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Abstract. We give a local parametric description of all complex hypersurfaces in C
n+1

and in complex projective space CP
n+1 with constant index of relative nullity, together

with applications. This is a complex analogue to the parametrization for real hypersurfaces
in Euclidean space known as the Gauss parametrization.

1. Introduction

Let Mn be a complete connected complex immersed hypersurface of C
n+1 whose

index of relative nullity, that is, the dimension of the kernel of its second fundamen-
tal form, satisfies ν ≥ n − 1 everywhere. Equivalently, its Gauss map ϕ : Mn →
CP

n that assigns to each point in Mn its normal complex line in C
n+1, satisfies

rank dϕ ≤ 1. Then, it was shown by Abe [1] that the hypersurface must be an
(n − 1)-cylinder.

The situation is even more restrictive for a complete hypersurface Mn of the
complex projective space CP

n+1. From a general result also due to Abe [2] it fol-
lows that ifν > 0 then Mn must be a totally geodesically embedded CP

n ⊂ CP
n+1.

Naturally, the situation is quite different in the local case. In fact, for any inte-
ger ν0 > 0 there are plenty of local hypersurfaces Mn in C

n+1 and CP
n+1 with

constant index of relative nullity ν = ν0 that are neither part of cylinders in C
n+1

or totally geodesic in CP
n+1.

Our main goal in this note is to give a parametric description of all complex
hypersurfaces in C

n+1 and CP
n+1 with constant ν > 0. As a consequence, the

above global results will be immediate corollaries of our local construction achieved
by imposing on the hypersurfaces the absence of singularities.

So far everything just said is an analogue to what happens for real hypersur-
faces in Euclidean space R

n+1 and the round sphere S
n+1. The now called Gauss

parametrization was introduced by Sbrana [13] as a tool to classify the locally
isometrically deformable Euclidean hypersurfaces. In recent years, it has proved to
be quite a useful tool, giving rise to several applications; see [3–7,9] and [11].

The parametrization of hypersurfaces in C
n+1 we give here works similarly for

hypersurfaces in R
n+1 and provides an equivalent form of the Gauss parametrization
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given in [5]. Our parametrization for CP
n+1 is a perfect analogue of the Gauss

parametrization in the sphere S
n+1. We point out that the holomorphicity hypoth-

esis is redundant for submanifolds in CP
N with ν > 0 [8].

2. The parametrization in C
N

Let f : Mn → C
n+p be a holomorphic isometric immersion of a Kähler Riemann-

ian manifold Mn = (Mn, 〈 , 〉) with Levi-Civita connection ∇, normal connection
∇⊥, and second fundamental form α : T M ⊕ T M → T ⊥M . We denote by J the
complex structures of both Mn and C

n+1.
Recall that the relative nullity subspace �(x) of f at x ∈ Mn is given by

�(x) = {Y ∈ Tx M : α(Y, Z) = 0, ∀ Z ∈ Tx M} .
Since f is holomorphic, �(x) ⊆ Tx M is a complex subspace whose (complex)
dimension ν f (x) is called the index of relative nullity of f at x . Along the open
dense subset M0 ⊆ Mn where ν is constant, it is well known that � is a smooth
integrable distribution whose leaves are totally geodesic in both Mn and C

n+p.
Locally on a saturated open subset U ⊆ M0, the space of leaves of this distribution,
that we denote by M̂ = U/�, is naturally a complex manifold of dimension n − ν

whose projectionπ : U → M̂n−ν is holomorphic. This space can be naturally iden-
tified with a complex submanifold of U of dimension n −ν transversal to the leaves
of relative nullity. We point out that the space of leaves is well defined globally on
M0 if Mn is complete; see [5].

Let i : C
N∗ → C

N∗ be the inversion given by i(z) = z/‖z‖2, where we denote
as usual C

N∗ = C
N \{0}. Its differential is

diz(v) = 1

‖z‖2 Rzv,

where

Rzv = v − 2〈v, z〉i(z),
stands for the reflection in the z direction. Notice that Rz satisfies

J Rz = RJ z J

where J is the complex structure in C
N .

Let f : Mn → C
n+p be a holomorphic isometric immersion of a Kähler man-

ifold. Decompose the position vector of the immersion as

f = f ⊥ + f �, (1)

according to the orthogonal holomorphic bundle decomposition

C
n+p ∼= TxC

n+p = T ⊥
x M ⊕ Tx M,

for each x ∈ Mn .



The holomorphic Gauss parametrization 129

If there is an open subset U ⊆ Mn for which the position vector f is tangent
to f , then by analyticity f is everywhere tangent and, regarded as a tangent vec-
tor field, must belong to the relative nullity. Hence, f must be a (complex) cone
through the origin. By means of a generic translation f + p0, we assume from now
on that the position vector is not tangent on an open dense subset of Mn , that we
continue calling Mn .

Differentiating (1) and taking normal components, we get α f � := α(·, f �) =
−∇⊥ f ⊥. Hence,

d f ⊥ = −A f ⊥ − α f � , (2)

where Aδ = A f
δ denotes the real shape operator of f in the direction δ. Since f is

holomorphic, we have that A f ⊥ J = −J A f ⊥ and α f � J = Jα f � , and thus

d f ⊥ J = J
(

A f ⊥ − α f �
) = −J

(
d f ⊥ + 2α f �

)
. (3)

Setting

g = i( f ⊥), (4)

we have

dg = di f ⊥ ◦ d f ⊥ = 1

‖ f ⊥‖2 R f ⊥d f ⊥ = ‖g‖2 Rgd f ⊥, (5)

since R f ⊥ = Rg . Therefore,

‖g‖−2dg J = Rgd f ⊥ J = −Rg J
(

d f ⊥ + 2α f �
)

= −J RJg

(
d f ⊥ + 2α f �

)

= −J
(

Rgd f ⊥ + 2�g⊥(α f �)
)

= −‖g‖−2 Jdg − 2J�g⊥
(
α f �

)

where �g⊥ : T ⊥M → T ⊥M ∩ (spanC {g})⊥ is the orthogonal projection.
In particular, if the codimension is p = 1 we conclude that

dg J = −Jdg,

that is, g is anti-holomorphic. Moreover, observe that since f is holomorphic, by
(2) and (5) we have that ker dg = � at each point. In other words, g is constant
along the leaves of relative nullity of f and, locally, there is an anti-holomorphic
immersion f̂ : M̂n−ν → C

n+1 such that g = f̂ ◦ π . We will always consider on
M̂n−ν the Kähler metric induced by f̂ .
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We have proved:

Proposition 1. Let f : Mn → C
n+1 be a holomorphic isometric immersion of a

Kähler Riemannian manifold. Then, on the open dense subset where the position
vector f is not tangent, the map g = i( f ⊥) is anti-holomorphic. Moreover, locally
along the open dense subset which also has constant index of relative nullity ν,
there is an anti-holomorphic isometric immersion f̂ : M̂n−ν → C

n+1 such that
f̂ ◦ π = g.

Observe that, as a consequence, the Gauss map N : Mn → CP
n of f given by

N (x) = spanC

{
f̂ ⊥(π(x))

}

is anti-holomorphic; see [12].
Our purpose now is to describe f locally by means of the geometry of f̂ .

Theorem 2. Let f̂ : M̂n−ν → C
n+1 be an anti-holomorphic isometric immersion

of a Kähler manifold with ν f̂ = 0 whose position vector is never tangent. Let L be
the holomorphic vector subbundle given by

L = spanC

{
f̂ ⊥}⊥ ⊂ T ⊥

f̂
M̂ . (6)

Then, the map f : L → C
n+1 defined as

f (ξ) = i
(

f̂ ⊥(x)
)

+ ξ, ξ ∈ L(x), (7)

parametrizes, at regular points, a holomorphic Kähler hypersurface with constant
index of relative nullity ν f = ν. Conversely, any such hypersurface can be param-
etrized this way.

Proof. For the direct statement, observe first that f is holomorphic by Proposition 1.
Moreover, since 〈 f, f̂ ◦ π〉 = 1, we have that

0 = 〈d f, f̂ ◦ π〉 + 〈 f, d f̂ ◦ π〉 = 〈d f, f̂ ◦ π〉,
that is, f̂ ◦ π is normal to f . From the definition, it is clear that the fibers of L
are contained in the relative nullity of f , and they must coincide since f̂ is never
tangent.

For the converse, we follow the arguments before Proposition 1 writing

f = i(g)+ f �

and f̂ ◦ π = g, where g = i( f ⊥). Since g is normal to f and ker dg = �, by
dimension reasons we conclude that the leaf of � through x is simply (contained
in) a translation of L(π(x)) defined by (6). Therefore, we set

f � = h ◦ π + ξ
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where h ∈ L⊥ and ξ(x) ∈ L(π(x)). Again by dimension reasons, ξ parametrizes
each leaf of L when x moves along a leaf of relative nullity. Now, differentiating
〈 f, g〉 = 1, we obtain 〈 f, dg〉 = 0. It follows that

i( f̂ )+ h ∈ T ⊥M̂ . (8)

By (6) and (8) we have that i( f̂ )+h and f̂ ⊥ are linearly dependent, say, i( f̂ )+h =
λ f̂ ⊥ Since h is tangent to f , taking the inner product with f̂ yields i( f̂ ) + h =
i( f̂ ⊥), as we wanted to prove. ��
Remark 3. Let H+ and H− denote the sets of hypersurfaces in C

N without relative
nullity and whose position vectors are never tangent, that are holomorphic and anti-
holomorphic, respectively. Since the roles of holomorphic and anti-holomorphic
submanifolds can be reversed in the above arguments, the map defined on H+∪H−
given by

f �→ f ∗ = i( f ⊥)

is a bijection that swaps H+ with H− such that ( f ∗)∗ = f . In the case of holo-
morphic curves it was shown in [10] that this map is conformal.

We now compute the singular set and second fundamental form of the subman-
ifold using the parametrization (7), the latter being completely determined by A f̂

by the holomorphicity of f . Let P : T M̂ → �⊥ where

�⊥ =
(
L ⊕ spanC { f̂ }

)⊥ =
(

T M̂ ⊕ spanC { f̂ }
)

∩
(

spanC { f̂ }
)⊥

be the isomorphism given by

P(Z) = Z − 〈Z , f̂ 〉i( f̂ ⊥)− 〈Z , J f̂ 〉J i( f̂ ⊥).

Proposition 4. The singular set of f in the parametrization (7) is

S =
{
ξ ∈ L : Âi( f̂ ⊥)+ξ is singular

}
,

where Â = A f̂ . The shape operator of f in the direction f̂ restricted to �⊥ is

A f̂ = P
(

Âi( f̂ ⊥)+ξ
)−1

P−1. (9)

In particular, S is also the singular set of the submanifold itself.

Proof. Take x ∈ M̂n−ν and ξ ∈ L(x). From (7) we see that d fξ is the iden-
tity on L(x). Notice that any vector transversal to L(x) at ξ can be written as
ψ∗x Z = dψx (Z) for some Z ∈ Tx M̂ and ψ ∈ �(L) such that ψ(x) = ξ . Since f̂
is always normal to f , we have

(
f∗ξ (ψ∗x Z)

)
�⊥(x) = (

( f ◦ ψ)∗ξx Z
)
�⊥(x) =

(
(i( f̂ ⊥)+ ψ)∗x Z

)

�⊥(x)

= −P
(

Âi( f̂ ⊥)+ξ Z
)
, (10)
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where a subspace as a subindex means to take its orthogonal projection. For the
last equality, first observe that

(
(i( f̂ ⊥)+ ψ)∗x Z

)

�⊥(x)
=

(
− Âi( f̂ ⊥)+ξ Z + λ1i( f̂ ⊥)+ λ2 J i( f̂ ⊥)

)

�⊥(x)

and then use that f̂ is always normal to f to compute the functions λ j , j = 1, 2.
The first claim now follows from the fact that the right-hand side of (10) depends
only on Z and not on ψ .

The second part now follows since

f∗ξ
(

A f̂ (ψ∗x Z)
)

= −P
(
( f̂ ◦ π)∗(ψ∗x Z)

)
= −P Z

= P
(

Âi( f̂ ⊥)+ξ
)−1

P−1 (
( f∗ξ (ψ∗x Z))�⊥(x)

)
,

as we wanted. ��
Recall that the first normal space of f̂ at x ∈ M̂n−ν is the subspace of N 1

f̂
(x) ⊆

T ⊥
x M̂ spanned by the image of the second fundamental form of f̂ at x . Equivalently,

N 1
f̂
(x) =

{
δ ∈ T ⊥

x M̂ : Âδ = 0
}⊥
,

where the orthogonal complement is taken in the normal bundle.

Corollary 5. Let f : Mn → C
n+1 and f̂ : M̂n−ν → C

n+1 be as in Proposition 1.
If Mn is complete, then Âi( f̂ ⊥) is non-singular and L ⊆ (N 1

f̂
)⊥.

Proof. Assume that the conclusion does not hold. Hence, the polynomial

q(z) = det
(

Âi( f̂ ⊥) + z Âξ
)

has a complex root u + iv, associated to an eigenvector U + iV �= 0 of the corre-
sponding complexified endomorphism, that is,

(
Âi( f̂ ⊥) + (u + iv) Âξ

)
(U + iV ) = 0.

But this is equivalent to

Âi( f̂ ⊥)U + u ÂξU − v ÂξV = 0 and Âi( f̂ ⊥)V + v ÂξU + u ÂξV = 0.

In turn, using J Âδ = − ÂJδ = − Âδ J, we easily see that this is equivalent to

Âi( f̂ ⊥)+(uI−v J )ξ (U − J V ) = 0 and Âi( f̂ ⊥)+(uI+v J )ξ (U + J V ) = 0.

Since L is holomorphic and the leaves of relative nullity are complete, we get a
contradiction with Proposition 4, because either U − J V or U + J V is non-zero.

��
Remark 6. Observe that the previous result holds along each complete relative nul-
lity leaf of f , even if the submanifold is not itself complete.
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As an application of Theorem 2 we give a simple and direct proof of Abe’s
cylinder theorem [1].

Corollary 7. Let f : Mn → C
n+1 be a holomorphic isometric immersion of a com-

plete Kähler Riemannian manifold. If the index of relative nullity satisfies ν ≥ n−1
everywhere, then f is an (n − 1)-cylinder, that is, Mn = M1

1 × C
n−1, and there is

f1 : M1
1 → C

2 such that f = f1 × I d splits.

Proof. If f is not totally geodesic, for which the result trivially holds, by the
hypothesis that f̂ is an anti-holomorphic curve and by Corollary 5, we have

L =
(

N 1
f̂

)⊥
and spanC

{
i( f̂ ⊥)

}
= N 1

f̂
.

But since L is orthogonal to the position vector f̂ , we conclude that the first normal
space is parallel since 0 = 〈ψ∗Z , f̂ 〉 = 〈ψ∗Z , i( f̂ ⊥)〉 for any ψ ∈ �(L). This
parallelism implies that f̂ reduces codimension, that is, it is an anti-holomorphic
plane curve inside some C

2 ⊂ C
n+1, and L is the orthogonal complement of this

plane. ��

3. The parametrization in CP
N

We show next that our parametrization in C
n+1 can be used to obtain a similar

parametrization for holomorphic hypersurfaces of CP
n+1. The latter is cleaner

than the former since it does not have the restriction about the position vectors
to be nowhere tangent, and the bundle used to parametrize is the (projectivized)
normal bundle itself and not a sub-bundle of it.

The condition in Theorem 2 that the position vector of a complex submanifold
f : Mn → C

n+p is never tangent is equivalent to the cone fc over f to be an
immersion, where the map fc : C ∗ × Mn → C

n+p is given by fc(z, x) = z f (x).
Moreover, f has index of relative nullity ν if and only if fc has index of relative
nullity ν + 1, and the position vector of the cone, that now is everywhere tan-
gent, belongs to the relative nullity. Equivalently, the position vector of f is never
tangent if and only if f � = π̂ ◦ f : Mn → CP

n+p−1 is an immersion, where
π̂ : C

N∗ → CP
N−1 denotes the projection to the quotient, and f and f � have the

same index of relative nullity. We conclude that to understand the submanifolds
with constant relative nullity ν0 in CP

N is equivalent to understand the cones in
C

N+1 with ν ≡ ν0 + 1.
We claim that the latter are described as in (7), but without the term i( f̂ ⊥). Let

f1 : Mn−1
1 → C

n ⊂ C
n+1 be the isometric immersion obtained as the intersec-

tion of a cone f : Mn → C
n+1 with constant index of relative nullity ν+ 1 with a

hyperplane, say, C
n = {zn+1 = 1}, so that f1 has constant index of relative nullity

ν and is never tangent. By Theorem 2, we have a parametrization of f1 in C
n as

f1(ξ) = i( f̂ ⊥
1 )+ ξ, ξ ∈ L1.
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Thus, f1 = (η + ξ, 1) in C
n+1 where η = i( f̂ ⊥

1 ). Hence, we may parametrize f
as

f (w, ξ) = w(η, 1)+ ξ, ξ ∈ L1, w ∈ C ∗.

Setting f̂ = ( f̂1,−1), we thus parametrize f as

f (ξ) = ξ, ξ ∈ L,

where f̂ : M̂n−ν → C
n+2 is never tangent, and

L = L1 ⊕ spanC {(η, 1)} = spanC

{
f̂ ⊥}⊥ ⊂ T ⊥

f̂
M̂n−ν.

This proves our claim.
From the above description of the cones, we get for the immersion f � a param-

etrization over the projectivized bundle P (L) of L, namely, f � : P (L) → CP
n+1,

f �(ξ) = ξ, ξ ∈ P (L). (11)

Now, observe that L coincides with the normal space of f̂c, once we identify the
fibers of the normal space of f̂c when translated along the lines inside the cone that
pass through 0 (we are allowed to do this because these are lines of relative nullity
of f̂c). In other words, we have a natural identification between the normal space of
f̂ � and L, and hence we can treat both as the same fiber bundle. In particular, the cor-
responding complex projectivized bundles are also identified: P (T ⊥

f̂ �
M̂) = P (L).

These are holomorphic fiber bundles of dimension n with CP
ν fibers. We conclude

from (11) the following.

Theorem 8. Let f̂ : M̂n−ν → CP
n+1 be an anti-holomorphic isometric immersion

of a Kähler manifold with vanishing relative nullity. Then, the map f : P (T ⊥
f̂

M̂) →
CP

n+1 defined as

f (ξ) = ξ,

parametrizes, at regular points, a holomorphic Kähler hypersurface with constant
index of relative nullity ν. Conversely, any such hypersurface can be parametrized
this way.

We point out that the holomorphicity hypothesis in the converse is redundant
when the submanifold has relative nullity. It was shown in [8] that any isometric
immersion of a Kähler manifold into CP

N with positive index of relative nullity
must be holomorphic.

Remark 9. Taking the Gauss map is an involution on H̄+ ∪ H̄− that swaps H̄+
with H̄−, where H̄+ and H̄− denote the sets of holomorphic and anti-holomorphic
hypersurfaces of CP

n+1 with vanishing relative nullity. As opposed to the C
N

case, here there is no restriction on the position vectors; see Remark 3.
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