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Compositions of isometric immersions
in higher codimension3

Abstract. Given a submanifold Mn of Euclidean space R
n+p with codimen-

sion p ≤ 6, under generic conditions on its second fundamental form, we show
that any other isometric immersion of Mn into R

n+p+q, 0 ≤ q ≤ n − 2p − 1
and 2q ≤ n + 1 if q ≥ 5, must be locally a composition of isometric immer-
sions. This generalizes several previous results on rigidity and compositions
of submanifolds. We also provide conditions under which our result is global.

An isometric immersion f : Mn → R
n+p of a connected n-dimensional

Riemannian manifold into Euclidean space with codimension p is said to
be rigid if any other isometric immersion into the same ambient space is
congruent to f by an Euclidean motion. But rigidity is lost once we allow
new immersions to have higher codimension than the given one. In fact,
for given q ≥ 1, an abundance of isometric immersions g: Mn → R

n+p+q

can be produced by composing f with isometric immersions into R
n+p+q of

open subsets V ⊂ R
n+p so that f(M) ⊂ V . We recall that the study of the

large set of local isometric immersions between Euclidean spaces goes back
to Cartan ([Ca]). Furthermore, complete descriptions for codimensions one
and two were given in [DG] and [DF], respectively.

In this paper we answer a rigidity question already considered in [DT] for
the special case of hypersurfaces (p = 1). Namely, we find sufficient (generic)
conditions which, for f and g as above, imply that g must be a composition
in the sense of the following definition.

Definition. Given an isometric immersion f : Mn → R
n+p we say that an

isometric immersion g: Mn → R
n+p+q, q ≥ 0, is a composition when there

is an isometric embedding f ′: Mn ↪→ Nn+p
0 into a flat manifold Nn+p

0 , an
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isometric immersion j: Nn+p
0 → R

n+p (that is, a local isometry) satisfying
f = j◦f ′ and an isometric immersion h: Nn+p

0 → R
n+p+q such that g = h◦f ′.

For any open subset U ⊂ Mn where f as in the definition is an embedding,
it follows that there exists an isometric immersion h: V ⊂ R

n+p → R
n+p+q of

a tubular neighborhood V of f(U) such that

g = h ◦ f. (1)

In particular, (1) holds globally if f itself is an embedding.

Observe that for q = 0 being a composition just means that the two
immersions are congruent. Hence, the notion of composition extends the one
of rigidity. In fact, we believe that considering rigidity results within the
more general setting of compositions leads to a deeper understanding of the
theory.

Next we deal with second fundamental forms which carry the structure
corresponding to compositions. Given f : Mn → R

n+p, we say that the second
fundamental form αg of g: Mn → R

n+p+q decomposes at x ∈ Mn if there are
a subspace Lp ⊂ T⊥

g(x)M and an isometry τ : T⊥
f(x)M → Lp so that

αg(x) = τ ◦ αf(x) ⊕ γ, (2)

where γ: TxM × TxM → L⊥. If αg decomposes at each point of Mn, we call
the decomposition regular when the image S(γ) and nullity N(γ) of γ have
both constant dimension.

Besides the aforementioned result in [DT] for hypersurfaces, our main
result also generalizes the rigidity theorem in [CD]. There, it was shown
that f : Mn → R

n+p is rigid for p ≤ 5 if the s-nullity of f satisfies everywhere
νf

s ≤ n − 2s − 1 for all 1 ≤ s ≤ p, where

νf
s (x) = max{dim N(αΓs)(x): Γs ⊂ T⊥

f(x)M},

with αΓs denoting the orthogonal projection of αf onto the subspace Γs. Here
we prove the following for compositions.

Theorem 1. Let f : Mn → R
n+p and g: Mn → R

n+p+q, q ≥ 0, be isometric
immersions. Suppose p ≤ 6, and assume that f satisfies everywhere

νf
s ≤ n − q − 2s − 1 for all 1 ≤ s ≤ p.

When q ≥ 5, assume further that νf
1 ≤ n − 2q + 1. Then αg decomposes

everywhere and g is a composition if αg decomposes regularly.
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A rather simple example due to Henke ([He]) shows that the preceding
global result does not hold without the regularity assumption even if f is an
embedding. Nevertheless, we always have regularity and that f is an em-
bedding along connected components of an open dense subset of Mn. We
conclude that (1) holds along each one of these components under assump-
tions on f only.

Application. By Theorem 1 an isometric immersion g: S
r ×S

k → R
n+q+2, for

r ≤ k and n = r+k, must be a composition of S
r×S

k ↪→ R
r+1×R

k+1 = R
n+2

if either 3 ≤ r ≤ 7 and q ≤ r − 3 or r ≥ 8 and q ≤ (r + 1)/2. Of course, the
same conclusion holds if spheres are replaced by convex hypersurfaces.

We also have the following rigidity result for minimal immersions.

Theorem 2. Let f : Mn → R
n+p be a minimal isometric immersion which

satisfies νf
s (x0) ≤ n−q−2s−1 at x0 ∈ Mn for all 1 ≤ s ≤ p ≤ 6. Then, any

minimal isometric immersion g: Mn → R
n+p+q is congruent to f in R

n+p+q.

A stronger result was obtained for hypersurfaces in [BDJ]. See also [Da]
for the case q = 1 for both results.

The paper is organized as follows. In Section 1, we generalize in two
directions by means of a simpler proof a result in [CD] on flat symmetric
bilinear forms. In particular, the conformal rigidity theorem there remains
valid for an extra unit in the codimension. Moreover, we have good reasons
to believe that this result will be crucial in the understanding of isometric
deformations of submanifolds in low codimension. The proofs are given in
Section 2.

§1 Flat bilinear forms.

Given a symmetric bilinear form β: V × V → W between finite dimen-
sional real vector spaces, the nullity N(β) ⊂ V of β is defined as

N(β) = {X ∈ V : β(X, Y ) = 0, Y ∈ V },

and the image S(β) ⊂ W of β is given by

S(β) = span{β(X, Y ), X, Y ∈ V }.
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A vector Y ∈ V is called a regular element of β if the linear map BY : V → W ,
defined as BY (X) = β(X, Y ), satisfies

dim BY (V ) = max{dim BZ(V ), Z ∈ V }.

It is easy to check that the subset RE(β) ⊂ V of regular elements is open
and dense; see [Mo] or [D] for details.

We denote by W p,q a (p+ q)–dimensional vector space with a possible
indefinite inner product of type (p, q), where q ≥ 0 is the maximal dimension
of a negative definite subspace. We call a subspace U ⊂ W p,q degenerate if
the restriction of the metric of W p,q to U is degenerate, and denote by rank U
the rank of the metric induced on U . Thus, rank U = dim U − dim U ∩ U⊥

and U is nondegenerate if rank U = dim U . Finally, we say that U is null
when rank U = 0, that is, U ⊂ U⊥.

Theorem 3. Let β: V n × V n → W p,q, where p ≤ q and p + q < n, be a
nonzero symmetric bilinear form which is flat, that is,

〈β(X, Y ), β(Z, T )〉 − 〈β(X, T ), β(Z, Y )〉 = 0 for all X, Y, Z, T ∈ V.

Assume 1 ≤ p ≤ 6 and dim N(β) ≤ n − p − q − 1. Then there is an
orthogonal decomposition W p,q = W `,`

1 ⊕ W p−`,q−`
2 , 1 ≤ ` ≤ p, such that the

Wj-components βj of β satisfy

i) β1 6= 0 and S(β1) is null.

ii) β2 is flat and dim N(β2) ≥ n − dim W2.

For the proof of the above result we need several lemmas. The first one
is a consequence of Theorem 3.8 in [Ar].

Lemma 4. Given a degenerate subspace U ⊂ W p,q, set E = U ∩ U⊥ and let
S ⊂ U be a subspace such that E ⊕ S = U . Then, there is a (not necessarily

unique) subspace Ê ⊂ W with dim Ê = dim E so that E ⊕ Ê is nondegenerate

and E ⊕ Ê ⊂ S⊥.

The following result is due to Moore (see [Mo] or [Da]).

Lemma 5. Let β: V ×V → W p,q be a flat bilinear form. Then,

β(ker BX , V ) ⊂ BX(V ) ∩ BX(V )⊥

for any X ∈ RE(β).
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Finally, we recall an elementary fact from [CD] which is proved using
that the subset of not asymptotic regular elements

RE∗(β) = {X ∈ RE(β): β(X, X) 6= 0},

is open and dense in V .

Lemma 6. Let β: V × V → W k be a symmetric bilinear form such that
S(β) = W k. Given X ∈ RE∗(β), take X = X1, . . . , Xr ∈ V such that
BX(V ) = span{BX(Xj), 1 ≤ j ≤ r}, where r = dim BX(V ). Then,

S(β) = span{β(Xi, Xj), 1 ≤ i ≤ j ≤ r}.

In particular, r(r + 1) ≥ 2k.

Proof of Theorem 3 : First suppose that S(β) is degenerate. By Lemma 4,

there is a decomposition W p,q = E ⊕ Ê ⊕ V such that S(β) ⊂ E ⊕ V, where

E = S(β)∩S(β)⊥ 6= 0 and V⊥ = E⊕Ê . Accordingly, there is a decomposition
β = β1 + β2, where S(β1) = E and S(β2) ⊂ V. Hence, β1 6= 0 is null and
β2 = β − β1 is flat. Moreover, S(β2) is nondegenerate. Otherwise, there is
0 6= η =

∑
j β2(Xj, Yj) ⊂ V so that 〈η, S(β2)〉 = 0, that is,

0 = 〈
∑

β2(Xj, Yj), β2(Z, T )〉 = 〈
∑

β(Xj, Yj), β(Z, T )〉 for all Z, T ∈ V.

Hence,
∑

j β(Xj, Yj) ∈ E . Thus η = 0, which is a contradiction.
To complete the proof of the theorem it suffices to assume that S(β) is

nondegenerate and conclude that dim N(β) ≥ n − p − q. We claim that
U(X) = BX(V ) ∩ BX(V )⊥ satisfies U = U(X) 6= 0 for any X ∈ RE(β).
Otherwise, N ⊂ N(β) from Lemma 5, where N = N (X) = ker BX . Since
N(β) ⊂ N , we conclude that dim N(β) = dimN ≥ n − p − q, which is a
contradiction and proves the claim.

Set τ = min{dim U(X) : X ∈ RE(β)}. The subset

R(β) = {X ∈ RE(β) : dim U(X) = τ}

is open and dense in V ; see [DR] or [D]. We fix an element X ∈ R(β) for
the remaining of the proof. Lemma 4 yields a decomposition

W p,q = U ⊕ Û ⊕ V, (3)
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where V⊥ = U ⊕ Û and BX(V ) ⊂ U ⊕ V. Let β̂: V n × V n → Û be the

Û -component of β according to (3). Set B̂X = β̂(X, · ) and κ = dim B̂Y (V )

for Y ∈ RE(β̂). Being S(β) nondegenerate, for any vector ξ ∈ U there are

vectors Y, Z ∈ V such that 0 6= 〈ξ, β(Y, Z)〉 = 〈ξ, β̂(Y, Z)〉. It follows that

S(β̂) = Û . (4)

Lemma 7. Given Y ∈ R(β) ∩ RE(β̂), we define ρ ≥ 0 by

2ρ = rank (BY (V ) ∩ U) ⊕ B̂Y (V ).

Then, ρ ≤ p − τ and dim BY (N ) ≤ p − κ.

Proof: Set V n = L ⊕ L̃, where L̃ = ker B̂Y . Thus, BY (L̃) ⊂ U ⊕ V and
BY (L)∩ (U ⊕V) = 0. Hence, dim BY (L) = κ. The matrix of inner products
of the elements of a basis of BY (V ) associated to the decomposition

BY (V ) = B0
Y ⊕ BY (L) ⊕ B1

Y ,

where B0
Y = BY (L̃) ∩ U = BY (V ) ∩ U and BY (L̃) = B0

Y ⊕ B1
Y , has the form




0 A 0
At B C
0 Ct D


 .

It follows that rank BY (V ) ≥ 2ρ+rank B1
Y since ρ = rank A. We obtain from

B1
Y ⊂ U ⊕ V and B1

Y ∩ U = 0 that rank B1
Y ≥ dim B1

Y − p + τ . Therefore,
dim BY (V ) − τ = rank BY (V ) ≥ 2ρ + dim B1

Y − p + τ . We conclude that

2ρ ≤ dim BY (V ) ∩ U + κ + p − 2τ. (5)

Clearly, ρ ≥ dim BY (V ) ∩ U + κ − τ . We get using (5) that

dim BY (V ) ∩ U ≤ p − κ. (6)

Then, the first statement follows from (5) and (6) whereas the second one
from Lemma 5 and (6).

Fix Y1 ∈ R(β) ∩ RE∗(β̂). Lemma 6 and (4) yield κ(κ + 1) ≥ 2τ and

Û(X) = span{β̂(Yi, Yj) : 1 ≤ i ≤ j ≤ κ}, (7)
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where B̂Y1
(V ) = span{B̂Y1

(Yj)} : 1 ≤ j ≤ κ}. Given any N ∈ N , we have
from Lemma 5 that β(N, Z) ∈ U for all Z ∈ V . It follows from (7) that

β(N, Z) = 0 if and only if 〈β(N, Z), β̂(Yi, Yj)〉 = 0, 1 ≤ i, j ≤ κ. (8)

We conclude the proof arguing for the most difficult case p = 6, being
the cases p ≤ 5 similar. Suppose first that 4 ≤ τ ≤ 6, and assume that
κ = 3, which is its lowest possible value. Thus, there are vectors Y1, Y2, Y3 ∈
R(β) ∩ RE∗(β̂) such that

Û(X) = span{β̂(Yi, Yj) : 1 ≤ i ≤ j ≤ 3}. (9)

Using Lemma 6 again, we choose Y2 so that in (9) we may drop the element
corresponding to (i, j) = (3, 3) when τ = 5, and when τ = 4 the ones for

(i, j) = (2, 3), (3, 3). Hence, Û = B̂Y1
(V ) + B̂Y2

(V ) for τ = 4, 5. Consider the
linear map B1 = BY1

|N :N → BY1
(N ). Then, dim BYi

(N ) ≤ 3 by Lemma 7.
Hence, N1 = ker B1 satisfies

dim N1 ≥ dimN − 3. (10)

Flatness gives 〈β(N1, V ), B̂Y1
(V )〉 = 0. In particular,

rank BY2
(N1) ⊕ B̂Y1

(V ) = 0. (11)

We use Lemma 7 again. If τ = 6, then ρ = 0 and

rank BY2
(N1) ⊕ (B̂Y1

(V ) + B̂Y2
(V )) = 0. (12)

If τ = 5, then ρ ≤ 1. Thus,

rank BY2
(N1) ⊕ Û ≤ 2. (13)

In fact, it follows from (11) that (13) holds for τ = 4. We get from (12) and
(13) that dim BY2

(N1) ≤ 1 for 4 ≤ τ ≤ 6. Set B2 = BY2
|N1

: N1 → BY2
(N1).

It follows using (10) and dimN ≥ n − 6 − q + τ that N2 = ker B2 satisfies

dim N2 ≥ dim N1 − dim BY2
(N1) ≥ dimN − 4 ≥ n − q − 6.

By a similar argument as above, BY3
(N2) = 0 when τ = 6. It follows from

(8) that N2 ⊂ N(β). In particular, dim N(β) ≥ n − q − 6 as we wished.
Finally, one can easily check that the estimate for dim N2 is even larger if
κ > 3, and this concludes the proof for 4 ≤ τ ≤ 6. The argument for the
remaining cases is similar and easier.
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§2 The proofs.

It is easy to see that the following result is equivalent to Theorem 5 in
[DT] when f is an embedding.

Proposition 8. Given an isometric immersion f : Mn → R
n+p, suppose that

the second fundamental form of an isometric immersion g: Mn → R
n+p+q,

q ≥ 1, decomposes regularly. Assume that τ is parallel for the induced con-
nection on L. If

W = span{(∇̃Xξ)TM⊕L: X ∈ TM and ξ ∈ L⊥}

satisfies W ∩ L = 0, then g is a composition.

Proof: Observe that W ⊂ N(γ)⊥ ⊕ L, where TM = N(γ) ⊕ N(γ)⊥. From
W ∩ L = 0, we easily see that dim W = dim N(γ)⊥. Being N(γ) smooth,
it follows that the subspaces Γ = (N(γ)⊥ ⊕ L) ∩ W⊥ form a rank-p vector
bundle. Moreover, we have that Γ∩TM = 0. Let F : Γ → R

n+p be defined as

F (ξx) = f(x) + ξx, ξx ∈ Γ(x).

Thus, there is an open neighborhood Nn+p
0 of the 0-section f ′: Mn → Nn+p

0 of
Γ such that F |Nn+p

0

is a local diffeomorphism onto the open subset F (Nn+p
0 ) ⊂

R
n+p. We take in Nn+p

0 the metric induced by F and identify (Id ⊕ τ)−1Γ
with Γ. Let h: Nn+p

0 → R
n+p+q be the immersion h(ξx) = g(x) + ξx. A

straightforward computation shows that F and h are isometric; see the proof
of Theorem 5 in [DT]. Hence, h is an isometric immersion and g = h ◦ f ′.

Proof of Theorem 1: Let β: TM × TM → T⊥
f M ⊕ T⊥

g M be defined as

β = αf ⊕αg. Endow T⊥
f M ⊕ T⊥

g M with the indefinite inner product of type
(p, p + q) given by

〈〈 , 〉〉T⊥

f
M⊕T⊥

g M = 〈 , 〉T⊥

f
M − 〈 , 〉T⊥

g M .

Then β is a symmetric bilinear form which is flat from the Gauss equation
for f and g. Theorem 3 applies to β(x) at each x ∈ Mn. With the notations
there, suppose that ` < p. It follows that

νf
p−`(x) ≥ dim N(πT⊥

f
M ◦ β2(x)) ≥ dim N(β2(x)) ≥ n − q − 2(p − `).
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This is a contradiction to our hypothesis on νf
s for s = p − `, and implies

that ` = p. We conclude that at each point αg decomposes as in (2) and
Ω = N(γ) satisfies

dim Ω ≥ n − q. (14)

Assume now that the subspaces S(γ) have constant dimension. Clearly,
the same holds for the subspaces S(αg) since νf

1 < n everywhere. We claim
that the decomposition is smooth in the sense that the subspaces L form a
vector subbundle and that τ : T⊥

f M → L ⊂ T⊥
g M is a bundle isometry. To

prove the claim, observe that S(β) ∩ S(β)⊥ ⊂ T⊥
f M ⊕ T⊥

g M is a smooth

subbundle of rank p and that L = S(αf) ⊂ T⊥
g M is its orthogonal projection

onto T⊥
g M .

We identify T⊥
f M and L by means of τ . Let K: TM → End(L) be the

linear map into the skew-symmetric endomorphisms of L defined by

K(X)η = ∇⊥
Xη − (∇̂⊥

Xη)L,

where ∇⊥ and ∇̂⊥ denote the normal connection for f and g, respectively, and
writing a linear space as subscript indicates taking the orthogonal projection
of the vector onto that subspace. We need the following result.

Lemma 9. The tensor K satisfies K(Z) = 0 and

K(X)αf(Y, Z) = K(Y )αf (X, Z)

for all Z ∈ Ω and X, Y ∈ TM .

Proof: Since νf
1 < n − q by assumption, we get using (14) that

L = span{αf(Ω, X): X ∈ TM}. (15)

It follows easily from the Codazzi equation for f and g that

K(Z1)αf(Z2, Z3) = K(Z2)αf(Z1, Z3)

if either Z1, Z2 ∈ Ω or Z3 ∈ Ω. Denote

(X1, X2, X3, X4, X5) = 〈K(X1)αf(X2, X3), αf(X4, X5)〉,
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and take Z1, Z2, Z3 ∈ Ω. We have,

(Y, Z1, Z2, Z3, X) = −(Y, Z3, X, Z1, Z2) = −(X, Z3, Y, Z1, Z2)

= (X, Z1, Z2, Z3, Y ) = (Z2, Z1, X, Z3, Y ) = −(Z2, Z3, Y, Z1, X)

= −(Z3, Z2, Y, Z1, X) = (Z3, Z1, X, Z2, Y ) = (Z1, Z3, X, Z2, Y )

= −(Z1, Z2, Y, Z3, X) = −(Y, Z1, Z2, Z3, X) = 0.

Hence, 〈K(Z1)αf(Y, Z2), αf(Z3, X)〉 = 0, and this concludes the proof.

Proceeding with the proof of the theorem, we claim that K = 0, that
is, τ is parallel. Let us assume otherwise. Define φ: Ω × TM → S by
φ = αS|Ω×TM , where

S = span{K(X)L: X ∈ TM}

and αS = πS ◦ αf . It follows from (15) that

S = span{φ(Ω, X): X ∈ TM}. (16)

Take Y ∈ TM so that K(Y ) has maximal rank. Set ΩY = ker φ( · , Y ). Then,

dim ΩY ≥ n − q − k (17)

from (14), where k = dim φ(Ω, Y ). By Lemma 9, we have

K(Y )φ(ΩY , X) = K(X)φ(ΩY , Y ) = 0 for all X ∈ TM.

Being K(Y ) skew-symmetric, we easily obtain that

αK(Y )L(ΩY , X) = 0 for all X ∈ TM.

Set dim K(Y )L = r ≥ 2. From our assumption on νf
r and (17), we get

n − q − 2r − 1 ≥ νf
r ≥ dim ΩY ≥ n − q − k.

Hence, 5 ≤ 2r + 1 ≤ k ≤ p ≤ 6. Thus, r = 2, k = 5, 6 and dim S = 5, 6.
From (16), there is Y1 = Y, Y2 ∈ TM such that S = φ(Ω, Y1) + φ(Ω, Y2). By
Lemma 9, we have

S = span{K(X)S: X ∈ TM}

= span{K(X)(φ(Ω, Y1)+φ(Ω, Y2)): X ∈ TM}

⊆ K(Y1)L + K(Y2)L,
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which implies that dim S ≤ 4, a contradiction. This proves the claim.

To reduce the proof of the theorem to Proposition 8, all we have to show
is that the condition W ∩ L = 0 is satisfied. This is divided in two cases.

Case 1. Assume dim Ω > n − q. We claim that L is parallel along Ω. The
subspaces D = S(γ) have constant dimension by assumption, hence, there is
a smooth orthogonal splitting L⊥ = D ⊕ D⊥. Taking the difference between
the Codazzi equations for f and g and using that τ is parallel gives for the
second fundamental form of g that

A( b∇⊥

X
ξ)D

Y = A( b∇⊥

Y
ξ)D

X for all X, Y ∈ TM and ξ ∈ L. (18)

Taking X ∈ Ω in (18), we get

∇̂⊥
Xξ ⊂ D⊥ for all X ∈ Ω and ξ ∈ L. (19)

The Codazzi equation also yields

A( b∇⊥

X
η)L

Y = A( b∇⊥

Y
η)L

X for all X, Y ∈ Ω and η ∈ D⊥. (20)

For η ∈ D⊥, consider the linear map φη: Ω → L defined as φη(X) = (∇̂⊥
Xη)L,

and set r = dim Im φη. It follows from (20) that

〈α(ker φη, TM), Im φη〉 = 0.

Thus, νf
r ≥ dim Ω− r. This is not possible by (14) and the hypothesis on νf

r

unless r = 0, that is,

∇̂⊥
Xξ ⊂ D for all X ∈ Ω and ξ ∈ L, (21)

and the claim follows from (19) and (21).
From the Codazzi equation and the claim, we have that

〈∇ZY, AξX〉 = 〈α(Z, Y ), ∇̂⊥
Xξ〉

for all Z, Y ∈ Ω and ξ ∈ L⊥, or equivalently,

∇̃ZY ⊥ W for all Z, Y ∈ Ω. (22)

Assume that there is a normal vector 0 6= ξ ∈ W ∩L. Then (22) implies that

〈AξY, Z〉 = 0 for all Y, Z ∈ Ω.

11



It follows easily that νf
1 ≥ 2 dimΩ−n ≥ n−2q +2, which is in contradiction

with our assumption on νf
1 .

Case 2. Assume dim Ω = n − q. We follow closely the argument in [DT].
It is shown there that γ smoothly decomposes as the orthogonal sum of
one-dimensional orthogonal forms of rank one, namely,

γ = γ1 ⊕ · · · ⊕ γq,

with correspondent linearly independent unit eigenvectors Z1, . . . , Zq and
nonzero eigenvalues λ1, . . . λq. Therefore, there exists an orthonormal basis
{ξ1, . . . , ξq} of L⊥ = D such that

γj(X, Y ) = λj〈X, Zj〉〈Y, Zj〉ξj, 1 ≤ j ≤ q.

In fact, the existence of such a decomposition goes back to Cartan ([Ca]). It
follows from (18) that

q∑

k=1

λk

(
〈∇̂⊥

Zi
η, ξk〉〈Zj, Zk〉 − 〈∇̂⊥

Zj
η, ξk〉〈Zi, Zk〉

)
Zk = 0

for any η ∈ L. We easily get that (∇̂⊥
Y ξk)L = 0, for any Y ⊥ Zk. We conclude

that W = span{λjZj − (∇̂⊥
Zj

ξj)L, 1 ≤ j ≤ q}, and thus W ∩ L = 0.

When p = 1 and q ≥ 5, the additional assumption in [DT] is that Mn

is not (n − q + 1)–ruled. Our additional assumption on νf
1 is used in Case 1

to make sure that Γ has dimension p. Thus, when p = 1 it just assures that
Γ 6= 0. But if Γ = 0, then Ω is clearly totally geodesic in the ambient space,
that is, the submanifold is ruled by the leaves of Ω. Hence, both assumptions
are equivalent.

Proof of Theorem 2: Let U ⊂ Mn be an open connected neighborhood of
x0 where νf

s ≤ n − q − 2s − 1 for 1 ≤ s ≤ p. By Theorem 3, we have that
αg decomposes as in (2) along U . Moreover. since γ is flat and traceless,
an elementary argument shows that γ = 0. From Theorem A in [DR] (or
Theorem 4.5 in [D]), it follows that g reduces codimension to p. Thus g is
congruent to f along U , and the result follows using that minimal Euclidean
submanifolds are real-analytic.
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