to be relative nullity. If
we take µ ∈ F , or equivalently, µ = 0, we get precisely the immersions with
index of relative nullity k which have one leaf of the conullity distribution.

Now we use the last result to obtain a nice description of the immersions
with integrable conullity. For this, we need a definition. Let h : V → Rn+p

be a isometric immersion. We say that a map C : V → Rn+p is a Combescure
transformation of h if dC(X) ∈ TyV , for all X ∈ TyV , y ∈ V , and the tensor
dC is symmetric. If we write C = Z + β, Z ∈ TV , β ∈ T⊥V , the symmetry
of dC is equivalent to Z = ∇ϕ, for some ϕ ∈ C∞(V ). It is easy to see that
C is a Combescure transformation of h if and only if Φ = dC is a symmetric
Codazzi tensor on TV that commutes with the second fundamental form of h,
i.e., for all X, Y ∈ TV , (∇XΦ)Y = (∇Y Φ)X and αh(X,ΦY ) = αh(ΦX, Y ).
Observe that for v ∈ Rn+p and a ∈ R we have that C = ah + v are always
Combescure transformations of h, the trivial Combescure transformations.
These are precisely the Combescure transformations with Φ = aI, which are,
generically, the only symmetric commuting Codazzi tensors in a submanifold.
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Theorem 19. ([DFT3]) With the notations of Theorem 17, we have that
the submanifold has integrable conullity if and only if F is flat with respect to
the induced normal connection of h and we can reparametrize the submanifold
as

ψ(t) = h− 2ϕ
(C + t)

‖C + t‖2
, (5.6)

where C = ∇ϕ + β is a Combescure transformation of h. Moreover, the
leaves of the conullity distribution correspond to parallel sections t ∈ Γ(F ) in
the above parametrization.

Proof: Again we consider µ ⊥ F in Theorem 17. We have that the conullity
of ψ is integrable if and only if, for all regular point t ∈ F (x0), there is a
section T ∈ Γ(F ) with T (x0) = t satisfying that ψ ◦ T is orthogonal to the
umbilic leaves. We have,

d(ψ ◦ T ) = dh+ 2‖µ+ T‖−2(dµ+ dT − 2‖µ+ T‖−2〈dµ+ dT, µ+ T 〉(µ+ T )),

and for any S ∈ F ,

ψ∗(T )S = 2‖µ+ T‖−2(S − 2‖µ+ T‖−2〈T, S〉(µ+ T )).

A strightforward computation yields

〈d(ψ ◦ T ), ψ∗(T )S〉 = 0 ⇐⇒ 〈dµ+ dT, S〉 − 〈T, S〉〈dh, µ〉 = 0.

Using the parallelism of F we easily see that this condition is equivalent to

∇⊥T (= (dT )F ) = −(dµ)F + 〈dh, µ〉T. (5.7)

Taking differences between T1, T2 as above we get from (5.7) that

∇⊥(T1 − T2) = 〈dh, µ〉(T1 − T2).

It follows easily that F is flat, i.e., R⊥
h (F ) = 0 and that the tangent compo-

nent of µ is a gradient of the function τ = ‖T1 −T2‖−‖T1 −T2‖(x0). Hence,
τ(x0) = 0. Now (5.1) and (5.7) are equivalent to

(dµ)T
⊥

h
V = dτ(T + (µ)F

⊥

) − (dT )F . (5.8)

Set
T = eτTt + T0,
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where Tt is the parallel section with Tt(x0) = t and T0 ∈ Γ(F ). Thus,
T0(x0) = 0. The condition (5.8) is just

(d(µ+ T0))
T⊥

h
V = dτ(µ+ T0)

T⊥

h
V ,

or equivalently,
d(e−τ (µ+ T0)) ∈ ThV. (5.9)

If we call ϕ = −e−τ and β = e−τ (λξ + T0), we conclude from (5.9) that

e−τ (µ+ T0) = ∇ϕ+ β

is a Combescure transform of h. Moreover, µ+T = ϕ−1(∇ϕ+β+Tt). Thus,

Ψ ◦ T = h− 2ϕ(C + Tt)/‖C + Tt‖2,

and this concludes the proof of the converse. The direct statement is straight-
forward.

Using parametrizations it is easy in general to obtain the second funda-
mental form of the submanifold in terms of the original data, as we did for
the hypersurface situation. We are going to give now the second fundamen-
tal form for the integrable conullity situation not only for later use, but also
because its intrinsic beauty.

With the notations of the above theorem, we consider for t ∈ F (x0) the
parallel section Tt ∈ Γ(F ) such that Tt(x0) = t. Set β = βF

⊥

, βt = β + Tt
and ht = ψ ◦ Tt the leaf of ∆⊥

γ that passes through ψ(t). It is easy to check
that the map τ t : T⊥

h V → T⊥
htV given by

τ t(γ) = γt = γ − 〈βt, γ〉νt(C + Tt)

is a vector bundle isometry, where νt = 2‖C + Tt‖−2. Moreover, a direct
computation (or see Corollary 27 iii) of [DT3]) shows that

Ah
t

γt = (Dt)−1(Ahγ + 〈βt, γ〉νtΦt), (5.10)

where Dt = I − ϕνtΦt and Φt = Hesshϕ − Ahβ+t. For ξ ∈ F⊥ we have

ξt = ξ + ϕ−1〈β, ξ〉(ht − h),

∂ξt/∂ti = ϕ−1〈β, ξ〉ψ∗(∂/∂ti) = −〈β, ξ〉νtξti .
Hence, T⊥

ψ(Tt)
M = τ t(F⊥) and

Aψξtψ∗(∂/∂ti) = −ϕ−1〈β, ξ〉ψ∗(∂/∂ti).

We conclude that ληt = −ϕ−1β
t
.
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5.1 Umbilic conullity

We give here an application of Theorem 19: we will conformally classify all
k-umbilic submanifolds for which the connullity is integrable and its leaves
are umbilic in the submanifold. Our proof is much shorter than the one given
in [DFT2] with standard submanifold theory techniques. This again shows
the power of parametrizations.

Theorem 20. ([DFT2]) Let f : Mn → Rn+p be a k-umbilic isometric
immersion, for some 2 ≤ k ≤ n − 2. Suppose that the conullity distribution
is umbilic in Mn. Then, up to conformal transformations of the ambient
spance, the submanifold is:

a) Mn = Ln−k × Rk, and f = (h, id), for some h : Ln−k → Rn+p−k,

b) Mn = Ln−k ×r Sk and f(x, p) = (h′(x), r(x)p), for some immersion
h′ : Ln−k → Rn+p−k−1 and a positive function r ∈ C∞(L),

c) Mn = CLn−k × Rk−1, where CL is the cone over some immersion
ξ : Ln−k → Sn+p−k.

Proof: We use parametrization (5.6) for the conullity leaves ht = ψ(Tt). The
key point in the proof is the following claim.
Claim. C is a trivial Combescure transformation of h.
Since the conformal nullity distribution ∆ξ at ht(x) is given by τ t(F (x)), we
have that the conullity distribution is umbilic in the submanifold if and only
if, for all µ ∈ F , X, Y ∈ ∆⊥

ξ (t) = ThtV , there is κtµ ∈ R such that

〈Aht

µtX, Y 〉 = 〈∇X(ψ ◦ Tt)∗Y, µt〉 = κtµ〈X, Y 〉.

At the leaf parametrized by h (‖t‖ → ∞), we have that Ah
µ = κµI, for all

µ ∈ F . By (5.10) we obtain

κξI + 〈βt, ξ〉νtΦt = κtξ(I − ϕνtΦt),

for some κtξ ∈ R, which is equivalent to Φ = dC = aI, for some a ∈ C∞(V ).

Since dim ∆⊥
γ = n − k ≥ 2, the condition for Φ to be Codazzi is precisely

a ∈ R. This proves our claim and we conclude that

C = ∇ϕ+ β = ah+ v0, (5.11)
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for some v0 ∈ Rn+p.
We only have to understand the parametrization for trivial Combescure

transformations. There are two cases to consider:
Case κ ≡ 0. That is, for all µ ∈ F , κµ = 0. Since F is parallel, we conclude
that h reduces codimension to n + p − k. Thus, we have an orthogonal
splitting Rn+p = Rn+p−k ⊕ Rk such that, up to translation, h ⊂ Rn+p−k and
F = Rk.

If a = 0 in (5.11), we get ϕ = 〈h, v0〉 + c, c ∈ R. Hence, after translation
if necessary, parametrization (5.6) becomes

ψ = (h, 0) − 2(〈h, v′0〉 + c)(‖v′0‖2 + ‖t‖2)−1(v′0, t), (5.12)

where v′0 is the orthogonal projection of v0 into Rn+p−k = F⊥. If v′0 = 0, we
easily get M = L × Rk, which is of type a) in the statement. If v′0 6= 0, we
set r = ϕ/‖v′0‖ and h′ as the projection

h′ = h+ c‖v′0‖−2v′0 − ϕ‖v′0‖−2v′0 ⊂ (span {v′0})⊥ = Rn+p−k−1.

In this situation, is easy to see that ψ parametrizes a submanifold of type b)
in the theorem.

We analize the case a 6= 0, First, observe that for c = 0 we may write
equation (5.12) as ψ = h − 2〈h, e〉(1 + ‖t‖2)−1(e, t), for some unit vector
e ∈ Rn+p−k. If we apply to it an inversion i with respect to the unit sphere
centered at e, a straightforward computation yields, up to a translation, that

i(ψ) = h1 − 2(‖h1‖2 − 1/4)‖(2h1, t)‖−2(2h1, t),

where h1 = ‖h− e‖−2(h− e)+ e/2. Applying an homothety d/2 to the above
and setting h2 = (d/2)h1, we obtain

(d/2) i(ψ) = (h2, 0) − 2(‖h1‖2 − d2)‖(2h2, t)‖−2(2h2, t). (5.13)

Since a 6= 0, we have that ϕ = (a/2)(‖h′‖2 + c), c ∈ R, where h′ = h+ v′0,
with v′0 the orthogonal projection of a−1v0 into Rn+p−k = F⊥. Thus (5.6)
becomes (up to a translation)

ψ = (h′, 0) − 2(‖h′‖2 + c)‖(2h′, t)‖−2(2h′, t). (5.14)

If c = 0, the above is taken by an inversion relative to a unit sphere centered
at 0 to a submanifold of type a) in the statement. If c < 0, then it is
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conformal to a submanifld of type b) by (5.13). Finally, (5.14) is conformally
type c) when c > 0. To see this, apply an inversion i to (5.14) with respect
to a unit sphere centered at

√
c en+p to get, up to a translation,

i(ψ) = (sξ, t),

where s ∈ R, ξ = 2
√
c ‖h′ −√

c en+p‖−2(h′ −√
c en+p) + en+p ⊂ Sn+p−k.

Case κ 6= 0. Let ξ ∈ F be a unit generator of coker κ. Codazzi’s equation and
the parallelism of F easly imply that ξ is parallel in the normal connection of
h, F = span {ξ}⊕F ′, h reduces codimension to n+p−k+1, F ′ = Rk−1 and,
up to translation, h ⊂ F ′⊥ = Rn+p−k+1. Also from the Codazzi equation for
Ahξ we obtain that κξ = −b 6= 0 is constant, and since ξ is parallel, we get

h = bξ + v1,

for some 0 6= b ∈ R, v1 ∈ Rn+p. That is, up to translation and homothety,
h ⊂ Sn+p−k. Observe that ξ is the normal space N of Sn+p−k in Rn+p−k+1

restricted to h. Hence, an inversion i with respect to any sphere centered at
any point e ∈ Sn+p−k sends Sn+p−k to Rn+p−k = span {e}⊥ ⊂ Rn+p−k+1, and
F to i(N )⊕F ′ = span {e}⊕F ′ = Rk ⊂ Rn+p. This is precisely the situation
of the case κ = 0, and the proof is complete.
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tigkeiten höhere Ordnung.
Zeit. für Math. und Physik 21 (1876), 373-401.
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cinq dimensions. Bull. Soc. Math. France 46 (1918), 84-105.

[Ch] Chen, B. Y.; Some pinching and classification theorems for minimal
submanifolds.
Arch. Math. 60 (1993), 568–578.

[Da] M. Dajczer et all; “Submanifolds and isometric immersions”.
Math. Lec. Series 13, Publish or Perish Inc. Houston, 1990.

[DdC] Dajczer, M. and do Carmo, M.; riemannian Metrics Induced by
Two Immersions.
Proc. Amer. Math. Soc. 86 (1982), 115-119.

[DF1] Dajczer, M. and Florit, L.; On conformally flat submanifolds.
Comm. Anal. Geom. 4 (1996), 261-284.

[DF2] Dajczer, M. and Florit, L.; On Chen’s basic equality.
Illinois J. Math. 42 (1998), 97-106.

43



44 BIBLIOGRAPHY

[DF3] Dajczer, M. and Florit, L.; A class of austere submanifolds.
Preprint.

[DG] Dajczer, M. and Gromoll, D.; Gauss parametrizations and rigidity
aspects of submanifolds.
J. Diff. Geom. 22, 1-12 (1985).

[DFT1] Dajczer, M., Florit, L. and Tojeiro, R.; On deformable hypersur-
faces in space forms.
Ann. Mat. Pura Appl. 174 (1998), 361-390.

[DFT2] Dajczer, M., Florit, L. and Tojeiro, R.; On a class of submanifolds
carrying an extrinsic umbilic foliation.
Preprint.

[DFT3] Dajczer, M., Florit, L. and Tojeiro, R.; Parametrizations for k–
umbilic submanifolds and applications.
Preprint.

[DT1] M. Dajczer and R. Tojeiro; On compositions of isometric immer-
sions. J. Diff. Geometry 36 (1992), 1–18.

[DT2] Dajczer M. and Tojeiro R.; On Cartan’s conformally deformable
hypersurfaces.
Preprint.

[DT3] M. Dajczer and R. Tojeiro; Commuting Codazzi tensors and the
Ribaucour transformations for submanifolds. Preprint.

[F1] Florit, L.; On Submanifolds with nonpositive extrinsic curvature.
Math. Ann. 298 (1994), 187-192.

[F2] Florit, L.; A splitting theorem for euclidean submanifolds of non-
positive sectional curvature.
Math. Z. 225 (1997), 685-690.

[FZ1] Florit, L. and Zheng, F.; On nonpositively curved euclidean sub-
manifolds: splitting results.
To appear in Comment. Math. Helv..



BIBLIOGRAPHY 45

[FZ2] Florit, L. and Zheng, F.; On nonpositively curved euclidean sub-
manifolds: splitting results II.
To appear in J. reine angew. Math..

[K] Killing, W.; “Die nicht-Euklidischen Raumformen in Analytische
Behandlung.”
Teubner, Leipzig, 1885.

[Mo] Moore, J.; Conformally flat submanifolds in euclidean space.
Math. Ann. 225 (1977), 89-97.

[Re] Reckziegel, H.; Krummungsflachen von isometrischen immersionen
in raume konstanter krummung.
Math. Ann. 223 (1976), 169-181.

[Sb] Sbrana, V.; Sulla varietá ad n − 1 dimensioni deformabili nello
spazio euclideo ad n dimensioni.
Rend. Circ. Mat. Palermo 27 (1909), 1-45.



Index

Beez-Killing theorem, 17
bundle

normal, 9
flat, 9

sections of, 7
tangent, 7, 8

Cartan’s theorem, 23
Chen’s basic equality, 30
Codazzi equation, 10
codimension, 7
Combescure transformation, 37

trivial, 37
conformally flat, 24
connection

Levi-Civita, 8
normal, 9

conullity, 10
integrable at one point, 36

curvature
mean, 18

constant, 20
scalar, 30
sectional, 16
tensor, 8

derivation, 8
differential, 7

embedding, 7

fundamental equations, 3, 9

Gauss
equation, 9
map, 13, 16
parametrization, 13, 15

umbilic, 21
gradient, 14

hessian, 15
hypersurfaces, 7

deformation
conformal, 24
isometric, 13, 18, 20

flat, 16
nonpositively curved, 17

immersion, 7
conformal, 8
isometric, 8
minimal, 18
product, 17

inversion, 23

Laplacian, 18

metric
induced, 8
riemannian, 8
tensor, 8

nullity
conformal

index, 10

46



INDEX 47

relative, 10
index, 10

principal
curvatures, 16
directions, 16

rank of a submanifold, 10
conformal, 10

regular points
of Gauss parametrization, 15
of umbilic Gauss param., 23

Ricci equation, 10
riemannian manifold, 8
rigidity

conformal, 23
isometric, 18

rotational submanifolds, 30

saturated subset, 13
second fundamental form, 9

for integrable conullity, 39
of a product immersion, 17
of Gauss parametrization, 15
of umbilic Gauss param., 23

shape operator, 9
support function, 14

torsion-free, 8
totally geodesic submanifold, 11

umbilic
k-umbilic submanifold, 10

generic, 25, 29
hypersurfaces, 21

conullity, 40
direction, 10
distributions, 10
eigenvalue, 10
totally, 11


