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MANIFOLDS WITH CONULLITY AT MOST TWO
AS GRAPH MANIFOLDS

 L A. FLORIT  W ZILLER

A. – We find necessary and sufficient conditions for a complete Riemannian manifoldMn

of finite volume, whose curvature tensor has nullity at least n� 2, to be a geometric graph manifold. In
the process, we show that Nomizu’s conjecture, well known to be false in general, is true for manifolds
with finite volume.

R. – Nous trouvons les conditions nécessaires et suffisantes pour qu’une variété rieman-
nienne complète Mn de volume fini, dont le tenseur de courbure a nullité au moins n� 2, soit une va-
riété graphe géométrique. Dans le processus, nous montrons que la conjecture de Nomizu, bien connue
pour être fausse en général, est vraie pour les variétés à volume fini.

The nullity space � of the curvature tensorR of a Riemannian manifoldM n is defined for
each p 2M as �.p/ D fX 2 TpM W R.X; Y / D 0 8Y 2 TpM g, and its dimension �.p/ is
called the nullity of M n at p. It is well known that the existence of points with positive
nullity has strong geometric implications. For example, on an open subset ofM n where � is
constant, � is an integrable distribution with totally geodesic leaves. In addition, if M n is
complete, its leaves are also complete on the open subset where � is minimal; see e.g., [12].
Riemannian n-manifolds with conullity at most 2, i.e., � � n � 2, which we call CN2 mani-
folds for short, appear naturally and frequently in several different contexts in Riemannian
geometry, e.g.,:

a) Gromov’s 3-dimensional graph manifolds admit a complete CN2 metric with nonpos-
itive sectional curvature and finite volume whose set of flat points consists of a disjoint
union of flat totally geodesic tori ([11]). These were the first examples of Riemannian
manifolds with geometric rank one. Interestingly, any complete metric of nonpositive
curvature on such a graph manifold is necessarily CN2 and quite rigid, as was shown
in [17].

The first author was supported by CNPq-Brazil, and the second author by a grant from the National Science
Foundation, by IMPA, and CAPES-Brazil.
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1314 L. A. FLORIT AND W. ZILLER

b) A Riemannian manifold is called semi-symmetric if at each point the curvature tensor
is orthogonally equivalent to the curvature tensor of some symmetric space, which is
allowed to depend on the point. CN2 manifolds are semi-symmetric since they have
pointwise the curvature tensor of an isometric product of a Euclidean space and a
surface with constant curvature. Conversely, Szabó showed in [22] that a complete
simply connected semi-symmetric space is isometric to a Riemannian product S �N ,
where S is a symmetric space andN is, on an open and dense subset, locally a product
of CN2 manifolds.

c) Isometrically deformable submanifolds tend to have large nullity. In particular, by the
classic Beez-Killing theorem, any locally deformable hypersurface in a space form has
to be CN2. Yet, generically, CN2 hypersurfaces are locally rigid, and the classification
of the deformable ones has been carried out a century ago in [15, 4]; see [7] for a modern
version and further results. The corresponding classification of locally deformable CN2
Euclidean submanifolds in codimension two is considerably more involved, and was
obtained only recently in [6] and [8].

d) A compact immersed submanifold M 3 � R5 with nonnegative sectional curvature
not diffeomorphic to the 3-sphere S3 is necessarily CN2, and either isometric to
.S2 � R/=Z for some metric of nonnegative curvature on S2, or diffeomorphic to a
lens space S3=Zp; see [9]. In the case of lens spaces, the set of points with vanishing
curvature has to be nonempty with Hausdorff dimension at least two. However, it is
not known yet if they can be isometrically immersed into R5.

e) I. M. Singer asked in [21] whether a Riemannian manifold is homogeneous if the curva-
ture tensor at any two points is orthogonally equivalent. The first counterexamples to
this question were CN2 manifolds with constant scalar curvature, which clearly have
this property, and are typically not homogeneous; see [18, 3].

The most trivial class of CN2 manifolds is given by cylinders L2 � Rn�2 with their
natural product metrics, whereL2 is any (not necessarily complete) connected surface. More
generally, we call a twisted cylinder any quotient

C n D .L2 � Rn�2/=G;

where G � Iso.L2 � Rn�2/ acts properly discontinuously and freely. The natural quotient
metric is clearly CN2, and we call L2 the generating surface of C n, and the images of the
Euclidean factor its nullity leaves. Observe thatC n fails to be complete only becauseL2 does
not need to be. Yet, what is important for us is that C n is foliated by complete, flat, totally
geodesic, and locally parallel leaves of codimension 2.

Our first goal is to show that these are the basic building blocks of complete CN2 mani-
folds with finite volume:

T A. – Let M n be a complete CN2 manifold. Then each finite volume connected
component of the set of nonflat points of M n is globally isometric to a twisted cylinder.

The hypothesis on the volume of M n is essential, since complete locally irreducible
Riemannian manifolds with constant conullity two abound in any dimension; see [18, 3] and
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MANIFOLDS WITH CONULLITY AT MOST TWO AS GRAPH MANIFOLDS 1315

references therein. These examples serve also as counterexamples to the Nomizu conjecture
in [13], which states that a complete locally irreducible semi-symmetric space of dimension
at least three must be locally symmetric. However, Theorem A together with Theorem 4.4
in [22] yield:

C 1. – Nomizu’s conjecture is true for manifolds with finite volume.

For the 3-dimensional case, the fact that the set of nonflat points of a finite volume
CN2 manifold is locally reducible was proved in [19] and [16] with a longer and more
delicate proof; see also [20] for the 4-dimensional case. Notice also that in dimension 3 the
CN2 condition is equivalent to the assumption, called cvc(0) in [16], that every tangent
vector is contained in a flat plane, or to the condition that the Ricci endomorphism has
eigenvalues .�; �; 0/. Furthermore, in [2] it was shown that a complete 3-manifold with
(geometric) rank one is a twisted cylinder.

Observe that we are free to change the metric in the interior of the generating surfaces
of the twisted cylinders in Theorem A, still obtaining a complete CN2 manifold. Moreover,
they are nowhere flat with Gaussian curvature vanishing at their boundaries. Of course, these
boundaries can be quite complicated and irregular.

In general it is very difficult to fully understand how the twisted cylinders in Theorem A
can be glued together through the set of flat points in order to build a complete Rieman-
nian manifold. An obvious way of gluing them is through compact totally geodesic flat
hypersurfaces. Indeed, when the boundary of each generating surface L2 in the twisted
cylinder C D .L2 � Rn�2/=G is a disjoint union of complete geodesics 
j along which the
Gaussian curvature of L2 vanishes to infinity order, the boundary of C is a disjoint union
of complete totally geodesic flat hypersurfaces Hj D .
j � Rn�2/=Gj �M n, where Gj is
the subgroup of G preserving 
j . We can now use each Hj to attach another finite volume
twisted cylinder C 0 to C along Hj , as long as C 0 has a boundary component isometric
to Hj . Repeating and iterating this procedure with each boundary component we construct
a complete CN2 manifold M n. As we will see, the hypersurfaces Hj have to be compact
if M n has finite volume. This motivates the following concept of geometric graph manifold
of dimension n � 3, which by definition is endowed with a CN2 Riemannian metric:

D 1. – A connected Riemannian manifoldM n is called a geometric graph mani-
fold ifM n is a locally finite disjoint union of twisted cylindersCi glued together through disjoint
compact totally geodesic flat hypersurfaces H� of M n. That is,

M n
nW D

G
�

H�; where W WD
G
i

Ci :

Here we allow the possibility that a hypersurface H� is one-sided, even when M n is
orientable. We also assume, without loss of generality, that the nullity leaves of two cylin-
ders C and C 0, glued along H�, have distinct limits in H�. This implies in particular that
for each cylinder C , the Gauss curvature vanishes along @C to infinite order. Notice that
the locally finiteness condition is equivalent to the assumption that each H� is a common

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1316 L. A. FLORIT AND W. ZILLER

F 1. An irreducible 4-dimensional CN2 geometric graph manifold with
three cylinders and two (finite volume) ends

boundary component of two twisted cylindersCi andCj , that may even be globally the same,
each lying at a local side of H�.

Observe that the complement of W is contained in the set of flat points of M n, but we
do not require that the generating surfaces of Ci have nonvanishing Gaussian curvature. In
particular the sectional curvature of Ci , or equivalently its scalar curvature, can change sign.
More importantly,W carries a well defined complete flat totally geodesic parallel distribution
of constant rank n� 2 contained in the nullity of M n. Furthermore, W is dense and locally
finite in the sense that it has a locally finite number of connected components (see Section 4
for a precise definition). These two topological properties will be crucial in what follows, so
for convenience we say that a dense locally finite set is full.

A natural way to try to see if a Riemannian manifold M n as in Theorem A is indeed a
geometric graph manifold is the following. Theorem A implies that on the open set of nonflat
points V we have the well defined parallel nullity distribution � of rank n�2, as inW above.
Now, consider any open set OV � V carrying a complete flat totally geodesic distribution O�
with O�jV D �, which we call an extension of V . We will show that each connected component
of OV is still a twisted cylinder, and call OV maximal if it has no larger extension. Clearly, by
definition V always has a maximal extension, but it may not be unique. More importantly,
all extensions of V may fail to be either dense, or locally finite, or both; see Examples 2 and 3
in Section 1.

Our second main goal is to prove that all we need to ask in order forM n as in Theorem A
to be a geometric graph manifold is that some extension of V is full:

T B. – Let M n be a complete CN2 manifold with finite volume. Then M n is a
geometric graph manifold if and only if its set of nonflat points V admits a full extension. In
particular, if V itself is full, then M n is a geometric graph manifold.

We point out that here we do not require a full extension OV of V to be maximal, but
clearly any maximal extension of OV is also full. We can for example introduce complicated
sets of flat points in the twisted cylinders, even as Cantor sets in the generating surfaces, but
these flat sets will be absorbed by a maximal full extension. As we will show, any maximal
full extension will satisfy the properties of W in the definition of geometric graph manifold,
see Theorem 20. We expect that the methods developed to prove this can be extended for
distributions of arbitrary rank.
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The assumption of local finiteness in Theorem B can be regarded as a mild regularity
condition. But we believe that even without regularity conditions it should be possible to
understand the gluing between the twisted cylinders. We state:

C 1. – If the set of nonflat points of a complete CN2 manifold with finite volume
admits a dense (not necessarily locally finite) extension, then the complement of any maximal
one is a disjoint union of compact totally geodesic flat hypersurfaces, possibly accumulating (see
Example 3 in Section 1).

Certainly more difficult, we can ask what happens if we remove all hypotheses on V . In
particular, we do not know if the following is true:

Q. – Does the set V of nonflat points of a complete CN2 manifold with finite
volume admit a maximal (not necessarily dense or locally finite) extension OV such that @ OV is
a union of flat totally geodesic hypersurfaces, each of which has complete totally geodesic
boundary (if nonempty)? (See Example 2 in Section 1.)

On the other hand, in the case of nonnegative or nonpositive curvature we believe that no
extra assumptions are needed:

C 2. – Every compact CN2 manifold with nonnegative or nonpositive scalar
curvature and finite volume is a geometric graph manifold.

In [10] we classify all geometric graph manifolds with nonnegative scalar curvature and
show that they are three dimensional up to a Euclidean factor. Moreover, they are built as
the union of at most two cylinders and, in particular, are diffeomorphic to a lens space or a
prism manifold.

Another interesting question is to what extent complete CN2 manifolds with finite volume
differ from geometric graph manifolds from a differentiable point of view:

Q. – IfM n admits a complete CN2 metric with finite volume, does it also admit a
geometric graph manifold metric?

We caution that our definition of a graph manifold in dimension 3 is more special than
the usual topological one, where the pieces are allowed to be nontrivial Seifert fibered circle
bundles ([23]). Ours is similar, although more general, to the kind of graph manifolds one
studies in nonpositive curvature.

The paper is organized as follows. In Section 1 we provide some examples in order to show
that the two hypotheses in Theorem B are necessary. A general semi-global version of the
de Rham theorem is provided in Section 2 and will be used in Section 3 to prove Theorem A.
The proof of Theorem B is carried out in Section 4.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1318 L. A. FLORIT AND W. ZILLER

1. Examples

We now build some examples to help understand how geometric graph manifolds are
linked with the CN2 property, and to what extent they differ. In particular, we exhibit CN2
metrics on the 3-torus T 3 which are C1 perturbations of the flat metric but that are not
geometric graph manifold metrics.

1.1. The 3-torus as a nontrivial geometric graph manifold

Let L2 D Œ�1; 1�2 with metric a C1 perturbation of the flat metric in a small open set
U � L2 whose closure is contained in the interior of L2. The cube C D L2 � Œ�1; 1� with
its product metric serves as a building block in all further examples, where the second factor
will give rise to the nullity foliations. Depending on the example, we also adjust their sizes
appropriately. Notice that the metric necessarily has scalar curvature of both signs. We now
glue two such cubes along a common face in such a way that the nullity distributions are
orthogonal, see Figure 2. Identifying opposite faces of the resulting larger cube defines a
metric on T 3 with complete nullity foliations, making it into a nontrivial graph manifold.
Figure 2 shows the nonflat points on the left, together with a full maximal extension and its
two (un)twisted cylinders on the right.

F 2. A CN2 3-torus with its set of nonflat points, and a full extension

1.2. A CN2 3-torus failing to be a geometric graph manifold: no maximal dense extensions

Here we take three basic building blocks and glue them together as in Figure 3. Adding
two small flat cubes, we obtain a larger cube and identifying opposite faces defines a CN2
metric on T 3. But this is not a geometric graph manifold since the nullity distribution cannot
be extended to a dense set of T 3. Figure 3 shows the set of nonflat points on the left, and a
maximal extension of it on the right missing two octants of flat points. We point out that this
example also shows that a CN2 manifold does not necessarily admit a T structure (see [5]),
as graph manifolds do.
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MANIFOLDS WITH CONULLITY AT MOST TWO AS GRAPH MANIFOLDS 1319

F 3. A CN2 3-torus with its nonflat points and a nondense maximal extension

1.3. A CN2 3-torus failing to be a geometric graph manifold: no locally finite extension

Take a sequence of building blocks Cn D Ln � Œ�1; 1� with Ln D Œ�1=2n; 1=2n�� Œ�1; 1�.
Glue one to the next along the squares f˙1=2ng � Œ�1; 1� � Œ�1; 1� as in Example 1, with
nullity lines meeting orthogonally from one to the next, and accumulating at a two torus
T 2 D Œ�1; 1� � Œ�1; 1�. Now glue to this a copy of itself along T 2. Identifying opposite
sides in the resulting cube defines a CN2 metric on T 3. The metric has two sequences of
parallel totally geodesic flat 2-tori, approaching T 2 from both sides. It is not a geometric
graph manifold since the number of connected components near T 2 of any extension of V is
infinite, even though there exist dense maximal extensions of V . Notice that T 2 is disjoint
from the union of the closures of the connected components of any extension of V .

1.4. Drunken cylinders

We can modify the previous examples to obtain a more complicated behavior of the
twisted cylinders, illustrating another crucial difficulty in trying to prove Conjecture 1 in the
introduction. For this, we start with a flat building block Cn D Ln� Œ�1; 1� and identify two
opposite faces to obtain a flat metric on Œ�1=2n; 1=2n� � T 2. Let 
n be a closed geodesic
in the two torus f0g � T 2 and modify the metric in a small tubular neighborhood of 
n
in .�1=4n; 1=4n/ � T 2. The boundary of the resulting manifold consists of two flat square
tori and we can hence glue one to the next as in the previous example. Gluing a mirror
copy of the result and identifying the remaining two faces, we obtain a CN2 metric on T 3.
We can now choose the infinite sequence of cylinders comprising the example such that
the slopes of 
n converge. Notice that in the previous examples the totally geodesic 2-tori
separating components of a full extension of the set of nonflat points have the property that
they are foliated by two different limits of nullity lines, whereas here the torusT 2 in the middle
only has one family of limit nullity lines. The existence of two families is crucial in proving
convexity properties of the boundary of a maximal full extension of the set of nonflat points;
see Section 4.

We finish this section with some examples that illustrate some of the complexities of
twisted cylinders.

a) Let † be a compact surface with boundary with universal cover L2, on which
G D �1.†/ acts freely. Now choose a homomorphism ˛WG ! R and an action of G

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1320 L. A. FLORIT AND W. ZILLER

on L2 � R given by .x; t/! .gx; t C ˛.g//. In the cylinder C D .L2 � R/=G the integral
leaves of �? are dense in C as long as the values of Im˛ � R are not all rationally depen-
dent. Notice though that C is diffeomorphic to† � S1 by changing the action continuously
using the homomorphism �˛ and letting � ! 0.

b) The boundary geodesics of the leaves of �? may not be closed. As an example, start
with a complete flat strip Œ�1; 1��R, remove infinitely many �-discs centered at .0; n/, n 2 Z,
and change the metric around them to make their boundaries totally geodesic in such a way
that the metric remains invariant under Z D hhi for h.x; t/ D .x; t C 1/. If L2 is this surface
and R is a rotation of S1 of angle r� for some irrational number r , then G D Z D h.h;R/i
acts freely and properly discontinuously on L2 � S1. Although L2=G1 has three closed
geodesics as boundary, the boundary of the leaves of �? in C D .L2�S1/=G has one closed
geodesic and also two complete open geodesics, each of which is dense in the corresponding
boundary component of C .

c) In general, a cylinder of finite volume does not necessarily have compact boundary.

Indeed, consider the metric ds2 D dr2 C e
� 1

1�r2 �t
2

dt2 on L2 D Œ�1; 1� � R. Then
L2 � T n�2 has finite volume with two complete noncompact flat totally geodesic boundary
components. Nevertheless, we will see that when we glue two twisted cylinders in a nontrivial
way, their common boundary is compact.

2. A semi-global de Rham theorem

The existence of a parallel smooth distribution � on a complete manifoldM n implies that
the universal cover is an isometric product of a complete leaf of � with a leaf of �? by the
global de Rham theorem. In this section we prove a semi-global version of this fact to be used
later on, and will concentrate on flat foliations for simplicity. Although this is a special case
of Theorem 1 in [14], our proof is simpler and more direct, so we add it here for completeness.

P 2. – Let W be an open connected set of a complete Riemannian mani-
fold M n, and assume that � is a rank k parallel distribution on W whose leaves are flat and
complete. If L is a maximal leaf of �?, then the normal exponential map exp? W T ?L! W is
an isometric covering, where T ?L is equipped with the induced connection metric. In particular,
W is isometric to the twisted cylinder . QL �Rk/=G, where QL is the universal cover of L, and G
acts isometrically in the product metric.

Proof. – Since � is parallel, its orthogonal complement �? is also parallel and hence
integrable with totally geodesic leaves. Due to the local isometric product structure of W
given by the local de Rham Theorem, the normal bundle T ?L of L is flat with respect to
the normal connection of L, which in our case is simply the restriction of the connection
on M n since L is totally geodesic. Notice though that T ?L does not have to be trivial. The
normal connection defines, in the usual fashion, a connection metric on the total space. By
completeness of the leaves of�, the normal exponential map exp?WT ?L! W is well defined
on the whole normal bundle.

We first show that exp? is a local isometry. Indeed, if ˛.s/ D .c.s/; �.s// is a curve in T ?L
with � parallel along c, then ˛0.0/ is a horizontal vector in the connection metric, identified
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MANIFOLDS WITH CONULLITY AT MOST TWO AS GRAPH MANIFOLDS 1321

with c0.0/ under the usual identification H�.0/ ' Tc.0/L. Then d.exp?/˛.0/.˛0.0// D J.1/

where J.t/ is the Jacobi field along the geodesic 
.t/ D exp?.t�.0// with initial conditions
J.0/ D c0.0/ and J 0.0/ D 0 since � is parallel along c. Since 
 0 2 kerR, the Jacobi
operator R. � ; 
 0/
 0 vanishes and thus J.1/ is the parallel translate of J.0/ 2 Tc.0/L, which
in turn implies that exp? is an isometry on the horizontal space. On the vertical space it is an
isometry since it agrees with the exponential map of the fiber which is a complete flat totally
geodesic submanifold ofW . The images of horizontal and vertical space under exp? are also
orthogonal, since the first is the parallel translate of TL and the second the parallel translate
of T ?L along 
 . Hence exp? is a local isometry. Notice that this also implies that if � is a
(possibly only locally defined) parallel section of T ?L, then fexpp.t�.p// j p 2 Lg � W are
integral manifolds of �? for all t 2 R.

Let q 2 W and denote by Lq the maximal leaf of �? containing q. Since the normal
exponential map of Lq is also a local isometry, there exists an � D �.q/ > 0 such
that B�.q/ � Lq is a normal ball and the set OVq WD f� 2 T ?B�.q/ W k�k < �g � T ?Lq is
isometric to the Riemannian product B�.q/ � B� � Lq � Rk Š Lq � T ?q Lq , and

exp? W OVq ! Vq WD exp?. OVq/ is an isometry. In particular, q 2 Vq � W . We identify
B�.q/ � B�, OVq and Vq via the normal exponential map of Lq . Accordingly, we denote
the local leaf of �? through x D .p; v/ 2 Vq by Lx;q WD B�.q/ � fvg � Lx \ Vq . Moreover,
for each y 2 Vq and v 2 T ?y Ly;q there is a parallel vector field � in Vq with �.y/ D v, and an

isometric flow �
�
t .x/ D expx.t�.x// for x 2 Vq . Notice that this flow is defined for all t 2 R,

and that the images of the leaves Lx;q are again leaves of �? for all t 2 R, x 2 Vq .

We now claim that exp? is surjective onto W . Take a point q 2 W in the closure of the
open set U D exp?.T ?L/ in W , and choose y 2 Vq \U . Since the leaf of � containing y is
also contained in the image of exp?, we can assume that y 2 Lq;q . Then y D 
.1/, where

.t/ D exp?.t�/, for x 2 L and � 2 T ?x L. If � is the parallel vector field in Vq with
�.y/ D 
 0.1/ 2 T ?y Lq;q , then ���1.Lq;q/ � L by maximality of L and hence q 2 U . Hence,
U is closed in W , so U D W .

In order to finish the proof that exp? is a covering map, we show that it has the curve
lifting property. Let ˛ W Œa; b� ! W be a smooth curve, and assume there exists a lift
of ˛jŒa;r/ to a curve Q̨ W Œa; r/ ! T ?L. As usual, to extend Q̨ past r we only need to show

that limt!r Q̨ .t/ exists. Write Q̨ .t/ D .c.t/; �.t// 2 T ?L. Since exp? is a local isometry,
j Q̨ 0j D j˛0j and hence by the local product structure c and � have bounded length. Thus,
limt!r c.t/ D x1 2 M and limt!r �.t/ D �1 exist by completeness of M n and Rk . We
only need to show that x1 2 L since then exp?.x1; �1/ D ˛.r/.

Consider ı > 0 such that ˛..r � ı; r�/ � V˛.r/. For t 2 .r � ı; r/ let �t be the parallel
vector field in V˛.r/ with �t .˛.t// D 


0
t .1/ 2 T

?L˛.t/ where 
t .s/ D exp?.s�.t//.
We then have limt!r �t D �1 2 T

?L˛.r/ with exp˛.r/.��1/ D x1 2 W and hence
�
�1
�1 .L˛.r/;˛.r// � Lx1 . Since we also have that ��t

�1.L˛.t/;˛.r// � L for t < r , it follows
that limt!r Tc.t/L D Tx1Lx1 and thus L [ Lx1 is an integral leaf of �?. By the maxi-
mality of L we conclude that Lx1 � L and therefore x1 2 L, as we wished.

Finally, if� W QL! L is the universal cover, then��.T ?L/! T ?L is also a cover and since
��.T ?L/ is again a flat vector bundle over a simply connected base, it is isometric to QL�Rk .
This proves the last claim.
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3. The structure of the set of nonflat points

This section is devoted to the proof of the following stronger version of Theorem A.

T 3. – Let M n be a complete CN2 manifold, and V a connected component of
the set of nonflat points of M n. If V has finite volume, then its universal cover is isometric
to L2 � Rn�2, where L2 is a simply connected surface whose Gauss curvature is nowhere zero
and vanishes at its boundary.

Proof. – First, recall that, since � D kerR is a totally geodesic distribution, we have its
splitting tensor C W � ! End.�?/ defined as

CTX D �.rXT /�? ;

where r is the Levi-Civita connection of M n, and a distribution as a subscript means to
take the corresponding orthogonal projection. Clearly, �? is totally geodesic if and only if
C � 0, that is equivalent to the parallelism of �. Since the set of nonflat points in a CN2
manifold agrees with the points of minimal nullity, V is saturated by the flat complete leaves
of �. Therefore, by Proposition 2, all we need to show is that C vanishes.

Let U; S 2 � and X 2 �?. Since � is totally geodesic,

CrUSX D �.rXrUS/�? D �.rUrXS/�? � .rŒX;U �S/�?

D .rU .CSX//�? C CS .ŒX; U ��?/ D .rUCS /X C CS .rUX/ � CS .ŒU;X��?/

D .rUCS /X C CS ..rXU/�?/ D .rUCS /X � CSCUX;

or

(4) rUCS D CrUS C CSCU ; 8 U; S 2 �:

We now consider the so called nullity geodesics, i.e., complete geodesics 
 with 
 0.0/ 2 �,
which are hence contained in a leaf of �. Along such a geodesic 
 , by (4) the splitting
tensor C
 0 satisfies the Riccati type differential equation r
 0C
 0 D C 2
 0 over the entire real
line. That is, with respect to a parallel basis,

(5) C 0
 0 D C
2

 0 ; whose solutions are C.t/ D C0.I � tC0/�1; for C0 WD C
 0.0/:

Therefore, along each nullity geodesic 
 in V , all real eigenvalues of C
 0 vanish. Since �? is
2-dimensional, for every S 2 � either all eigenvalues of CS are complex and nonzero, or all
eigenvalues are 0, i.e., CS is nilpotent. In particular, CS vanishes if it is self adjoint.

Let W D fp 2 V W C ¤ 0 at pg, i.e., on V n W all splitting tensors vanish. Since the
space of self-adjoint endomorphisms of �? is pointwise 3-dimensional and intersects
ImC � End.�?/ only at 0, it follows that dim ImC D 1 inW , and hence kerC is a smooth
codimension 1 distribution of � along W . Accordingly, write

� D kerC ˚? spanfT g;

for a unit vector field T 2 �, which is well defined, up to sign, onW . By going to a two-fold
cover of W if necessary, we can assume that T can be chosen globally on W .

Observe that if U; S are two sections of kerC , then (4) implies that rUS 2 kerC ,
i.e., kerC is totally geodesic, and rTU D 0 as well. Since � is totally geodesic it follows
that rT T D 0, that is, the integral curves 
 of T are nullity geodesics. Therefore, from now
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on let for convenience C D CT , C.t/ D C
 0.t/, and denote by 0 the derivative in direction
of T . In particular,

(6) div T D trrT D � trC:

By (5) we have

(7) trC.t/ D
trC0 � 2t detC0

1 � t trC0 C t2 detC0
; and detC.t/ D

detC0
1 � t trC0 C t2 detC0

:

Take B � W a small compact neighborhood. Since either detC > 0 or detC D trC D 0

on W , by (7) there is t0 2 R such that trC.t/.q/ � 0 for every q 2 B and every t � t0. In
addition, if �t is the flow of T , defining Bt WD �tCt0.B/ and v.t/ WD volBt we have that

v0.t/ D

Z
B

d

dt
��t .dvol/ D

Z
B

div T D �
Z
B

trC � 0; 8 t � 0:

So, the sequence of compact neighborhoods fBn; n 2 Ng has nondecreasing volume in the
set V of finite volume, and thus there is a strictly increasing sequence fnk W k � 0g such
that Bnk

\ Bn0
¤ ; for all k � 1. We will refer to this property as weak recurrence. In

particular, there exists a sequence pk WD �t0Cnk
.qk/ 2 Bnk

\ Bn0
, with qk 2 B, which has

an accumulation point p 2 Bn0
� W .

Consider the open subset W 0 � W on which C has nonzero complex eigenvalues and
notice that, by (5), W 0 is invariant under the flow �t of T . Using the above recurrence and
sequence of points pk ! p, (7) implies that

detCT.p/ D lim
k!C1

detCT.pk/ D lim
k!C1

detCT.qk/

1 � .t0 � nk/ trCT.qk/ C .t0 � nk/
2 detCT.qk/

D 0;

since nk !C1 and qk lies in the compact set B. But this contradicts the fact
that p 2 Bn0

� W 0, where detC > 0. Thus C vanishes on W 0, which is a contradiction
and shows that C is nilpotent on W .

We thus have a well defined 1-dimensional distribution on W spanned by the kernel
ofC D CT , which is parallel along nullity lines by (5). ReplacingW , if necessary, by the two-
fold cover where this distribution has a section, and by a further cover to makeW orientable,
we can assume that there exists an orthonormal basis e1; e2 of �?, defined on all of W , and
parallel along nullity lines with

C.e1/ D 0; C.e2/ D ae1:

Hence

rT e1 D rT e2 D rT T D 0; re1
T D 0; re2

T D �ae1;

re1
e1 D ˛e2; re2

e2 D ˇe1; re1
e2 D �˛e1; re2

e1 D aT � ˇe2;

for some smooth functions ˛; ˇ on W . A calculation shows that

R.e2; e1/e1 D .e1.ˇ/C e2.˛/ � ˛
2
� ˇ2/e2 C .aˇ � e1.a//T;

R.e1; e2/e2 D .e1.ˇ/C e2.˛/ � ˛
2
� ˇ2/e1 C ˛aT;

and hence

(8) ˛ D 0; ScalM D e1.ˇ/ � ˇ2; and e1.a/ D aˇ;
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where ScalM stands for the scalar curvature of M n. The differential Equation (5) implies
that a0 D 0, i.e., a is constant along nullity lines. Thus

e2.a/
0
D e2.a

0/C ŒT; e2�.a/ D .rT e2 � re2
T /.a/ D ae1.a/;

and e1.a/0 D e1.a0/C ŒT; e1�.a/ D 0. So, e2.a/ D ae1.a/t C d for some smooth function d
independent of t . By the weak recurrence property, e1.a/.p/ D 0 for p 2 Bn0

as above, and
hence e1.a/.p0/ D 0 as well, for p0 D ��n0�t0.p/ 2 B. Since B is arbitrary small, we have
that e1.a/ � 0 on W . But then (8) implies that ˇ D 0 and thus ScalM D 0, contradicting
that along V we have no flat points. Altogether, C vanishes everywhere on V and hence � is
parallel.

The proof becomes particularly simple for n D 3 since then � is one dimensional and
only the differential equation C 0 D C 2 along the unique nullity geodesics is needed. The
local product structure in this case was proved earlier in [16] with more delicate techniques.

Let us finish this section with some observations about the geometric structure when the
manifold is complete but the finite volume hypothesis is removed.

R. – a) IfCT is nilpotent, then Scal is constant along nullity leaves. If this constant
is positive, and M n is complete, then the universal cover is isometric to L2 � Rn�2. This
follows since by (8) a�1 satisfies the Jacobi equation .a�1/00 C a�1 Scal D 0 along integral
curves of e1, which cannot be satisfied for all t 2 R. For n D 3 this splitting was also proved
in [1].

b) If CT does not vanish and has complex eigenvalues, then

Scal.t/ D Scal.0/=.1 � t trC0 C t2 detC0/

along nullity lines since one easily sees that Scal0 D .trCT / Scal. As was shown in [22], if
M n is complete and CT has no real eigenvalues, then the universal cover of M n splits off a
Euclidean space of dimension .n�3/, i.e., all locally irreducible examples are 3-dimensional.

4. CN2 manifolds as geometric graph manifolds

The purpose of this section is to prove Theorem B in the introduction. As we will see, the
proof is quite delicate and technical due to the lack of any a priori regularity of the boundary
of a maximal full extension. The strategy is to consider a maximal extension of the set of
nonflat points which, by Theorem A, is a union of twisted cylinders, and then to analyze
their geometric properties at contact points.

We begin with some definitions.

D 9. – We say that an open subsetW of a topological spaceM is locally finite
if, for every p 2 @W , there exists an integer m such that, for every neighborhood U � M

of p, there exists a neighborhood U 0 � U of p such that U 0 \W has at most m connected
components. We denote by m.p/ the minimum of such integers m.
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In this situation, for every p 2 @W , there exists a neighborhood Up �M of p such
that Up \ W has precisely m.p/ connected components. Notice that each component
contains p in its boundary since by finiteness all other components have distance to p

bounded away from 0. We call these components Wi the local connected components of W
at p. Notice also that Up can be chosen arbitrarily small. In fact, given any neighborhood U
of p with U � Up we can construct a new neighborhood Up.U / of p as follows. Let X be
the union of the connected components of U \W that contain p in their boundary. Then
Up.U / D .X/ı is a neighborhood of p (by local finiteness) and Up.U / \ W has m.p/
connected components. Observe also that Up.U / \ Wi are the connected components
of Up.U / \W and all contain p in their boundary. Throughout this section Up will always
denote such a neighborhood of p and Wi the connected components of Up \W .

In particular, by taking any ı > 0 such that Bı.p/ � Up.B�.p// we get:

L 10. – IfM n is a Riemannian manifold,W �M n is locally finite andp 2 @W , then
for every ball B�.p/ � Up there is 0 < ı D ı.�; p/ < � such that Wi \ Bı.p/ is arc-connected
in Wi \ B�.p/, for all 1 � i � m.

LetM n be a complete CN2 manifold whose nullity distribution is parallel along the set of
nonflat points V of M n, as is the case when M n has finite volume by Theorem A. Suppose
V has a full extensionW �M n, that is,W � V is open, dense, locally finite, andW possesses
a smooth parallel distribution � of rank n � 2 whose leaves are flat and complete. Since
any extension of a full extension is also full, we will assume in addition that W is maximal.
Clearly, along V � W , � coincides with the nullity ofM n. Observe that maximal extensions
always exist by definition, but they are not necessarily unique, and may fail to be dense or
locally finite as shown in Examples 3 and 4 in Section 1. We call the leaves of � nullity leaves
and, for simplicity, use �.p/ both for the distribution at p and for the leaf of � through p.

Observe that, for each sequence fpng in W approaching a point p 2 @W , �.pn/ accumu-
lates at an .n � 2/-dimensional subspace of TpM whose image under the exponential map
gives a complete totally geodesic submanifold ofM n, by completeness of the leaves of �. We
still denote the set of all these limit submanifolds by �.p/, and call each of them a boundary
nullity leaf at p, or BNL for short. In addition, given U � W with p 2 @U , we denote
by �U .p/ � �.p/ the BNLs at p that arise as limits of nullity leaves in U . In particular, if
W1; : : : ; Wm are the local connected components of W at p, we have

�.p/ D �W1
.p/ [ � � � [ �Wm

.p/:

We start with the following observation.

L 11. – Let p 2 @W such that �.p/ has only one BNL �. Then, �.q/ D f�g for all
q 2 �.

Proof. – By definition, there is a unique BNL � 2 �.p/. The hypersurface B 0�.p/ WD
exp.�? \ B�.0p// is then transversal to � in W 0� .p/ D W \ B 0�.p/, which is thus dense
in B 0�.p/.

Take q 2 �, and write it as q D 
v.T / for some v 2 Tp�, T 2 R, kvk D 1. By continuity
of the geodesic flow at v, given ı > 0, there is � > 0 such that all the nullity leaves of W
throughW 0� .p/ are C 0 ı-close to � inside a compact ball of radius, say, 2T , centered at p. In
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particular, these nullity lines of W 0� .p/ stay close to � at q and form an open dense subset.
This implies that there cannot be two different BNLs at q. Indeed, a second �0 2 �.p/ is a
limit of leaves of � of a local connected component W 0 at q. Thus all leaves in W 0 are close
to �0 which implies that leaves of � on W , where it is an actual foliation, would intersect
near q.

For the next two lemmas we need a relationship between curvature bounds and local
parallel transport for Riemannian vector bundles over surfaces.

L 12. – Let Ek be a Riemannian vector bundle with a compatible connection r over
a surface S , and let D � S be a region diffeomorphic to a closed 2-disk with piecewise smooth
boundary ˛. If the curvature tensor of Ek is bounded by ı > 0 alongD, then the angle between
any vector � 2 E˛.0/ and its parallel transport along ˛ is bounded by .k � 1/ ıArea.D/.

Proof. – Let us consider polar coordinates onD through a diffeomorphism with a 2-disk.
We can assume that � is a unit vector and we complete � D �1; : : : ; �k to an orthonormal
basis of E˛.0/. By radially parallel transporting them first to p, and then radially to all
of D, we get an orthonormal basis, which we again denote by �1; : : : ; �k , defined on D. If
we consider the connection 1-forms wij .X/ D hrX�i ; �j i on D, then one easily sees that
dwij D hRr.:;:/�i ; �j i since dimD D 2 and wij .Y / D 0 for the radial direction Y .

Let �.t/ D
P
i ai .t/�i .˛.t// be the parallel transport of � along ˛ between 0 and t . Then,

since r˛0� D 0, we have a01 D h�1; �i
0 D hr˛0�1; �i D hr˛0�1;

Pk
iD1 ai�i i D

Pk
iD2 aiw1i .˛

0/.
Therefore, since jai j � 1 we obtain

0 � 1 � h�.0/; �.1/i D �

Z 1

0

a01 D �

kX
iD2

Z 1

0

ai w1i .˛
0/ �

kX
iD2

Z
˛

jw1i j:

For each i , choose a partition of ˛ into countable many segments ˛1; ˛2; : : : withw1i j˛2j
� 0

and w1i j˛2jC1
� 0. Then, j̨ together with the radial curves (along which w1i D 0) encloses

a triangular region Tj where we apply Stokes Theorem to getZ
˛

jw1i j D
X
j

Z
T2j

dw1i �
X
j

Z
T2jC1

dw1i �

Z
D

jhRr.:;:/�1; �i ij � ıArea.D/:

In the following lemmas we study the behavior of the nullity leaves and BNLs in
Up � B�.p/. To do this, we will be able to restrict the discussion to a single surface S
transversal to the nullity leaves and BNLs near p due to the following result; see Figure 4.

L 13. – For each p 2 @W there exist a 2-plane � � TpM , a sufficiently small convex
ball B�.p/, and a neighborhood Up�B�.p/ of p such that the surface S WDexp.�\B�.0p//�B�.p/
satisfies:

a) S intersects all nullity leaves and BNLs in Up, and does so transversely;

b) Wi \ S is connected and its closure is not contained in Up \ S ;

c) Up \ S is diffeomorphic to an open disc.
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Proof. – For a fixed 1 � i � m.p/, choose some BNL � 2 �Wi
.p/ and for some convex

ball B�.p/ consider the surface L D exp.�? \ B�.0p//. Given ı > 0, we will fix � > 0 such
that .n � 1/maxfj ScalM .x/j W x 2 B�.p/gArea.L/ < ı and chooseUp � B�.p/. Notice also
that a bound on ScalM gives a bound on the full curvature tensor since M n is CN2. Take
a sequence pk 2 Wi converging to p such that �.pk/! �. For k large enough �.pk/ is
transversal to L and we can thus assume that pk 2 Wi \ L. Furthermore, fix k large enough
such that for q WD pk the parallel translate of �.q/ along the minimal geodesic qp from q

to p has angle less than ı with �. Let W 0i be the arc-connected component of Wi \ L that
contains q. Thus for any q0 2 W 0i , we can choose a curve ˛ � W 0i connecting q to q0. If
ˇ D pq and ˇ0 D q0p, we form the closed curve ' D ˇ � ˛ � ˇ0 � L. We can also
choose ˛ such that ' is simple and hence bounds a disc D � L. According to Lemma 12
the parallel transport of � along ' forms an angle less than ı with �. In other words, the
parallel transport of �.q0/ along q0p has angle less than 2ı with � for any q0 2 W 0i . We can
thus choose �0 < � sufficiently small, and Up � B�0.p/ such that all nullity leaves in W 0i
intersect L transversely at an angle bounded away from 0. We now claim that this implies
thatW 0i D Wi , i.e.,Wi\L is connected. Otherwise, there exists an x 2 Wi with x 2 @W 0i . Since
�.x/ still intersects L transversely, we can choose a small product neighborhood U � Wi as
in the proof of Theorem 2 such that x 2 U and all nullity leaves in U intersect L in a unique
point and transversely. But then any two points in U \ L can be connected in U and then
projected along nullity leaves to lie in L. Thus U \ L is also contained in W 0i .

Since there are only finitely many connected components, and all components of Up \W
contain p in their boundary, there exists a common �0 and BNLs �i 2 �Wi

.p/ satisfying
the above properties. We can now choose a 2-plane � � TpM transversal to all �i and set
S WD exp.� \ B�.0p//. Repeating the above argument for this surface S , we see that � can
be chosen sufficiently small such that all nullity leaves in Up D Up.B�.p// intersect S trans-
versely and that for all its connected components S \Wi is connected as well. Since in addi-
tion we can assume that the angle between the nullity lines and S is bounded away from 0,
all BNLs are transversal to S as well. Notice also that now the components of W \ Up \ S
are precisely Wi \ S .

So far S and Up satisfy the properties in part .a/ and the first part of .b/. For the second
part of .b/, since W is locally finite, we simply choose �0 < � small enough such that the
closure of the connected components Wi \ S is not strictly contained in B�0.p/. But then
Up.B�0.p// is the desired neighborhood (see Figure 4).

We now claim that such a neighborhood is also simply connected. Let ˛ be a closed curve
inUp which bounds a discD � S . IfD contains a point in another componentW 0 ofW \S ,
then W 0 is fully contained inside D since it does not touch ˛. Hence the closure of W 0 is
contained in Up, which contradicts .b/. Thus D is contained in Up, and we can find a null
homotopy of ˛ in D � Up.

We will use � > 0, S , and Up as in Lemma 13 for the remainder of this section. We point
out though that the open sets Wi \ S can have quite complicated boundary. In fact, @Wi
may not even be a Jordan curve and hence may not consist of a union of continuous arcs.
Furthermore, for p 2 @Wi there may not even be a continuous curve inWi with endpoint p.
We thus carefully avoid using any such assumptions on properties of these boundaries.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1328 L. A. FLORIT AND W. ZILLER

F 4. A point p 2 @W withm.p/ D 5, the dark lines represent @W \ S while
the shaded area corresponds to Up \ S

It already follows from the proof of Lemma 13 that all BNLs in�Wi
.p/ form a small angle.

We will now show that it is in fact unique.

L 14. – IfWi are the local connected components at p, then �Wi
.p/ is a single BNL,

for each 1 � i � m.

Proof. – Let �1; �2 2 �Wi
.p/ be two BNLs at p and two sequences pr;k 2 Wi \ S ,

r D 1; 2, converging to p with �.pr;k/ ! �r . For any �0 > 0 choose 0 < ı.�0; p/ < �0 as in
Lemma 10. For k large enough pr;k 2 Bı0.p/ and we can choose a curve ˛k � Wi \ B�0.p/
connecting p1;k to p2;k and by Lemma 13 we can also assume that ˛k lies in S . Now define
the loop 'k D ˇ2;k�˛k�ˇ�11;k � S\B�0.p/, where ˇr;k D pr;kp. We can assume it is a simple
closed curve and hence encloses a 2-diskD � S \B�0.p/. Therefore, Lemma 12 implies that
the angle between �1 and its parallel transport along 'k is bounded by .n�1/Area.S/s.�0/,
where s.�0/ WD maxfj ScalM .x/j W x 2 B�0.p/g. On the other hand, the parallel transport
of �.pr;k/ along ˇr;k converges to �r as k !1 and the parallel transport of �.p1;k/ along
˛k is equal to �.p2;k/. Hence the angle between �2 and the parallel transport of �1 along
'k goes to 0 as k ! 1. Finally, s.�0/ ! 0 as �0 ! 0 since ScalM .p/ D 0 and we conclude
that �1 D �2 as �0 ! 0.

L 15. – For q 2 @Wi\@Wj \S , both �Wi
.q/ and �Wj

.q/ also contain a unique BNL,
and the angle between them coincides with the angle between �Wi

.p/ and �Wj
.p/.

Proof. – Fix ı > 0 and let Mı D fx 2M
n W j ScalM .x/j < ıg. Then p 2 @W � V �Mı .

Choosing Up and S as in Lemma 13 we can study � in Up in terms of its intersection
with S , and in the following drop S for clarity. In addition, assume that˙ı are regular values
of ScalM restricted to S , and observe that Mı \Up is an open neighborhood of @Wi \ @Wj .
We denote by r either i or j .

Since˙ı are regular values, the set fj ScalM j � ıg\Up is contained in the union of finitely
many closed disjoint 2-discs (or half disks) D`. If we remove from Wr those discs D` which
are contained in it, we obtain the open set W 0r � Wr , which is connected since Wr is. Let
�r 2 �Wr

.q/ be a BNL and set �r D �Wr
.p/, which contains only one element by Lemma 14.

Choose two sequences pr;k ; qr;k 2 W 0r such that pr;k ! p, qr;k ! q, with �.qr;k/ ! �r
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and �.pr;k/ ! �r . Choose smooth simple curves ˛r;k � W 0r joining pr;k to qr;k , and
let ˇr;k D pr;kp and 
r;k D qr;kq, which, since @Mı has positive distance to p and q, we can
assume to lie in Mı for k sufficiently large. Thus we get two curves 'r;k D ˇ�1

r;k
� ˛r;k � 
r;k

from p to q, and hence a closed curve 'k WD '�1j;k �'i;k �Mı\Up, which we can also assume
to be simple. By part .c/ in Lemma 13, 'k bounds a 2-disk D � Up.

We claim that ˛r;k � Mı \ Wr can be modified in such a way that D � Mı \ Up. First
observe that any closed disc D` � D as above must be contained in either Wi or Wj since
@D` \ 'k D ; and no component has its closure contained in Up. For each D` � Wr , by
means of a smooth curve �` � W 0r \D connecting the boundary ofD` with a point y` in ˛r;k
we can contourD` from the interior ofD by following ˛r;k up to y`, �` �@D` ���1` , and the
remaining part of ˛r;k . We can repeat this procedure for eachD` and can also arrange this in
such a way that all curves �` are disjoint. Observe that this new curve, that we still call ˛r;k ,
is contained in Wr \Mı , and the claim is proved (see Figure 5).

F 5. A neighborhood of @Wi \ @Wj in S with the shaded area representing Mı

As k !1, the parallel transport of �r along 'r;k approaches �r since � is parallel inWr .
By Lemma 12, the angle between the parallel transport of �i along 'i;k and along 'j;k can be
bounded by .n� 1/ıArea.S/. Since the angle between �i and �j and their parallel transport
along �j is the same, the claim follows by taking ı ! 0.

Finally, assume that there are two BNLs in �Wr
.q/. We can repeat the above argument

with curves lying only in Wr since we did not assume that i ¤ j , and it follows from
Lemma 14 that the angle between them is 0.

L 16. – The distribution � does not extend continuously to any neighborhood of any
p 2 @W .

Proof. – Suppose that � extends continuously to Bı.p/. Let O� be the smooth distribu-
tion in Bı.p/ obtained by parallel transporting �.p/ along geodesics emanating from p.
Choosing a surface S centered at p as in Lemma 13, and contained in Bı.p/, we first claim
that on S the distribution � agrees with O�. To see this, let ˛ � S be a geodesic stating at p,
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and consider the angle function ˛.t/ between �.
.t// and O�.
.t//. An argument similar to
the one in the proof of Lemma 15 shows that ˛ is locally constant along the finitely many
(not necessarily connected) sets 
 \Wi . Since by hypothesis ˛ is continuous with ˛.0/ D 0,
we conclude that ˛ D 0, as desired. Since the leaves of both � and O� intersect S transversely,
they must agree in a neighborhood of S on which � is thus smooth. By Lemma 11, this prop-
erty also holds on the union of all complete leaves going through S , which contradicts the
maximality of W .

L 17. – For every p 2 @W we have that 2 � #�.p/ � m.p/.

Proof. – First, observe that Lemma 15 for i D j shows that �Wi
.q/ contains a unique BNL

for all q 2 @Wi \ S . We claim that this implies that @W \ S D
S
i¤j .@Wi \ @Wj \ S/.

If not, there exists a local component Wi , q 2 @Wi \ S and a neighborhood U

of q such that U � Wi and U \Wj D ; for j ¤ i (see Figure 4). But then for
every r 2 U \ @W \ S � U \ @Wi \ S we have that �Wi

.r/ contains a unique BNL. By
Lemma 11 this is then also the case for any r 2 U \ @W , i.e., � is continuous in U , which
contradicts Lemma 16.

We now show that #�.p/ � 2. So assume that �.p/ has a unique element, i.e., �Wi
.p/ D

�Wj
.p/ for all i ¤ j . Then Lemma 15 implies that the same is true for any q 2 @Wi\@Wj \S

and hence by the above for any q 2 @W \ S . Thus � is continuous in Up, which again
contradicts Lemma 16. The second inequality follows from Lemma 14.

L 18. – There exists ı D ı.p/ > 0 such that Wi \ Bı.p/ is convex for all i .

Proof. – Let �0 > 0 such that B�0.p/ � Up � B�.p/, and let ı D ı.�0; p/ as in
Lemma 10. Take points q; q0 � Wi \Bı.p/ for which the minimizing geodesic segment qq0 is
not contained in Wi \ Bı.p/. Take a curve ˛ � Wi \ B�0.p/ joining q with q0, and set
s WD supfr W �t � Wi ; 80 � t < rg, where �t D q˛.t/. Since q˛.s/ � Wi \ B�0.p/,
we have that q˛.s/ \ @Wi 6D ;. We claim that m.x/ D 1 for all x 2 q˛.s/ \ @Wi , which
contradicts the first inequality in Lemma 17.

To prove the claim, take� 2 �.x/ and consider for each 0 < t < s the flat totally geodesic
completely ruled hypersurface Ht WD

S
0<r<1 �.�t .r// � W with limit H WD limt!sHt .

If H intersects � transversally, Ht would also for t close to s, which is a contradiction since
� � @W . Therefore, Tx� is a hyperplane contained in TxH . SinceH is foliated by complete
flat hypersurfaces parallel to �.q/ along �s and� � H is also a complete flat hypersurface, it
follows that � is parallel to �.q/ along �s as well. Thus � is unique and hencem.x/ D 1.

We now come to the main result about the local structure of @W .

L 19. – The set Fij WD @Wi \ @Wj � @W is convex for all i; j , and along every
geodesic in Fij the two families of BNLs induced by Wi and Wj are parallel.

Proof. – Take two points q; r 2 Fij and, for k D i; j , sequences qk;n; rk;n 2 Wk such
that qk;n ! q, rk;n ! r . By convexity, qk;nrk;n � Wk and since both converge to qr , it
follows that qr � Fij . For the second assertion, simply observe that the parallel transport
along qr of the BNLs agrees with the limits of the parallel transport along qk;nrk;n.

We are finally in a position to prove Theorem B, which follows from Theorem A and the
following.
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T 20. – Let M n be a complete Riemannian manifold with a parallel rank n � 2
distribution defined in a dense, locally finite and maximal open set W , whose leaves are
complete and flat. Then M n nW is a disjoint union of complete flat totally geodesic embedded
hypersurfaces. If, in addition, M n has finite volume, then these hypersurfaces are compact and
M n is a geometric graph manifold.

Proof. – ConsiderFij as in Lemma 19 with�Wi
.p/ ¤ �Wj

.p/which exists by Lemma 17.
Then for r D i; j , each point in the interiorF ıij ofFij is contained in a unique complete BNL
of Wr , and we denote by Sr � @Wr the union of such BNLs with Si \ Sj � F ıij . Observe in
addition that Sr is a smooth flat totally geodesic hypersurface, and completely ruled since,
as seen in the proof of Lemma 19, it arises as a limit of Hn WD

S
0<t<� �.�n.t// � Wr for a

sequence of geodesic segments �n � Wr .

We now study the local connected components based at a point q 2 Si \ @Sj � @F ıij .
Clearly, Wi is one of those, with Si smooth at q and Wi lying (locally) on one side of Si .
Let W 01, W 02 be any two other local components at q with BNLs �s 2 �W 0s .q/ for s D 1; 2.
Observe first that �s cannot be transversal to Si since otherwise leaves of � in Wi and W 0s
would intersect. Hence �1 and �2 are tangent to Si , which implies that �1 D �2. Indeed,
otherwise �1 and �2 would intersect transversally in Si by dimension reasons, and then
near q the leaves ofW 01 andW 02 would again intersect since they are both locally on the same
side of the hypersurface Si . Therefore, all local connected components at q, apart from Wi ,
share the same BNL and thus #�.q/ D 2. Using a surface S at q and Uq � S as in
Lemma 13, we see that Wi \ S is a half disc with boundary a smooth geodesic containing q
in its interior. For all remaining local connected componentsW 0s at q, Lemma 19 implies that
the intersections @W 01 \ @W

0
2 \ S are geodesics with endpoints at q. Since �W 0

1
.q/ D �W 0

2
.q/,

Lemma 15 implies that �W 0
1
.r/ D �W 0

2
.r/ for all r 2 @W 01\@W

0
2\S and hence by Lemma 11

also in a neighborhood of S . Thus by Lemma 16 there can be only one such component, i.e.,
m.q/ D 2, and henceWj is the second component at q. But then Sj extends past q and hence
Fij is a complete flat hypersurface containing p in its interior. We conclude that the number
of local connected components at @W is 2 everywhere and @W is a disjoint union of complete
flat totally geodesic embedded hypersurfaces.

In order to prove the last assertion of the theorem, let C n D .L2 � Rn�2/=G be one
of the twisted cylinders with finite volume. A component of its boundary has the form
H D .
 � Rn�2/=G0, where 
 � L2 is a complete boundary geodesic andG0 � G the normal
subgroup that preserves H . We first assume that G0 acts nontrivially on 
 . By taking a two-
fold cover of C n if necessary, we can assume that there are no elements of G0 which act as
a reflection on 
 , and hence G0 contains an element which acts by translation. This implies
that there exists a uniform � tubular neighborhood B�.
/ � L2 of the infinite geodesic 
 .
OnB�.
/ the metric is C1-close to the product metric on Œ0; �/�
 since the curvature ofL2

vanishes to infinite order along 
 . Hence, the �-tubular neighborhood of H in C n is given
by Œ0; �/ � .
 � Rn�2/=G0 D Œ0; �/ � H , with a metric also C1-close to a product metric.
SinceC n has finite volume, so doesH . But one easily sees that a flat manifold of finite volume
is compact.

On the other hand, if G0 acts trivially on 
 , then H D 
 � F n�2 with BNL
F n�2 D Rn�2=G0. If B is a small ball near 
 such that its translates under G0 are disjoint
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from B, then the projection of B � Rn�2 to C n is isometric to B � F n�2. Thus F n�2 again
has finite volume and is hence compact. This implies the last assertion of the theorem since
H is the boundary of another finite volume twisted cylinder that induces different BNLs
on H .

R. – One of the difficulties in proving Conjecture 1 in the Introduction is that
one needs to exclude the following situation when local finiteness fails. Let W 0 be a concave
local connected component at p with @W 0 consisting of two smooth hypersurfaces meeting
along their common boundary BNL at p. Then one needs to show that the complement
of W 0 near p cannot be densely filled with infinitely many disjoint twisted cylinders whose
diameters go to 0 as they approach p.
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