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§1. Notations

Top. manifolds: Hausdorff + countable basis. Partitions of unity.
n-dimensional differentiable manifolds: Mn. Everything is C∞.
F(M) := C∞(M,R); F(M,N) := C∞(M,N).
(x, U) chart ⇒ coordinate vector fields = ∂i := ∂/∂xi ∈ X(U).
Tangent bundle TM , vector fields X(M) := Γ(TM) ∼= D(M).
Submersions, immersions, embeddings, local diffeomorphisms.
Vector bundles, trivializing charts, transition functions, sections.
Tensor fields Xr,s(M), k-forms Ωk(M), orientation, integration.
Pull-back of a vector bundle π : E → N over N : f ∗(E).
Vector fields along a map f : M → N ⇒ Xf

∼= Γ(f ∗(TN)).
f -related vector fields.
Distributions: Definition. Integrable and involutive distributions.

Theorem 1 (Frobenius). A distribution D ⊂ TM is inte-
grable if and only if it is involutive, i.e., [X, Y ] ∈ Γ(D),∀X, Y ∈
Γ(D).

§2. Riemannian metrics

Gauss, 1827: M 2 ⊂ R3 ⇒ 〈 , 〉|M2, KM = KM(〈 , 〉), distances,
areas, volumes... Non-Euclidean geometries.
Riemann, 1854: 〈 , 〉 ⇒ KM (relations proved decades later).
Slow development. General Relativity pushed up!
Riemannian metric, Riemannian manifold: (Mn, 〈 , 〉) = Mn.
gij := 〈∂i, ∂j〉 ∈ F(U)⇒ (gij) ∈ C∞(U, S(n,R) ∩Gl(n,R)).
Isometries, local isometries, isometric immersions.
Product metric. TpV ∼= V, TV ∼= V× V.

Examples: (Rn, 〈 , 〉can), Euclidean submanifolds. Nash.
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Example: (bi-)invariant metrics on Lie groups.

Proposition 2. Every differentiable manifold admits a Rie-
mannian metric.

Angles between vectors at a point. Norm.
Riemannian vector bundles: (E, 〈 , 〉).
The natural induced metric on f ∗(E) is 〈 , 〉f := 〈 , 〉 ◦ f .
It always exists local orthonormal frames: {e1, . . . , en}.
Length of a piecewise differentiable curve ⇒ Riem. distance d.
The topology of d coincides with the original one on M .

§3. Linear connections

If Mn = Rn, or even if Mn ⊂ RN , there is a natural way to
differentiate vector fields. And this depends only on 〈 , 〉.
Def.: An affine connection or a linear connection or a covari-
ant derivative on M is a map

∇ : X(M)× X(M)→ X(M)

with∇XY being R-bilinear, tensorial in X and a derivation in Y .

Tensoriality in X ⇒ (∇XY )(p) = ∇X(p)Y makes sense.
Local oper.: Y |U =0⇒ (∇XY )|U =0⇒ (∇XZ)|U =∇U

X|U (Z|U)
⇒ The Christoffel symbols Γkij of ∇ in a coordinate system⇒

Christoffel symbols completely determine the connection: all that
is needed is to have local basis of sections ⇒
Affine vector bundle = (E,∇): formally exactly the same.
The local property above is a particular case of the following:
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Proposition 3. (or “Everything I know about connections!” )
Let ∇ be a linear connection on a vector bundle π : E →M .
Then, for every smooth map f : N → M , there exists a
unique linear connection ∇f on f ∗(E) such that

∇f
Y (ξ ◦ f ) = ∇f∗Y ξ, ∀ Y ∈ X(N), ξ ∈ Γ(E).

Exercise. Give meaning and prove that g∗(f∗(E)) = (f ◦ g)∗(E) and
(
∇f
)g = ∇f◦g.

We will omit the superindex f in ∇f .
In particular, Proposition 3 holds for any smooth curve α(t) =
α : I ⊂ R→M , and if V ∈ Xα we denote V ′ := ∇∂tV ∈ Xα.
So, if α′(0) = v, ∇vY = (Y ◦ α)′(0). But beware of “∇α′α

′”!!
Def.: V ∈ Xα is parallel if V ′ = 0. We denote by X′′α the set of
parallel vector fields along α.

Proposition 4. Let α : I ⊂ R → M be a piecewise smooth
curve, and t0 ∈ I. Then, for each v ∈ Tα(t0)M , there exists a
unique parallel vector field Vv ∈ Xα such that Vv(t0) = v.

The map v 7→ Vv is an isomorphism between Tα(t0)M and X′′α,
and the map (v, t) 7→ Vv(t) is smooth when α is smooth ⇒
Def.: The parallel transport of v ∈ Tα(t)M along α between t

and s is the map P α
ts : Tα(t)M → Tα(s)M given by P α

ts(v) = Vv(s).

Notice that F(M) = X0(M) = X0,0(M) and X(M) = X0,1(M).
Covariant differentiation of 1-forms and tensors: ∀r, s ≥ 0,

∇ ⇒


∇ : Xr(M)→ Xr+1(M);
∇ : Xr,s(M)→ Xr+1,s(M);
∇ : Xr,s(E, ∇̂)→ Xr+1,s(E, ∇̂);

for any affine vector bundle (E, ∇̂) (in partic., forE = (TM,∇)).
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3.1 The Levi-Civita connection

Def.: A linear connection∇ on a Riemannian manifold (M, 〈 , 〉)
is said to be compatible with 〈 , 〉 if, for all X, Y, Z ∈ X(M),

X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉.

Exercise. ∇ is compatible with 〈 , 〉 ⇐⇒ ∀V,W ∈ Xα, 〈V,W 〉′ = 〈V ′,W 〉 + 〈V,W ′〉 ⇐⇒

∀V,W ∈ X′′α, 〈V,W 〉 is constant ⇐⇒ Pαts is an isometry, ∀α, t, s ⇐⇒ ∇〈 , 〉 = 0.

Def.: The tensor T∇(X, Y ) := ∇XY −∇YX − [X, Y ] is called
the torsion of ∇. We say that ∇ is symmetric if T∇ = 0.

Miracle: Every Riemannian manifold (M, 〈 , 〉) has a unique
linear connection that is symmetric and compatible with 〈 , 〉,
called the Levi-Civita connection of (M, 〈 , 〉).
This is a consequence of the Koszul formula: ∀X, Y, Z ∈ X(M),

2〈∇XY,Z〉 = X〈Y,Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉 − 〈X, [Y, Z]〉 − 〈Y, [X,Z]〉+ 〈Z, [X,Y ]〉.

Exercise. Verify that this formula defines a linear connection with the desired properties.

This is the only connection that we will work with. In coordinates,
if (gij) := (gij)−1,

Γkij = 1
2
∑
r

(
∂gir
∂xj

+ ∂gjr
∂xi
− ∂gij
∂xr

)
grk .

Exercise. Show that, for (Rn, 〈 , 〉can), Γkij = 0 and ∇ is the usual vector field derivative.

Exercise. Use Koszul formula to show that the Levi-Civita connection of a bi-invariant metric

of a Lie Group satisfies, and is characterized, by the property that ∇XX = 0 ∀X ∈ g.

Lemma 5. (Symmetry and Compatibility Lemma) Let N be
any manifold, and f : N →M a smooth map into a Rieman-
nian manifold M . Then:
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• ∇f is symmetric, that is, ∇f
Xf∗Y − ∇

f
Y f∗X = f∗[X, Y ],

∀ X, Y ∈ X(N);

• ∇f is compatible with the natural metric 〈 , 〉f on f ∗(TM).

Example: For every isometric immersion f : N → M we have
the natural decomposition of N -bundles

f ∗(TM) = f∗(TN)⊕⊥ T⊥f N

Accordingly, ∀ Z ∈ Xf , we write Z = Z> + Z⊥ ⇒ the relation
between the Levi-Civita connections is f∗∇N

XY = (∇f
Xf∗Y )>.

§4. Geodesics

When do we have minimizing curves? What are those curves?
Critical points of the arc-length funct. L : Ωp,q → R: geodesics :

γ′′ := ∇d
dt
γ′ = 0.

Geodesics = second order nonlinear nice ODE ⇒

Proposition 6. ∀ v ∈ TM , ∃ ε > 0 and a unique geodesic
γv : (−ε, ε)→M such that γ′v(0) = v (⇒ γv(0) = π(v)).

γ a geodesic ⇒ ‖γ′‖ = constant.
γ and γ ◦ r nonconstant geodesics ⇒ r(t) = at + b, a, b ∈ R⇒
γv(at) = γav(t); γv(t + s) = γγ′v(s)(t)⇒ geodesic field G of M :

Proposition 7. There is a unique vector field G ∈ X(TM)
such that its trajectories are γ′, where γ are geodesics of M .

The local flux of G is called the geodesic flow of M . In particular:
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Corollary 8. For each p ∈M , there is a neighborhood Up ⊂
M of p and positive real numbers δ, ε > 0 such that the map

γ : TεUp × (−δ, δ)→M, γ(v, t) = γv(t),

is differentiable, where TεUp := {v ∈ TUp : ‖v‖ < ε}.

Since γv(at) = γav(t), changing ε by εδ/2 we can assume δ = 2⇒
We have the exponential map of M (terminology from O(n)):

exp : TεUp →M, exp(v) = γv(1).

⇒ exp(tv) = γv(t)⇒ expp = exp |TpM : Bε(0p)⊂TpM →M ⇒

Proposition 9. For every p ∈ M there is ε > 0 such that
Bε(p) := expp(Bε(0p)) ⊂ M is open and expp : Bε(0p) → Bε(p)
is a diffeomorphism.

An open set p ∈ V ⊂M onto which expp is a diffeomorphism as
above is called a normal neighborhood of p, and when V = Bε(p)
it is called a normal or geodesic ball centered at p.

Proposition 9 ⇒
(
expp |Bε(0p)

)−1 is a chart of M in Bε(p)⇒
We always have (local!) polar coordinates for any (M, 〈 , 〉):

ϕ : (0, ε)× Sn−1 → Bε(p)\{p}, ϕ(s, v) = γv(s), (1)

where Sn−1 = {v ∈ TpM : ‖v‖ = 1} is the unit sphere in TpM .

Examples: (Rn, can); (Sn, can).

Exercise. Show that for a bi-invariant metric on a Lie Group, it holds that expe = expG.
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4.1 Geodesics are (local) arc-length minimizers

Lemma 10. (Gauss’ Lemma) Let p ∈M and v ∈ TpM such
that γv(s) is defined up to time s = 1. Then,

〈(expp)∗v(v), (expp)∗v(w)〉 = 〈v, w〉, ∀ w ∈ TpM.

Proof. If f (s, t) := γv+tw(s) = expp(s(v + tw)) then, for t = 0,
fs = (expp)∗sv(v), ft = (expp)∗sv(sw) and 〈fs, ft〉s = 〈v, w〉.

Gauss’ Lemma⇒ Sε(p) := ∂Bε(p) ⊂M is a regular hypersurface
of M orthogonal to the geodesics emanating from p, called the
geodesic sphere of radius ε centered at p.
Now, Bε(p) := expp(Bε(0p)) ⊂M as in Proposition 9 agrees with
the metric ball of (M,d) !!!!! More precisely:
Proposition 11. Let Bε(p) ⊂ U a normal ball centered at
p ∈ M . Let γ : [0, a] → Bε(p) be the geodesic segment with
γ(0) = p, γ(a) = q. If c : [0, b]→ M is another piecewise dif-
ferentiable curve joining p and q, then l(γ) ≤ l(c). Moreover,
if equality holds, then c is a monotone reparametrization of γ.

Proof. In polar coordinates, c(t) = expp(s(t)v(t)) in Bε(p)\{p},
and if f (s, t) := expp(sv(t)) = γv(t)(s), we have that c′ = s′fs+ft.
Now, use that fs ⊥ ft, by Gauss’ Lemma.

Corollary 12. d is a distance on M , dp := d(p, ·) is differen-
tiable in Bε(p)\{p}, and d2

p is differentiable in Bε(p).
Exercise. Compute ‖∇dp‖ and the integral curves of ∇dp inside Bε(p)\{p}.

Remark 13. Proposition 11 is LOCAL ONLY, and ε = ε(p):
Rn; Sn; Rn \ {0}.
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§5. Curvature

Gauss: K(M 2⊂R3)=K(〈 , 〉). Riemann: K(σ)=Kp(expp(σ)).
Def.: The curvature tensor or Riemann tensor of M is (sign!)

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

We also call R the (4,0) tensor given by

R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉.

Curvature tensor R∇̂ of a vector bundle E with a connection ∇̂:
exactly the same.
Proposition 14. For all X, Y, Z,W ∈ X(M), it holds that:

• R is a tensor;

• R(X, Y, Z,W ) is skew-symmetric in X, Y and in Z,W ;

• R(X, Y, Z,W ) = R(Z,W,X, Y );

• R(X, Y )Z+R(Y, Z)X+R(Z,X)Y = 0 (first Bianchi id.);

• Rs
ijk =

∑
l ΓlikΓsjl−

∑
l ΓljkΓsil+∂jΓsik−∂iΓsjk (⇒ R ∼= ∂2〈 , 〉).

Proof. Exercise.

〈 , 〉 ⇒ X(M) ∼= Ω1(M) and 〈 , 〉 extends to the tensor algebra
⇒ the curvature operator R : Ω2(M)→ Ω2(M) is self-adjoint.
Def.: If σ ⊂ TpM is a plane, then the sectional curvature
of M at σ is given by

K(σ) := R(u, v, v, u)
‖u‖2‖v‖2 − 〈u, v〉2

, σ = span{u, v}.
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Proposition 15. If R and R′ are tensors with the symmetries
of the curvature tensor and Bianchi such that R(u,v,v,u) =
R′(u,v,v,u) for all u, v, then R = R′ (i.e., K determines R).
Corollary 16. If M has constant sectional curvature c ∈ R,
then R(X, Y, Z,W ) = c(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉).

Def.: The Ricci tensor is the symmetric (2,0) tensor given by

Ric(X, Y ) := 1
n− 1

traceR(X, ·, ·, Y ),

and the Ricci curvature is Ric(X) = Ric(X,X) for ‖X‖ = 1.

Example: CPn as S2n+1/S1 has K(X,Y ) = 1 + 3〈JX, Y 〉2 and Ric ≡ (n+ 2)/(n− 1).

Def.: The scalar curvature of M is scal = 1
ntraceRic.

Lemma 17. (Compare with Lemma 5) Let f : U ⊂ R2 →M

be a map into a Riemannian manifold and V ∈ Xf . Then,

∇∂t∇∂sV −∇∂s∇∂tV = R(f∗∂t, f∗∂s)V.

More generally, R∇̂f = f ∗(R∇̂) for any affine vector bundle
(E, ∇̂)→M and every smooth map f : N →M .

Proof. Since R∇̂f is a tensor, it is enough to check the lemma for
coordinate vector fields on N and for ξ = ξ ◦ f , ξ ∈ Γ(E).

Exercise. Let π : E → M be a vector bundle of rank k with a linear connection ∇. Then

∇ is flat if and only if each ξ ∈ E has a (unique!) local parallel extension. If M is simply

connected, such an extension exists globally and therefore E ∼= M × Rk is trivial.
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§6. Isometric immersions (finally!)

As we have seen in the Example in page 6, if f : M → N is
an isometric immersion ⇒ f ∗(TN) = f∗(TM) ⊕⊥ T⊥f M , and
∇M
X Y = (∇f

Xf∗Y )>, ∀X, Y ∈ TM . Moreover, we have that

α(X, Y ) :=
(
∇f
Xf∗Y

)⊥
is a symmetric tensor, called the second fundamental form of f .
In addition, the map ∇⊥ : TM ×Γ(T⊥f M)→ Γ(T⊥f M) given by

∇⊥Xη :=
(
∇f
Xη
)⊥

is a connection in T⊥f M , called the normal connection of f .
Identifications.
Exercise. Show that ∇⊥ is a compatible connection with the induced metric on T⊥f M .

α(p) is the quadratic approximation of f (M) ⊂ N at p ∈M .
α(v, v) = γ′v(0): Picture!
η ∈ T⊥f(p)M ⇒ (self-adjoint!) shape operatorAη : TpM → TpM .
The Fundamental Equations. Particular case: K = constant ⇒
the Fundamental Theorem of Submanifolds.
Gauss equation⇔ K(σ) = K(σ)+〈α(u, u), α(v, v)〉−‖α(u, v)‖2

⇒ Riemann notion of sectional curvature agrees with ours.

Example: Sn−1(r) ⊂ Rn ⇒ K ≡ 1/r2 (it had to be constant!).

Model of the hyperbolic space Hn as a submanifold of Ln+1.
The second fundamental form of a composition of is.immersions.

Example: Second fund. form of a graph of a real function.
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Example: The catenoid without a meridian and a periodic piece
of the helicoid are isometric, but not congruent. Yet, the helicoid
second fundamental form is periodic, hence it serves as a ‘candi-
date’ second fundamental form of the full catenoid. Yet, it is not
realized by an isometric immersion of the catenoid! Reason: the
catenoid is not simply connected.

Lemma 18. Given f : Mn → Rm and v ∈ Rm, the set of
critical points of the height function hv := 〈f, v〉 is the set
{x ∈M : v ∈ T⊥x M}. Moreover, Hesshv = Av⊥.

§7. Hypersurfaces

Principal curvatures and directions; mean curvature;
Gauss-Kronecker curvature; Gauss map.
The fundamental equations for hypersurfaces.
Convex, locally convex and strictly locally convex hypersurfaces.
Lemma 19. Given a compact Mn ⊂ Rn+p, for every 0 6= v ∈
Rn+p there exists x ∈ Mn such that v is normal to Mn at x
and Av ≥ 0. Moreover, ∃ such a v with Av > 0.
Theorem 20. For a compact Euclidean hypersurface Mn:
The Gauss-Kronecker curvature never vanishes ⇐⇒
M is orientable and the Gauss map is a diffeomorphism ⇐⇒
The second fundamental form is definite everywhere ⇒
M is a convex hypersurface (M = ∂B for a convex body B).

§8. Totally geodesic and umbilical submanifolds

f : M → N totally geodesic ⇔ f∗(TM) is parallel in f ∗(TN).
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Umbilical distributions, submanifolds and extrinsic spheres.
Lemma 21. A distribution (or submanifold) D is umbilical
⇔ ∇XY ∈ D for every X, Y ∈ D with X ⊥ Y .
Umbilic Qm

c̃ ⊂ Qm+p
c for c̃ ≥ c. Same if c̃ < c for the Lorentzian

Qm+p
c .

Lemma 22. For a curvature-like tensor R on Vn with n ≥ 3
the following assertions are equivalent:

1. There exists 2 ≤ r ≤ n − 1 such that R preserves every
r-dimensional subspace, i.e., R(V, V )V ⊂ V ;

2. 〈R(X, Y )Z,X〉 = 0 for every o.n. X, Y, Z;

3. All sectional curvatures of R are constant;

4. R preserves every subspace of Vn.

Axiom of r-planes. Axiom of r-spheres.

§9. Nullity distributions

The (relative) nullity distribution (∆) Γc and the index of (rela-
tive) nullity (ν = dim ∆) µc = dim Γc. Γ := Ker (R − f ∗(R̃)) =
{X : R(X, ...) = R̃(X, ...)} and µ := dim Γ are extrinsic.
Remark 23. Γc is always an intrinsic totally geodesic distribu-
tion where µc is constant (why?). Moreover, ∆ ⊂ Γ.
Proposition 24. For an isometric immersion f : M → M̃ ,
the following assertions hold:

i) ν, µ and µc are upper semicontinuous. Hence, the subsets
where ν, µ and µc attain their minimum values are open,
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and there is an open and dense subset of Mn where ν, µ
and µc are locally constant;

ii) ∆ (resp. Γ and Γc) is smooth on any open subset of Mn

where ν (resp. µ and µc) is constant;

iii) If M̃ has constant sectional curvature, then ∆ is a totally
geodesic (hence integrable) distribution on any open sub-
set where ν is constant, and the restriction of f to each
leaf of ∆ is totally geodesic.

Exercise. Every umbilical distribution in a Riemannian manifold is integrable, and its leaves

are umbilical submanifolds.

§10. Principal Normals and flat normal bundle

Principal and Dupin principal normals. Eigendistributions.
Proposition 25. If η is a principal normal of f : Mn → Qm

c :

1. Eη := Ker (αf − 〈 , 〉η) is smooth and umbilical;

2. If rankEη ≥ 2, then η is Dupin;

3. η is Dupin ⇔ Eη is spherical, and the leaves of f are
mapped to extrinsic spheres;

4. η 6= 0 Dupin and c = 0 ⇒ f + η
‖η‖2 is constant along Eη.

Proof. The only tricky part is to show that Eη is spherical in (3).
If rankEη ≥ 2 takeX, Y ∈ Eη withX ⊥ Y and ‖X‖ = 1. Then,
0 = R(Y,X)X)E⊥η = (∇Y (∇XX)E⊥η )E⊥η and so Eη is spherical.
We leave the case rankEη = 1 as an exercise.
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Theorem 26. If Mn is compact and f : Mn → Rm has a
principal curvature of multiplicity k ≥ n/2, then Mn has the
homotopy type of a CW -complex with no cells of dimension
n− k < r < k. In particular, Hr(M,G) = 0, for all n− k <
r < k and any coefficient group G.

Proof. Let v ∈ Rm such that hv is a Morse function. By Lemma 18,
Hesshv|Eη = λIEη , with λ(p) = 〈η(p), v〉. In particular, at a criti-
cal point x, λ(x) 6= 0, and the index of x is at least k if λ(x) < 0
and at most n−k if λ(x) > 0. Morse Theory implies the result.

• Submanifolds with flat normal bundle.

§11. Reduction of codimension

First normal spaces N1(x) := span{α(X, Y ) : X, Y ∈ TxM}.
Proposition 27. Let f : Mn → Qn+p

c be an isometric immer-
sion. Suppose that there exists a parallel normal subbundle
Lq ⊂ T⊥M of rank q < p such that N1(x) ⊂ Lq(x) for all
x ∈Mn. Then the codimension of f reduces to q.

s-nullities: νs and ν∗s .
1-regular and substantial isometric immersions.

Example: Draw a globally substantial curve in R3 that is nowhere
locally substantial (better than Example 2.3 in [DT]).

Proposition 28. Let f : Mn → Qm
c be a 1-regular (neces-

sary!) isometric immersion such that rank N1 = q ≤ n − 1.
If ν∗s (x) < n− s for all 1 ≤ s ≤ q at any point x ∈Mn, then
N1 is parallel and thus f reduces codimension to q.
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§12. Minimal submanifolds

Let ft : Mn → M̄ be an isotopy of f = f0. Write f ′0 = f∗Z+η ∈
Xf , with Z ∈ TM and η ∈ T⊥f M (i.e., Xf = TfF(M,M)). We
will denote by H = trace α/n ∈ Γ(T⊥f M) the mean curvature
vector of f . Then,

(dvolt)′(0) = (−n〈H, η〉 + div Z) dvol.

Proposition 29. Mn compact orientable with boundary and
Z|∂M = 0 ⇒ V ol(ft(M))′(0) = −n

∫
M〈H, η〉dvol. In particu-

lar, minimal submanifolds are precisely the critical points of
the volume functional for compactly supported variations.
f : Mn → Rm ⇒ ∆f = nH . Hence, minimal ⇒ harmonic ⇒
There are no compact minimal Euclidean submanifolds. Also:
Proposition 30. A compact minimal Euclidean submanifold
with boundary is contained in the convex hull of its boundary.
When substantial, it is contained in the interior of this hull.
If f : Mn → Qn+p

c is minimal, then RicM ≤ c since

RicM(X) = c + n

n− 1
〈AHX,X〉 −

1
n− 1

p∑
i=1
〈A2

ξi
X,X〉. (2)

In particular, scalM = c + n
n−1‖H‖

2 − 1
n(n−1)‖α‖

2.

Lemma 31. Given F : Mn → Rm+1, there exists a minimal
f : Mn → Smc such that F = inc ◦ f ⇐⇒ ∆F = −ncF .
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§13. Veronese embeddings

Let H(m, d) be the real vector space of homogeneous harmonic
polynomials of degree d in (m+ 1) real (similarly for C,H) vari-
ables. Then, dimH(m, d) = n + 1, where n = n(m, d) =
(2d+m−1)(d+m−2)!

d!(m−1)! − 1. Then, W = W (m, d) = {f |Sm : f ∈
H(m, d)} is contained in (actually, it is equally to) the eigenspace
of ∆Sm with eigenvalue λ = λ(m, d) = −d(m + d− 1). Fix 〈 , 〉
the L2-inner product on W , and {f0, . . . , fn} an orthonormal
basis of W . Set G := O(m + 1),

F := (f0, . . . , fn) : Sm → Rn+1.

Since 〈 , 〉 is invariant under the G-action A · f = f ◦ A, the basis
{A · f0, . . . , A · fn} is also orthonormal. So, identifying W with
Rn+1 via fi 7→ ei, we conclude that there is Ã ∈ O(W ) ∼=
O(n + 1) such that F ◦ A = Ã ◦ F , and the map A 7→ Ã is a
group homomorphism (such an F is said to beG-equivariant). In
particular, G acts isometrically and transitively with the metric
induced by F , and the isotropy groupsO(m) act irreducibly on on
each tangent space and transitively on its Grassmannians. Thus,
there exists c̃ > 0 such that F ∗〈, 〉 = c̃〈, 〉, and hence F induces
an isometric immersion of Sm1/c̃ into Rn+1 with ∆F = −(1/c̃)λF .
We conclude by Lemma 31 that there is a minimal equivariant
isometric immersion g : Sm1/c̃ → Snc , c = λ/mc̃, F = inc ◦ g.
We just constructed the (essentially unique!) minimal, equivari-
ant, and substantial Veronese embeddings,

g : Smk → Sn, k = k(m, d) := m

d(m + d− 1)
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(g is an embedding if d is odd, embedding of the projective space
if d is even, and always induces an embedding RPmk → RPn).
For d = 1 we get the identity, while for d = 2 we have, setting
Π = {x4+x5+x6 =0} ⊂ R6, that g = g(x, y, z) can be given by(

xy√
3
,
yz√

3
,
zx√

3
,
x2−y2

3
√

2
,
y2−z2

3
√

2
,
z2−x2

3
√

2

)
⊂ S5 ∩ Π = S4. (3)

§14. Minimal rigidity of hypersurfaces

Kahler structure of orientable Riemannian surfaces.
The associated family of a minimal M 2 ⊂ Q3

c .
Exercise. Any minimal submanifold Mn ⊂ Qm

c with µc ≡ n− 2 has an associated family.

Deformability and rigidity.
Theorem 32. Let f : Mn → Qn+1

c be a minimal immersion
of a Riemannian manifold with µc 6≥ n− 2. Then, f is rigid
among minimal immersions g : Mn → Qn+p

c , i.e., g = inc ◦f .

Proof. By Gauss equation, λ2
i =

∑
k ‖αik‖2, where λi are the

principal curvatures of f and αij := αg(ei, ej), 1 ≤ i, j ≤ n. So,

(〈αii, αjj〉 − ‖αij‖2)2 = λ2
iλ

2
j =

∑
k

‖αik‖2
∑
k

‖αjk‖2

≥ (‖αii‖2+‖αij‖2)(‖αjj‖2+‖αij‖2) ≥ (〈αii, αjj〉+‖αij‖2)2.

Hence, αij 6= 0 ⇒ 〈αii, αjj〉 ≤ 0⇒ λiλj ≤ −‖αij‖2 < 0. Thus,
at the open subset U with minimum ν = µc ≤ n−3, there should
be a pair with αij = 0. The above equation implies that αii and
αjj are linearly dependent, and αis = 0 for i 6= s 6= j. Changing
the roles of s and j we get αij = 0. We conclude by the first
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equation that (αg)N1
g

= ±αf . Done, since N 1
g is parallel in U by

Proposition 28 and g is analytic.

§15. Local rigidity and flat bilinear forms

In local coordinates, an isometric immersion is a solution of a
nonlinear PDE, so if the codimension is small it should be overde-
termined. Hence rigidity should hold under generic conditions.
Analyze the proof of Theorem 32: It’s just Gauss equation!
But: f rigid ⇒ Find τ : T⊥f M → T⊥g M satisfying

τ ◦ αf = αg.

Such τ is unique if f is full (or unique in N f
1 ), and its parallelism

is not hard to check (see Proposition 39 below). Now, a necessary
condition for the existence of such a bundle isometry τ is that

‖αf(X, Y )‖ = ‖αg(X, Y )‖, ∀X, Y ∈ TM. (4)

which is equivalent by polarization to that, ∀X, Y,X ′, Y ′ ∈ TM ,

〈αf(X, Y ), αf(X ′, Y ′)〉 = 〈αg(X, Y ), αg(X ′, Y ′)〉.

But this is also sufficient(!!): just define τ as τ ◦ αf = αg and
extend linearly. In other words, we need to understand when the
flat bilinear form (FBF) β = (αf , αg) is null, where

β = (αf , αg) : TM × TM → (T⊥f M × T⊥g M, 〈 , 〉f − 〈 , 〉g).

15.1 Flat bilinear forms

Let β : V× V′ →Wp,q a FBF.
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Def.: RE(β). S(β). βX for X ∈ V. Isotropic (null) subspaces.
νβ := dimN(β). For X ∈ RE(β) set U(X) := Im βX ∩ Im β⊥X .
Proposition 33. The subset RE(β) is open and dense in V .
Observe that, by flatness: if βX(V′) ⊂W is isotropic for all X
in a dense subset, then β is null.
Proposition 34. For any bilinear form β and X ∈ RE(β),
β(V,Ker βX) ⊂ Im βX. If β is also flat, then β|V×Ker βX is null
(since β(V,Ker βX) ⊂ U(X)).

Proof. For any Y ∈ V and t small, Lt = Im βX+tY ⊂ W is a
continuous family of subspaces that contain βX+tY (Ker βX) =
βY (Ker βX), which does not depend on t.
Corollary 35. β : V×V′ →Wp,0 FBF ⇒ νβ ≥ dimV′−dimW.
Theorem 36 (Chern-Kuiper). Mn ⊂ M̃n+p ⇒ ν ≤ µ ≤ ν+p.
Corollary 37. Mn ⊂ Rn+p compact ⇒ µ(= µ0) 6> p.
Corollary 38. Mn ⊂ Rn+p compact and flat ⇒ p ≥ n.

15.2 Uniqueness of the normal connection

Proposition 39. Let f, f ′ : Mn → Qn+p
c be isometric immer-

sions and let τ : T⊥f M → T⊥f ′M be a vector bundle isometry
that preserves the second fundamental forms. Then it also
preserves the normal connections on the first normal bundles.
In particular, it is parallel if either immersion is full.

Def.: Type number τ of f .
Obs.: τ (x) ≥ 1 ⇒ f is full at x, νs(x) ≤ n − sτ (x), and
p ≥ [n/τ (x)].
Remark 40. Allendoerfer: if τ ≥ 4, then G ⇒ C+R.
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§16. Local algebraic rigidity

Lemma 41 (Lorenzian version of Corollary 35). If β is a FBF
with S(β) = Wp,1 Lorentzian ⇒ νβ ≥ dimV′ − dimW.
Exercise. Replace the Lorentzian hypothesis in the above by dimU(X) = 1 for X ∈ RE(β).

Actually, by dimU(X) ≤ 3, so it holds even if W has index ≤ 3 (see Lemma 45).

Theorem 42 (Beez-Killing). M ⊂ Qn+1
c with τ ≥ 3 is rigid.

Corollary 43. Let f, f ′ : Mn → Qn+1
c be nowhere congru-

ent isometric immersions of a Riemannian manifold with no
points of constant sectional curvature c. Then f and f ′ carry
a common relative nullity distribution of rank n− 2.
Theorem 44 (Allendoerfer). Any f : Mn → Qn+p

c with τ ≥ 3
everywhere is rigid.

Proof. By Proposition 39, we only need to show that β = α⊕α′
is null, since τ ≥ 3 implies that f is null.
Let k := min{dimU(X) : X ∈ RE(β)}. Similarly to RE(β),
REo(β) := {X ∈ V : dimU(X) = k} is also open and dense
in V. So, we only need to show that k = p.
τ ≥ 3 ⇒ ∃Ln−3p := (span{AξjXi : 1 ≤ j ≤ p, 1 ≤ i ≤ 3})⊥ =
∩3
i=1KerαXi. But dim Ker βX1 = n−rank βX1 ≥ n−2p+k. Propo-

sition 34⇒ dim Ker βX1∩Ker βX2 ≥ dim Ker βX1−dimU(X1) ≥
n− 2p and similarly dim∩3

i=1Ker βXi ≥ n− 2p− k. Done, since
∩3
i=1Ker βXi ⊂ Ln−3p.

§17. The Main Lemma

Def.: Nondegenerate FBFs.
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Given a FBF β : Vn × Vn → Wp,q, set U := S(β) ∩ S(β)⊥,
W = U ⊕ Û ⊕⊥ L nondegenerate with Û null, S(β) = U ⊕ L,
and β = βU + βL, with βU null and βL nondegenerate.
Lemma 45 (The Main Lemma). β symmetric nondegenerate
with min{p, q} ≤ 5 ⇒ νβ ≥ n− p− q.
Remark 46. The above is false for min{p, q} ≥ 6. In fact, there
are not even linear estimates: ∀r ∈ N,∃ a SFBF β : Vn×Vn →
Wp,p, p = r(r + 1)/2, with S(β) = W and νβ = n− 2p−

(
r
3
)
.

Theorem 47. f : Mn → Qn+p
c with p ≤ 5 and νj ≤ n− 2j− 1

for all 1 ≤ j ≤ p ⇒ f is rigid.

Proof. Just show that U above has dimension p. Since ν1 ≤ n−3,
f is full.

§18. Submanifolds with constant curvature

FBF were introduced by Cartan to study f : Mn
c → Qn+p

c . Moore.

Examples: Product immersion T n = S1×· · ·×S1 → S2n−1
1/n , and

local immersions Un ⊂ Hn → R2n−1. Hilbert: 6 ∃Hn → R2n−1??

Lemma 48. f : Mn
c → Qn+p

c̃ . c < c̃ ⇒ p ≥ n− 1. c > c̃ and
p ≤ n− 2 ⇒ αf = γ +

√
c− c̃ 〈 , 〉ξ with γ flat and ξ unit.

Proof. Define

β = α⊕
√
|c− c̃|〈 , 〉 : TM × TM →W := T⊥f M ⊕ R (5)

with the natural Lorentzian (resp. Riemannian) inner product in
W if c > c̃ (resp. c < c̃) and apply the Main Lemma 45.
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A point x ∈M where αf(x) = γ(x)+
√
c− c̃ 〈 , 〉ξ(x) is called a

weak umbilic of f . Weak umbilic everywhere ⇒ composition???
What happens if c > c̃, f free of weak umbilics, and p = n− 1?
Proposition 49 (Moore). β : Vn × Vn → Wp,q symmetric
FBF, with q = 0, 1 and νβ = n − p − q. If q = 1, assume
further that β is nondegenerate and that there exist a vector
e ∈W such that 〈β, e〉 > 0. Then, β decomposes uniquely as
the direct sum of p + q rank one flat forms.

Proof. Let’s do the case q=0 only. We may assume p=n, νβ =0.
Fix X0 ∈ RE(β) ⇒ βX0 is an isomorphism ⇒ C(Y ) := βY ◦
β−1
X0
∈ End(W) are all self-adjoint and commuting by flatness⇒

∃ an O.N.B. of W such that C(Y )ξi = µi(Y )ξi. Set βi = 〈β, ξi〉,
βX0Xi = ξi ⇒ β(Y,Xi) = µi(Y )ξi ⇒ β(Xi, Xj) = 0 if i 6= j

⇒ β =
∑

i aiρi ⊗ ρi ξi, where {ρi} = {Xi}∗ and ai = µi(Xi).
Uniqueness follows easily from this.

Corollary 50. Let f : Mn
c → Q2n

c with ν = 0 ⇒ ∃ unique ba-
sis {Xi} of unit vectors and o.n.b. {ηi} such that α(Xi, Xj) =
δijηj. The basis {Xi} is orthogonal if and only if R⊥ = 0, in
which case the {ηi} are the principal normals of f .
Corollary 51. Let f : Mn

c → Q2n−1
c̃ with c 6= c̃. If c > c̃

assume that f has no weak umbilics. Then R⊥ = 0.

Proof. β in (5) is nondegenerate and has νβ = 0. By the Main
Lemma S(β) = W. The proof follows from Proposition 49.

Exercise. If µ = ν+p in Theorem 36 ⇒ R = f∗(R̃) and so µ = n. (Sug: use Proposition 49).
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§19. Nonpositive extrinsic curvature

Asymptotic vectors of α: A(α) := {X ∈ V : α(X,X) = 0}.
As we saw in the proof of Lemma 48, we have:
Lemma 52 (Otsuki). Let α : Vn×Vn →Wp,0 symmetric and
λ > 0 such that Kα ≤ λ and α(X,X) >

√
λ‖X‖2 ⇒ p ≥ n.

Corollary 53 (Otsuki). Let α : Vn × Vn → Wp,0 symmetric
such that Kα ≤ 0 and A(α) = 0 ⇒ p ≥ n.
Corollary 54. f : Mn → Qn+p

c with KM(x0) < c⇒ p ≥ n−1.
Corollary 55. f : Mn → Qn+p

c such that ∃x ∈ M and V m
x ⊂

TxM with K(σ) < c ∀σ ⊂ V m
x ⇒ p ≥ m− 1.

Corollary 56. f : Mn → Rn+p compact such that, ∀x ∈ M

there is V m
x ⊂ TxM with K(σ) ≤ 0 ∀σ ⊂ V m

x ⇒ p ≥ m.

19.1 The relative nullity in nonpositive extrinsic curvature

The following is a deep generalization of Otsuki Corollary 53,
whose first step is a deeper understanding of the structure of the
set of asymptotic vectors A(α). Picture with R⊥ ≡ 0:
Theorem 57. α : Vn × Vn → Wp,0 symmetric with Kα ≤ 0.
Then, να ≤ n− 2p (and this estimate is sharp!).
This follows from a sequence of three propositions:

• X0 ∈ A(α), V̂ = KerαX0 ⇒ S(α|V̂×V̂ ) ⊂ (ImαX0)⊥.
Proof. Kα(X0 + tY, Z) ≤ 0 for Z ∈ V̂ .
• ∃ Tm⊂A(α) subspace with m≥n−p (⇒ Otsuki Lemma 52!).
Proof. Induction in p using X ∈ A(α) with max rankαX .
• να ≥ dimT − p.
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Proof. Let T ⊕ T ′ = V, β := α|T ′×T , Y0 ∈ RE(β). Use that
Kα(Y0 + tZ, Y +sZ ′) ≤ 0 for Z ′ ∈ Ker βY0 ⊂ T , Z ∈ T , Y ∈ T ′
is affine in s ⇒ β(Y,Ker βY0) ⊆ βY0(T ′)⊥ ⇒ Ker βY0 ⊂ ∆α.

Many corollaries (no proofs):
Corollary 58. Mn complete and finite volume, K ≤ c < 0.
f : Mn → Nn+p

c for 2p < n ⇒ f totally geodesic.
Corollary 59. f : M 2n → Q2n+p

c Kahler. If ∃ x0 ∈ M with
K(x0) ≤ c 6= 0 ⇒ p ≥ n.
Corollary 60. Mn ⊂ Rn+p, p ≤ n/2, K ≤ 0 and Ric < 0 ⇒
2p = n, local and global product of p surfaces K < 0 in R3.
Special cases of Thm. 57: R⊥=0, νf =n−2p and νf = n−2p+1.
Remark 61. νf = n− 2p for Mn ⊂ Qn+p

c when c 6= 0.

19.2 The Omori-Yau maximum principle

Compactness in Corollary 56 can be relaxed. In order to do this,
we first need a slight generalization of Lemma 52:
Lemma 62. Let α : Vn × Vn → Wp symmetric. If p < n

and A(α) = 0, there are X, Y ∈ V L.I. such that α(X,X) =
α(Y, Y ) and α(X, Y ) = 0.

Proof. Complexifying, it is equivalent to p quadratic equations
α(Z,Z) = 0 in n > p variables, which is well-known to always
have a nontrivial solution that cannot be real by assumption.
Def.: The Omori-Yau maximum principle for the Hessian
(OYMP for short) is said to hold on a given Riemannian manifold
M if for any function g ∈ C2(M) with g∗ := sup g < +∞ there
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exists a sequence of points {xk} in M satisfying the following:
g(xk) > g∗ − 1/k, ‖∇g(xk)‖ < 1/k, Hessg(xk) < 1/k.

The following result by Pigola-Rigoli-Setti gives conditions for the
OYMP to hold in a complete manifold (no proof):
Theorem 63. Let M be a complete noncompact R.M, ρ(x) :=
d(x, x0). If KM ≥ −φ2 ◦ ρ, where φ ∈ C1([0,+∞)) satisfies
φ(0) > 0, φ′ > 0, 1/φ 6∈ L1, then M satisfies the OYMP.
Theorem 64. Let f : Mn → Pm×R`, 2 ≤ m ≤ 2(n− `)− 1,
i.i. between complete R.M. such that f (M) ⊂ BR(o)×R` with
KP |BR(o)≤b and R<min{injP (o), π/2b} (π/2b=+∞ if b≤0).
If scalM ≥ −Cρ2(ΠN

j=1log
(j) ◦ ρ)2 outside of a compact set for

certain C > 0 and N ∈ N, then supKf ≥ c2
b(R)(= cot...).

Proof. May assume supK < +∞. Then, K ≥ −C ′ρ2(...) also
⇒ OYMP by Theorem 63. Find a contradiction like Otsuki.
Corollary 65. f : Mn → Nn+p, p ≤ n − 1, M complete, N
Hadamard. Assume that the scalar curvature of M is bounded
from below. If Kf ≤ 0, then f (M) is unbounded.

§20. The relative nullity

Splitting tensor C : D ×D⊥ → D⊥ of a distribution D.
CT is self-adjoint ∀T ⇐⇒ D⊥ is integrable.
CT is a multiple of the identity ∀T ⇐⇒ D⊥ is umbilic.
C ≡ 0 ⇐⇒ D⊥ is totally geodesic ⇐⇒ locally a product.
Proposition 66. Let f : Mn → Qn+p

c and D ⊂ ∆ a totally
geodesic distribution. Then, ∀ξ ∈T⊥M,S, T ∈D,X, Y ∈D⊥,
and γ′ ⊂ D geodesic with parallel transport Pγ, we have:
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1. ∇TCS = CSCT + C∇TS + c〈T, S〉I;

2. C ′γ′ = C2
γ′ + cI (Riccati !!);

3. P−1
γ ◦ Cγ′ ◦ P−1

γ = (sin(t)I + cos(t)B)(cos(t)I − sin(t)B)−1

for e.g. c = 1, where B = Cγ′(γ(0));

4. (∇XCT )Y − (∇YCT )X = C(∇XT )DY − C(∇Y T )DX;

5. ∇TAξ = AξCT + A∇⊥T ξ
(A• restricted to D⊥);

6. A′ξ = AξCγ′ , if ξ is parallel along geodesic γ ⊂ D;

7. AξCT = Ct
TAξ;

8. Both KerAξ and ImAξ are parallel along γ if ξ also is.

Corollary 67. By Proposition 66.3, B and Cγ′ cannot have
a real eigenvalue if γ is defined in [a,+∞).
Definitions 68. 1. Given g : M → Rm, the k-cylinder over g
is the product immersion f = g × Id : N × Rk → Rm+k.
2. Given g : M → Qm

c̃ and i : Qm
c̃ → Qm+k

c umbilic, the
generalized cone over g is (the local regular image of) the map
f : g∗(T⊥i Qm

c̃ ) → Qm+k
c defined by f (x, ξ) = expi◦g(x)(ξ), where

where exp is the exponential map of Qm+k
c (e.g., for c̃ = 1, c = 0,

it is just f (x, s, t) = (sg(x), t), with s ∈ R, t ∈ Rr.)
Proposition 69. a) If Dk⊥ as in Proposition 66 is totally
geodesic, then c = 0 and f is (locally) a k-cylinder. b) If Dk⊥

is umbilic and k≤n−2, then f is (locally) a generalized cone.

Proof. I’ll do (a) and leave (b) as an exercise.
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§21. Completeness of the relative nullity

Proposition 70. Let f : Mn → Qn+p
c , and U ⊂ M an open

subset where νf = s > 0. If γ : [0, b] → M is a geodesic such
that γ([0, b)) is contained in a leaf of ∆ in U , then ∆(γ(b)) =
Pγ(∆(γ(0)) and νf(γ(b)) = s. Moreover, Cγ′ extends smoothly
to γ(b) and Proposition 66 items 2, 6, 7 and 8 hold on [0, b].

Proof. Let Vt = ∆(γ(t))⊥ = P γ
0,t(V0), and consider the solution in

End(Vt) of J ′+CJ = 0, J(0) = I , for C := Cγ′ ⇒ J ′′+ cJ = 0
(Jacobi!) ⇒ J smoothly extends to b in End(P γ

0,b(V0)). If Z, Y ∈
X′′γ with Y ∈ ∆⊥ ⇒ α(JY, Z)′ = 0 ⇒ J invertible in [0, b],
P γ

0,b(V0) = Vb and C smoothly extends to b since C = −J ′J−1.
Corollary 71 (!!!!). The minimum relative nullity distribu-
tion is complete if M is complete.
Remark 72. Propositions 66,70 and Corollary 71 hold for the
intersection of the relative nullities of a finite number of immer-
sions (since (α1, α2, ...) is Codazzi).
Let κ(m) = (# L.I. vector fields in Sm−1+1) be the Radon-
Hurwitz number, which is given by κ((odd)24d+b) = 8d+ 2b, with
d ∈ N ∪ {0} and b = 0, 1, 2, 3 (F. Adams, 1962). Set

ρn := max{k : κ(n− k) ≥ k + 1}.

Some values of ρn are: ρn = n−(highest power of 2 ≤ n) for
n ≤ 24, ρn ≤ 8d− 1 for n < 16d, and ρ2d = 0.
Corollary 73. Mn complete and f : Mn → Sn+p with ν > ρn
⇒ f totally geodesic.
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Proof. Pick x in the open set with min relative nullity r < n,
{X1, . . . , Xr} a basis of ∆(x) ∼= Rr and 0 6= Z ∈ ∆(x)⊥ ∼= Rn−r.
Then, {Z,CX1Z, . . . , CXrZ} are L.I. by Corollary 67. So we have
a cross-section between the Stiefel manifolds Vn−r,r+1 → Vn−r,1
(⇐⇒ we have r L.I. vector fields in Sn−r−1) ⇒ r ≤ ρn.
Corollary 74. Mn complete with K ≤ 1 and f : Mn → Sn+p

with 2p < n− ρn ⇒ f is totally geodesic (by Theorem 57).
Remark 75. At least for some dimensions, the hypothesis on p
in the above cannot be improved to 2p < n. For example, the
simplest of Cartan’s isoparametric hypersurfaces, i.e., the unit
normal bundle of the Veronese surface (3) in S4, is a compact
non-totally geodesic hypersurface of S4 with curvature ≤ 1.

21.1 Zero extrinsic curvature: The spherical case

Two leaves of minimum relative nullity ν0 < n of a non-totally
geodesic f : Sn → Sn+p have dimension ν0 ≥ n − p by Chern-
Kuiper, are complete, and cannot intersect in Sn. Then ν0 + 1 ≤
2(n + 1), and hence p > n/2. In fact, Corollary 73 and Chern-
Kuiper imply that p ≥ n− ρn. But we can do better:
Theorem 76. [DG] Mn complete, f : Mn → Sn+p with ν>0.
Then, at any point in U = {ν = ν0 > 0} where is ν is mini-
mal, and for any normal direction at that point, the numbers
of positive and negative principal curvatures are equal.

Proof. Let γ : R→ U a geodesic in a leaf of ∆, ξ normal parallel
along γ. By Proposition 66.6, KerAξ is parallel along γ ⇒
rankAξ(γ(t)) is constant ⇒ so are the number of positive and
negative eigenvalues. But the antipodal map I of Sn+p leaves U
invariant ⇒ ∃ τ ∈ Iso(U) such that f ◦ τ = I ◦ f |U . But inc∗ξ
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is constant in Rn+p+1 along γ, so ξ ◦ τ = −I∗ξ and Aξ◦τ ◦ τ∗ =
−τ∗ ◦ Aξ. Hence σ(Aξ(γ(π))) = −σ(Aξ(γ(0))).
Corollary 77. Ric≥1 at some x ∈ U ⇒ f is totally geodesic.

Proof. Use Theorem 76 and (2).
Corollary 78. If p ≤ n− 1, the only f : Mn

1 = Sn/Γ→ Sn+p

is the totally geodesic inclusion (⇒ Γ = {Id}). In particular,
it is rigid.
Example 79. The product isometric immersion F : Rn+1 →
R2n+2 given by F (t) = 1√

n+1e
i
√
n+1t induces f = F |Sn : Sn →

S2n+1 which is not totally geodesic.
What about p = n?? Recall Corollary 50...

21.2 Zero extrinsic curvature: The Euclidean case

Theorem 80 (Hartman’s extrinsic splitting thm).Mn complete
with RicM ≥ 0 and f : Mn → Rn+p containing r independent
lines ⇒ f is an r-cylinder. In particular, f is an ν0-cylinder.

Proof. (by Johel Beltran) Let g : I × R → Rm i.i. containing a
straight line L. Write g(x, y) = (u(x, y), v(x, y)) with u(0, y) =
0 ∈ Rm−1, v(0, y) = y. But v(x, y) = y: indeed, if p = (x, y)
and c = v(p)− y, let q = (0, y − λc) ∈ L ⊂ R2 with λ>>1 so
that d(p, q)−d((0, y), q)≤|c|/2. So, (λ+1)|c| ≤ d(g(p), g(q)) ≤
d(p, q) ≤ (λ+1/2)|c|, and thus c = 0. Since 1=‖gy‖2 =‖uy‖2+1,
we get g(x, y) = (u(x), y) and g = u× IdR.
Now, by the splitting theorem, M = N ×Rr. Take γ : I → N a
unit curve and set fγ : I × Rr → Rm, fγ(s, v) = f (γ(s), v). By
the above fγ(x, v) = (g(γ(x), v), v). But ‖f∗(0, v)‖ = ‖v‖ ⇒
g∗(0, v) = 0.
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Corollary 81. If f : Rn → Rn+p is an i.i. with p < n, then
f is a (n− p)−cylinder.

§22. The Gauss Parametrization

Motivation. Let g : I×R→ Rm a non-cylindrical ruled surface,
with rulings R = span{Z} ⇒ g(t, s) = β(t) + sZ(t), where
Z : I → Sm−1, ‖Z ′‖ = 1, W.L.G. 〈β′, Z ′〉 = 0 (β is called the
striction curve). Let J = {t : β′(t)||Z(t)}. Then, K ≤ 0, and
K−1(0) = {ν > 0} = {ν = 1} = {∆ = R} = J × R, and
g(sing(g)) = β(J). In particular K ≡ 0 ⇐⇒ g(sing(g)) = β.

But sing(g) is not just the singular set of the map g, but of the
submanifold, since CZ = s−1Id. We just gave another proof of
Hartman’s Theorem 80, certainly much less elegant and elemen-
tary, but the parametrization idea is much more powerful!

In fact, we classified all ruled flat surfaces in Rn, and hence all
flat surfaces in R3: each connected component of an open dense
subset is either a cylinder over a curve, or a cone over a spherical
curve (with β=constant as the vertex), or the surface of tangents
of the regular curve β: g = β+sβ′. Moreover, all these connected
components are glued together along rulings. Observe that look-
ing at the problem with the singularities actually helped!

∼ · ∼
Let f : Mn → Rn+1 be a submanifold with constant relative
nullity n − k and Gauss map η : Mn → Sn. Let γ = 〈f, η〉 be
the support function of f . Then, locally, we have a projection
π : Mn 7→ V k := Mn/∆ onto the leaf space, which is a k-
dimensional manifold. We thus have that η and γ depend only
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on their projections, i.e., η = h ◦ π and γ = r ◦ π, for certain

h : V k → Sn and r : V k → R : the Gauss data of f.

Therefore, at regular points, f (M) is locally parametrized by

f̂ : M ∼= T⊥h V → Rn+1,

f̂ ◦ ξ = rh +∇r + ξ, ξ ∈ Γ(T⊥V ).
Observe that, if w = ξ(x) ∈ T⊥h(x)V and since h∗x(TxV ) and
f̂∗w(∆⊥(w)) are parallel, we identify TxV with ∆⊥(w) with the
isometry j = jw : Th(x)V → ∆⊥(w) given by h∗x = f̂∗w ◦ jw, i.e.,
X ∼= X ′ = jX ◦ π. In particular, jξ : X(V ) → Xξ(∆⊥) satisfies
h∗ = f̂∗ ◦ jξ and is parallel, namely, ∇jξ = 0. Notice also that
∇∆j = 0. Set

Pw := rI + Hessr − Ah
w ∈ EndSim(TxV ).

Hence, jw ◦ Pw = (ξ∗x)∆⊥(w) , π∗w ◦ jw = P−1
w , and j conjugates

all operators. Note that ∇∆j = 0 and set ξ̂ = ξ ◦ π ∈ ∆. Thus:

i) ∆(w) = T⊥h(x)V and ∆⊥(w) = Th(x)V by construction;

ii) w is a regular point of f̂ ⇐⇒ Pw is invertible;

iii) ∀X 6= 0, (ξ∗X)∆⊥(w) 6= 0 and ‖(ξ∗X)∆⊥(w)‖f̂ = ‖PwX‖h;

iv) The shape operator of f in ∆⊥(w) is Aw = −P−1
w ;

v) The singular points of f̂ are singular points of Im(f̂ ) itself;

vi) The connections of f̂ and h are related: (∇M
PwX

Y )∆⊥=∇h
XY ;

vii) The normal connection ∇⊥ of h is related to the Levi-Civita
connection of M along ∆ by (∇M

PwX
ξ̂)∆ = ∇⊥Xξ;
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viii) The splitting tensor of ∆ for ξ̂ is Cξ̂ = Ah
ξP
−1
w .

Proof. vi) Formally, f̂∗(∇M
(PwX)′Y

′)∆⊥ = (∇(PwX)′h∗Y ◦ π)TV =
h∗(∇V

XY ) ◦ π= f̂∗(∇V
XY )′.

vii + viii) f̂∗(∇M
ˆPwX
ξ̂) = ∇h

Xξ = −f̂∗jAh
ξX +∇⊥Xξ.

Corollary 82. Local classification of f : U ⊂ Qn
c → Qn+1

c .
Corollary 83. ∆⊥ is integrable ⇐⇒ h has flat normal
bundle and [Hessr, Aw] = 0 ∀w ∈ T⊥V .
Corollary 84. Any submanifold h : V k → Sn is a Gauss map.
The set of hypersurfaces with Gauss map h is parametrized
by F(V k).
Corollary 85. In Qn+1

c we also have Gauss parametrization.
Corollary 86. f is a cylinder ⇐⇒ h reduces codimension.
Corollary 87. f : Mn → Rn+1 with µ ≡ n − 2 and complete
leaves of ∆ along which the mean curvature of f does not
change sign. Then, h : V 2 → Sn is minimal and f is a
cylinder over g : N 2+ε → R3+ε and νg = ε, where ε = 0, 1.
The last one and Theorem 32 give:
Corollary 88. f : Mn → Rn+1 complete minimal without eu-
clidean factors, n ≥ 4 ⇒ f is rigid in Rn+p among minimal.
Corollary 89. f : Mn → Rn+1 with µ ≡ n − 2 and scalM
constant. Then f is locally a cylinder over a surface. If in
addition Mn is complete ⇒ f (M) = S2

c ×Rn−2 ⊂ R3×Rn−2.

Proof. Need to prove that h is totally geodesic (global part then
follows from Hilbert’s H2 6⊂ R3 and the rigidity of S2 ⊂ R3).
Otherwise ⇒ νh = 1 and KV 2 = 1 in some open subset U ⊂ V 2.
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Let {X, Y } o.n.b. of TU and Y ∈ ∆h. So, ∇YX = ∇Y Y = 0.
Moreover Y Y (r) + r = 0 and Y X(r) = scal−1

M 6= 0 is constant
⇒ 0 = X(r)+XY Y (r) = 2〈∇[X,Y ]∇r, Y 〉 = 2〈∇XY,X〉Y X(r)
⇒ ∇Y = 0 ⇒ KV 2 = 0, contradiction.

§23. Homogeneous hypersurfaces

Def.: f : Mn → Qn+1
c is isoparametric if it has constant princi-

pal curvatures (λ1 < · · · < λg with multiplicity mi).
Lemma 90. f : Mn → Qn+1

c with Mn homogeneous ⇒ Either
τ ≤ 1 or τ is constant. If τ ≥ 3, then f is isoparametric.
Theorem 91 (Cartan fund. formula). ∀i,

∑g
j 6=imj

c+λiλj
λi−λj

= 0.

Proof. Aei = λiei, Ei = Ker (A−λiI), Γkij = 〈∇eiej, ek〉 = −Γjik.
Codazzi: (λj − λk)Γkij = (λi − λk)Γkji ⇒ Ei totally geodesic ⇒
WLG g ≥ 3. Gauss: c + λiλj =

∑
k(ΓkijΓkji + ΓkijΓ

j
ki + ΓkjiΓikj) =

2
∑

k ΓkijΓkji =
∑

i6=k 6=j
(λi−λj)2

(λi−λk)(λj−λk)(Γ
j
ki)2. Now just sum.

Corollary 92. Suppose that f : Mn → Rn+1 is isoparametric.
Then, f (M) ⊂ Skc × Rn−k for some 0 ≤ k ≤ n.

Proof. Let i in Theorem 91 s.t. λi is the smallest positive one ⇒
all others are 0, Eλi = ∆⊥ is tot. geod., done by Proposition 69.
Remark 93. Similar result holds for Hn+1, also proved by Car-
tan. So the only interesting case is for Sn+1. Münzner showed that
g =1, 2, 3, 4 or 6, and for g odd all multiplicities are equal, while if
g is even mi = mi+2 (i mod g). Using representations of Clifford
algebras, Ferus-Karcher-Münzner gave a beautiful construction of
a large family with g = 4. Lots of things are understood, but the
full classification is still an important open problem.
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Theorem 94. f : Mn → Rn+1 with Mn homogeneous ⇒ f is
either a complete cylinder over a plane curve, or Skc × Rn−k.

23.1 Curvature homogeneous hypersurfaces

There are weaker (and local!) notions than the above:
Definition 95. A Riemannian manifold M is said to be curva-
ture homogeneous if ∀x, y ∈M ∃ a linear isometry τxy : TxM →
TyM such that its curvature tensor satisfies Rx = J∗xyRy.
Definition 96. We say that f : Mn → Qn+p

c is weakly isopara-
metric if ∀x, y ∈ M ∃ linear isometries τxy : TxM → TyM and
τ̂xy : T⊥x M → T⊥y M such that τ̂xy ◦ αx = τ ∗xyαy.
By Gauss eqn, weakly isoparametric ⇒ curvature homogeneous.
WLOG, we can fix y = x0 and work with just τx = τxx0, τ̂x = τ̂xx0.
For f : Mn → Qn+p

c with Mn curvature homogeneous, define

βx = (αx, τ ∗xαx0) : TxM × TxM → W p,p
x = TxM ⊕ Tx0M.

Then, βx is flat ∀x, and f is weakly isoparametric if and only if
βx is null ∀x. The Main Lemma 45 then immediately implies:
Proposition 97. f : Mn → Qn+1

c is curvature homogeneous
if and only if either it is isoparametric, or has constant cur-
vature c, or has rank two and constant scalar curvature 6= c.
Besides the isoparametric case, Corollary 82 and Corollary 89 tell
us that what is left are the rank two hypersurfaces with constant
scalar curvature for c 6= 0. By the Gauss parametrization, this is
equivalent to the classification of V 2 ⊂ Sn+1

±1 for which all shape
operators of unit vectors have constant determinant 6= 0. Tsukada
proved in 1988 that the only case for n ≥ 4 was a single complete
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hypersurface M 4 ⊂ H5 related to the unit normal bundle of the
Veronese surface. Now, the case n = 3 has just been solved:
Theorem 98 ([Bryant-Florit-Ziller]). Let M be the set of im-
mersed rank two hypersurfaces in Q4

c, c = ±1, whose induced
metrics have constant scalar curvature. Then, M contains
a one parameter family of hypersurfaces admitting no con-
tinuous symmetries, and an isolated rotationally symmetric
hypersurface. None of these examples is complete, and any
connected hypersurface in M is congruent to an open subset
of one of them.

§24. Immersions of Riemannian products

Orthogonal nets. Ex: Riemannian products. Adapted tensors.
Recall: if Xi ∈ X(Mi) we have lifts X̃i

πi∼ Xi, and for the in-
jections τj = τ

xj+1
j : Mj → M1 ×M2 we have Xi

τi∼ X̃i. We
conclude that T(x1,x2)(M1 ×M2) ∼= Tx1M1 ⊕ Tx2M2 canonically.
Theorem 99 (Moore). If the second fundamental form of
f : M1×M2 → Rm is adapted, then f is an extrinsic product.

Proof. Taking lifts of vector fields in each factors we see that
f∗TxM1 ⊥ f∗TyM2 ∀(x, y) ∈M1×M2. Thus, V1 ⊥ V2, where

Vi := span{f∗(x1,x2)(TxiMi) : (x1, x2) ∈M1 ×M2}.

Decomposing Rm = V0 ⊕⊥ V1 ⊕⊥ V2 and f = f0 + f1 + f2, we
conclude that f1 = f1(x1), f2 = f1(x2), and that f0 is constant.
Remark 100. The decomposition is unique (if fi is substantial).
Corollary 101. Same in Sm. Almost the same in Hm.
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24.1 Splitting under a curvature condition

Theorem 102. Let f : Mn = ×ki=0M
ni
i → Rn+k such that the

set of flat points of Mj has empty interior, ∀1 ≤ j ≤ k. Then,
Mn0

0 is flat and f (M) is an open subset of a n0-cylinder over
an extrinsic product of k hypersurfaces.

Proof. Fix 1 ≤j 6= j′≤ k, and let σj =span{e2j−1, e2j}⊂TxjMj

with kj := K(σj) 6= 0, Lj := spanα(e2j, e2j) 6= 0, and T⊥x M =
L1 ⊕⊥ · · · ⊕⊥ Lk. By Gauss equation, if V 2k = σ1 ⊕ · · · ⊕ σk,

β := α⊕B1 ⊕ · · · ⊕Bk : V 2k × V 2k → T⊥x M ⊕ Rk = W 2k,0

is flat, where Bj =
√
|kj|(e2j−1 ⊗ e2j−1 − sign(kj)e2j ⊗ e2j).

By Proposition 49, there is a basis {e′1, . . . , e′2k} of V 2k such
that β(e′r, e′s) = 0, ∀1 ≤ r 6= s ≤ 2k. In particular, KerBi

and ImBi are spanned by vectors in this basis. Hence, up to
order, e′2j−1, e

′
2j ∈ σj, α(σj, σj′) = 0, and α(σj, σj) = Lj.

So, for the conullities Γ⊥j ⊂ TxjMj we get α(Γ⊥j ,Γ⊥j′) = 0 and
α(Γ⊥j ,Γ⊥j ) = Lj. Now it’s just Gauss equation:
Since Γj ⊂ Γ, 〈α(Γj,Γ⊥j ), α(Γ⊥j′ ,Γ⊥j′)〉 = 0 and then α(Γj,Γ⊥j ) ⊂
Lj. But if X ∈ Γ⊥j , there is Y ∈ Γ⊥j such that α(X, Y ) = 0
and 0 6= α(Y, Y ) ∈ Lj. So 〈α(Γj, X), α(Y, Y )〉 = 0, and then
α(Γj,Γ⊥j ) = 0. Similarly, α(Γj,Γ⊥j′) = 0. Therefore Γj ⊂ ∆(x),
α(TxjMj, TxjMj) = Lj, and α(TxjMj, Txj′Mj′) = 0. The same
argument gives α(Tx0M0, TxjMj) = α(Tx0M0, Tx0M0) = 0 and
hence Tx0M0 ⊂ ∆(x) and α(x) is adapted. Therefore α is ev-
erywhere adapted to the product structure and the result follows
from Proposition 69.
Remark 103. Similar in Qn+k

c . If k = 2 we can say a bit more.
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24.2 Splitting under an algebraic condition

Lemma 104. Let β : V n×V n → W p,0 symmetric, V = V1⊕V2
and Rβ(V1, Vi, Vj, V2) = 0 for 1 ≤ i, j ≤ 2. If νs < n − 2s
∀1 ≤ s ≤ p, then β(V1, V2) = 0.

Proof. For i 6= j, let βij := β|Vi×Vj : Vi × Vj → Ss surjective
and ∆ij := Ker βij ⊂ Vi ⇒ 〈β(∆12, Vj), β(Vi, V2)〉 = 0 ⇒
β(∆12,V )⊥Ss. Similarly, β(V,∆21)⊥Ss⇒ ∆12⊕∆21⊂ Ker βS,
and dim(∆12 ⊕∆21) ≥ dimV2−s+dimV1−s=n−2s ⇒s=0.
Corollary 105. If f : Mn := ×ki=1M

ni
i → Qn+p

c satisfies
νs < n− 2s ∀ 1 ≤ s ≤ p, then f is an extrinsic k-product.

24.3 Splitting under a global condition

The following is a generalization of Chern-Kuiper Theorem 36:
Theorem 106. Given f : Mn → M̃n+p, decompose Γ⊥(x) as
Γ⊥(x) = T1 ⊕⊥ · · · ⊕⊥ Ts, where all Ti’s are non-zero and
(R− f ∗R̃)-invariant. Then, ν(x) ≤ µ(x) ≤ ν(x) + p− s.

Proof. If S = (Γ ∩ ∆⊥) ⊕ span{Y1, . . . , Ys} for 0 6= Yi ∈ Ti
⇒ (R − f ∗R̃)(S, S) = 0. Now, if Z ∈ RE(α|TM×S) then
Ker (αZ|S) = 0 since S∩∆ = 0. Hence, p ≥ dimS = µ−ν+s.
Corollary 107. We always have that s ≤ p and, if µ = ν+p,
then R = f ∗R̃ and αf is flat.
Corollary 108. Let f : Mn =×pi=1M

ni
i → Rn+p, ni ≥ 2. If

αf(x) is not adapted, then 0<r(x)≤µ(x)−r(x)≤ν(x)≤µ(x),
where r(x) is the number of factors that are flat at x.

38



Proof. By Theorem 102 at least one factor Mi is flat at xi =
πi(x), so r(x) > 0. Moreover, µ(x) ≥ 2r(x) since ni ≥ 2. The
third inequality follows from Theorem 106.

Theorem 109. Let Mni
i be compact with ni ≥ 2. Then, every

f : Mn=×pi=1Mi→Rn+p splits as a product of p hypersurfaces.

Proof. Let U ⊂M be the open subset where αf is not adapted,
and U0 ⊂ U where the relative nullity of f |U is minimum ν0 ⇒
ν0 ≥ µ−r ≥ r > 0 by Corollary 108. SinceMn is compact and U
is open, by Proposition 70 a maximal geodesic in a leaf of ∆ in U0
has to leave U . At the end point α is adapted, hence it is adapted
inside U by Proposition 66.6; see also the proof of Proposition 70.
So U = ∅ and the result follows from Theorem 99.

Questions: If fi : Mni
i → Rni+pi with pi the minimal codi-

mension, is q = p1 + p2 the minimal codimension for an is.im.
f : Mn1

1 ×M
n2
2 → Rn1+n2+q? If yes, is it necessarily a product?

Remark 110. Similar results to those in this section exist for
warped products; see [DT].

§25. Conformal immersions

General philosophy: Qm
c
∼= Rm; conformal immersions in Rm ∼=

isometric immersions in the light cone Vm+1 ⊂ Lm+2.
If w ∈ Vm+1 and v ∈ Em=Ew :={v ∈ Vm+1 : 〈v, w〉=1} ∼= Rm,
and C : Rm → span{v, w}⊥ ⊂ Lm+2 is a linear isometry, then

ψ(x) = v + Cx− 1
2
‖x‖2w : Rm → Em
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is an isometric embedding in Lm+2. In fact, if z ∈ Lm+1 with
〈z, z〉 = −1/c, then Qm

c
∼= {u ∈ Vm+1 : 〈u, z〉 = −1/c}.

The set of transformations (v, w, C) 7→ (v′, w′, C ′) is O1(m+ 2).
Remark 111. Given a hypersurface f : Mn → Vn+1 we have
that f ∈ T⊥f M is parallel and Af

f = −I . Hence, if η is the
normal parallel with 〈η, η〉 = 0, 〈η, f〉 = 1, Gauss equation gives

αf(X, Y ) = −〈X, Y 〉η − 〈LX, Y 〉f,

where
L := n− 1

n− 2
Ric− n

2(n− 2)
scalM Id.

In particular, T⊥ψ Rm = span{ψ,w}, Aψ
w = 0, and αψ = −〈 , 〉w.

25.1 The light cone representative

Conformal structure. Pull back.
Proposition 112. Let Mn be a Riemannian manifold, and
f : Mn → Rm ∼= Emw a conformal immersion with conformal
factor ϕ. Then, f̂ := ϕ−1 ψ ◦ f : Mn → Vm+1 is an isometric
immersion. Conversely, if f̂ : Mn → Vm+1 \ Rw is an iso-
metric immersion, then f := ψ−1(〈f̂ , w〉−1f̂ ) : Mn → Rm is
a conformal immersion with conformal factor ϕ = 〈f̂ , w〉−1.
We call f̂ the isometric light cone representative of f .

Corollary 113. Mn simply connected, n ≥ 3, is conformally
flat if and only if it is a hypersurface of the light cone.
Remark 114. The space of curvature tensors can be decom-
posed in three O(n)−invariant subspaces: the one generated
by the inner product (manifolds of constant curvature), the one
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spanned by the Ricci flat tensor (conformally flat manifolds), and
the complement of these. So, we define the Weil tensor W by

〈W (X, Y )Z, V 〉 = 〈R(X, Y )Z, V 〉 − 〈LX, V 〉〈Y, Z〉 − 〈LY,Z〉〈X, V 〉
+ 〈LX,Z〉〈Y, V 〉+ 〈LY, V 〉〈X,Z〉.

A well-known theorem by Schouten states that, for n ≥ 4, Mn is
conformally flat if and only if W = 0. In fact, this can be easily
seen using Corollary 113: W = 0 is precisely the Gauss equation
of an hypersurface in the light-cone; see Remark 111.
Exercise. If R(u) := u − 2〈u, z〉z ∈ O1(m + 2) is the reflection with respect to the space-

like vector z with 〈z, w〉 6= 0 in Emw , then R̂ is the inversion with respect to the hypersphere

Emw ∩ {z}⊥.

It turns out that Rm is locally rigid in Vm+1 for m ≥ 3:
Theorem 115. If F : U ⊂ Rm → Vm+1 is an isometric
immersion with m ≥ 3, then F = ψ|U for some (v, w, C).

Proof. By Remark 111, α(X, Y ) = −〈X, Y 〉η. But ∇̃Xη =
−LX = 0 ⇒ η is a constant vector and F (U) ⊂ Emη .

Corollary 116. For any conformal map f : U ⊂ Rm → Rm,
there is T ∈ O1(m + 2) such that f̂ = T ◦ ψ|U .
Conformal congruence can be regarded as a special case of iso-
metric congruence (so we can use the isometric methods!):
Proposition 117. f ′,f : Mn → Rn+p are conformally congru-
ent ⇐⇒ f̂ ′ and f̂ are isometrically congruent.

Proof. Observe that the conformal factor of a composition i ◦ j
satisfies ϕi◦j = ϕjϕi ◦ j. If f ′ = T ◦ f for a conformal diffeo
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T of Rn+p ⇒ T̂ = T ◦ ψ for T ∈ O1(n + p + 2), and f̂ ′ =
ϕ−1
T ◦f ψ ◦ T ◦ f = ϕ−1

f (ϕ−1
T ψ ◦ T ) ◦ f = ϕ−1

f T ◦ψ ◦ f = T ◦ f̂ .

Remark 118. See [DT] for equations relating the second fun-
damental forms, normal connections, etc, between a conformal
immersion and its light-cone representative, and the Fundamen-
tal Theorem in Moebius geometry. Not surprisingly, by Proposi-
tion 117 many isometric results have natural conformal counter-
parts, that usually can be proved adapting isometric methods.

25.2 The conformal Gauss parametrization

Motivation. Classify conformally flat Euclidean hypersurfaces in
terms of curves, as in the flat case (Corollary 82). The first step:
Theorem 119. Let f : Mn → Rn+1 with n ≥ 4. Then, Mn is
conformally flat and if and only if f has a principal curvature
of multiplicity at least n− 1.

Proof. We can assume f is not umbilic. By Proposition 112, there
is a local i.i. g : Mn → Vn+1. By Remark 111 β = (αf , αg) =
(Af , I, L) is flat with νβ = 0. By the Main Lemma 45 β is
degenerate, so L ∈ span{Af , Id} and dim Ker (Af−λI) ≥ n−1.
The converse is left as an exercise (show that W = 0).
Remark 120. Cartan’s examples: Theorem 119 false for n = 3.
Proposition 121. If f : Mn → Rn+p is conformally flat and
n ≥ p+3, then f has a Dupin principal normal of multiplicity
at least n− p ≥ 3.

Proof. Adapt the proof of Theorem 119 (exercise).

So let’s classify hypersurfaces with umbilic distributions:
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∼ · ∼
Let f : Mn → Rn+1 be orientable with Gauss map η and a
Dupin principal curvature λ 6= 0 of multiplicity n − k. Since
the corresponding eigendistribution Eλ is umbilical (hence inte-
grable), we have the leaf space V k := Mn/Eλ and a submersion
π : Mn → V k. The map

h = f + λη

is constant along the leaves of Eλ, hence it descends to the quo-
tient and we have an immersion g : V k → Rn+1 and a function
r ∈ F(V ) given by

g ◦ π = h, r ◦ π = λ−1.

We endow V k with the metric induced by g. In particular, f =
g ◦ π − (r ◦ π) η. Since η is normal to f , η> = (∇r) ◦ π and
therefore, by dimension reasons, we can parametrize f over the
unit normal bundle T⊥1 V of g by

f ◦ ξ = g − r
(
∇r +

√
1− ‖∇r‖2 ξ

)
, ξ ∈ Γ(T⊥1 V ).

§26. Deformable hypersurfaces

Let ∆ an integrable distribution on M , and L = M/∆ the (local)
space of leaves with projection π : M → L. A vector field
X ∈ X(M) is called projectable if there is X̄ ∈ X(L) π-related
to X . Equivalently, the horizontal lift X̄h of X̄ agrees with X∆⊥.
Lemma 122. X ∈ X(M) is projectable ⇐⇒ [X,∆] ⊂ ∆.

Proof. Use the usual flux formula for the Lie bracket: [X,T ] =
limt→0

1
t (X ◦ ϕt − ϕt∗X), where ϕt′ = T ◦ ϕt (⇒ π ◦ ϕt = π).
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Lemma 123. S ⊂ End(R2) a subspace, and D ∈ End(R2),
D 6∈ span{I} such that [D,C] = 0 ∀C ∈ S ⇒ dimS ≤ 2.

Proof. If there is C ∈ S symmetric such that C 6= aI , then D

and all elements in S diagonalize in the same basis.

Definition 124. We say that a nowhere flat Euclidean hyper-
surface f is a Sbrana-Cartan hypersurface if there is another f̂
nowhere congruent to f (i.e., f is locally deformable).

Example: Associated family of a minimal rank 2 hypersurface.

Nowhere flat surfaces in R3 are locally deformable, but no classi-
fication exists. Nadirashvili’s example.
Proposition 69: Surface-like hypersurfaces ⇐⇒ ImC ⊂ span{I}.
From now on in this section, assume that f : Mn → Rn+1 is a
nowhere surface-like Sbrana-Cartan hypersurface with deforma-
tion f̂ , and A and Â their shape operators in ∆⊥. Then:

(a) ∆̂ = Γ = ∆ agree and are intrinsic (since ν̂ = µ = ν ≡ n−2);

(b) Hence, the splitting tensor C of ∆ is the same and intrinsic!

(c) Gauss ⇐⇒ D := A−1Â ∈ End(∆⊥) satisfies detD = 1;

(d) Noncongruent⇐⇒ D 6∈ span{I} on an open dense U⊂Mn;

(e) [D,CT ] = 0 ∀T ∈ ∆ (by Proposition 66.7);

(f ) ∇∆D = 0 (by the last and 2 Codazzi’s in ∇∆Â = ∇∆AD);

(g) dim(span{I} + ImC) = 2 a.e. on U (by (e)) ⇒

(h) Up to sign, ∃ ! J ∈ End(∆⊥) such that J2 = εI , ε = 1, 0,−1,
‖J‖ = 1 if ε = 0, satisfying span{I} 6= ImC ⊂ span{I, J};
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(i) AJ = J tA (by (h) and Proposition 66.7);

(j) (e)+(h) ⇒ D ∈ span{I, J} (same computation as (g)) ⇒

(k) ∇∆J = 0 (by (f ), since also J ∈ span{I,D}).

Def.: A Riemannian manifold Mn with µ ≡ n − 2 is called
parabolic (ε= 0), hyperbolic (ε= 1), elliptic (ε=−1) if there is
J ∈ End(Γ⊥) satisfying (h) + (k) ( ⇒ Mn is nowhere surface-
like).

Proposition 125. Both D and J project to V 2 :=Mn/∆, i.e.,
∃ D̄, J̄ such that D̄ ◦ π∗ = π∗ ◦D and J̄ ◦ π∗ = π∗ ◦ J on ∆⊥.

Proof. SinceD is parallel along ∆ it projects, since [DX̄h,∆]∆⊥ =
D[X̄h,∆]∆⊥ = 0. Same for J .

Parabolic, hyperbolic and elliptic surfaces: existence of real or
complex conjugate coordinates, first normal space of dimension 2.

Set
DM := {f : Mn → Rn+1}/congruence.

Proposition 126. f : Mn → Rn+1 rank two nowhere surface-
like. Then, Mn is parabolic (resp hyperbolic, elliptic) w.r.t. J
⇐⇒ the Gauss data is parabolic (resp. hyperbolic, elliptic)
w.r.t. J̄ . In particular, every member of DM is parabolic
(resp. hyperbolic, elliptic).

Proof. Since J̄ ◦ π∗ = π∗ ◦ J , and AJ = J tA, by Section 22
P−1
w = π∗ = −A and J̄P−1

w = P−1
w J = J tP−1

w . So, J̄ = J t and
J̄ tPw = PwJ̄ .
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Corollary 127. By (h), (i) and Proposition 126, the Gauss
data is parabolic, hyperbolic or elliptic with respect to J̄ :
Q(h) = 0 and Q(r) = 0.
We first deal with the easiest parabolic case:
Proposition 128. Mn is parabolic ⇐⇒ f is ruled. In this
case DM = R and every g ∈ DM is ruled with the rulings of f .

Proof. Let {X, Y } o.n.b. of ∆⊥ such that JX = Y , JY = 0,
and R = ∆⊕⊥ span{Y }. J tA = AJ ⇒ 〈AY, Y 〉 = 0. ∇∆J = 0
⇒ ∇∆Y ⊂ ∆. Im C ⊂ span{I, J} ⇒ ∇Y ∆ ⊂ R. Write
D = I+θJ . AD Codazzi ⇐⇒ θAJ Codazzi ⇐⇒ ∇Y Y ∈ R,
∆(θ) = 0, and Y (θµ) = θµ〈∇XX, Y 〉 where µ := 〈AX, Y 〉.

Def.: Gauss data (h, r) of first or second species (with conju-
gate coordinate system (u, v)): hyperbolic (resp. elliptic) h and
r, such that

τ (Γvv − 2ΓuΓv) = (Γuu − 2ΓuΓv)
(resp. Im (ρ(Γz − 2ΓΓ̄)) = 0).
Proposition 129. Assume Mn is hyperbolic or elliptic. Then,
Â is Codazzi ⇐⇒ D̄ is Codazzi ⇐⇒ the Gauss data is of
first or second species.

Proof. Use Section 22: (∇h
XD̄Y )′= j∇h

X◦πD̄Y = j∇h
XhD̄Y ◦π=

j∇h
Xhπ∗(DY ) = (∇M

Xh(j ◦ π∗)(DY h))∆⊥ = −(∇M
XhADY

h)∆⊥.

Finally, we can give the complete classification:
Theorem 130. Let Mn be any Riemannian manifold. Then,
each connected component U of an open dense subset of Mn

falls, even locally, exactly into one of these categories:
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i) DU = ∅, i.e., U is not even locally a Eucl. hypersurface;

ii) U is rigid, i.e., DU is a point;

iii) U is flat, and DU = F(R,Sn)×F(R);

iv) U is nonflat surface-like and DU is the one of the surface;

v) U is parabolic and ruled, DU = F(R), and every element
in DU is ruled with same rulings as U ;

vi) The Gauss data is of first species, and DU = R;

vii) The Gauss data is of second species, and DU = Z2.

Case (vi) is called the continuous type (e.g., g minimal), while
case (vii) is called the discrete type (e.g....?????????).

Remark 131. Recently, Diego Navarro Guajardo extended Sbrana-
Cartan Theory to higher codimension ([Gu1]).

§27. Intersections

These were the first known Sbrana-Cartan hypersurfaces of the
discrete type. They can be obtained intersecting two flat hyper-
surfaces, or, better, as in [FF] as rank two hyperbolic submani-
folds in codimension two that extend as flat hypersurfaces in two
ways. We briefly describe this work.
Let f : Mn → Rn+2 be a hyperbolic rank two submanifold. It
is easy to see that f has a (hyperbolic) polar surface that “inte-
grates” its normal bundle, i.e, there is g : V 2 = M/∆ → Rn+2

such that
g∗[x](T[x]V ) = T⊥f(x)M ∀ x ∈Mn.
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In [FF] it was shown that f extends as a flat hypersurface in two
different ways ⇐⇒ Γu = Γv = 0 for g, i.e., if

g(u, v) = c1(u) + c2(v),

with c′1, c′′1, c′2, c′′2 pointwise L.I.. The shared dimension I(c1, c2) ∈
N0 is the smallest integer k for which there is an orthogonal de-
composition in affine subspaces, Rn+2 = V1 ⊕⊥ Vk ⊕⊥ V2, satis-
fying that span(ci) ⊂ Vi ⊕⊥ Vk, i = 1, 2. It turns out that:

• I(c1, c2) = 0 ⇐⇒ Mn is flat;

• I(c1, c2) = 1 ⇐⇒ Mn is of the continuous type;

• I(c1, c2) ≥ 2 ⇐⇒ Mn is of the discrete type.

Corollary 132. Crazy collage of the different types.

Remark 133. Diego Navarro Guajardo also extended this in-
tersection construction to higher codimension ([Gu2]).

§28. Genuine rigidity ([DF2])

Rigidity in higher codimensions: rigidity and compositions are
particular cases of isometric extensions. In this context, alge-
braic rigidity results like Theorem 44 and Theorem 47 disregard
information about the normal connections. As such, they should
be understood as “generic” without much usefulness for classifi-
cation. Now we search for more geometry.

Def.: We say that a pair f : Mn → Rn+p and f̂ : Mn → Rn+q

of isometric immersions extends isometrically when there are an
isometric embedding j : Mn ↪→ Nm into a Riemannian manifold
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Nm with m > n and isometric immersions F : Nm → Rn+p and
F̂ : Nm → Rn+q such that f = F ◦ j and f̂ = F̂ ◦ j. In other
terms, the following diagram commutes:

Mn Nm (1)

Rn+p

Rn+q

f

f̂

F

F̂

j �
��

@
@R

��
��

��1

PPPPPPq

-��

We want to discard deformations f̂ that arise in this way, since
the deformation problem essentially depends on the codimension,
and not on the dimension. This gives rise to the following:
Def.: We say that f̂ : Mn → Rn+q is a genuine deformation
of a given f : Mn → Rn+p (or that {fλ : Mn → Rn+pλ} is a

genuine set) if 6 ∃U ⊂Mn s.t. f |U and f̂ |U extend isometrically.

Def.: We say that f : Mn → Rn+p is genuinely rigid in Rn+q

if every f̂ : Mn → Rn+q is nowhere a genuine deformation of f .

Motivation of the following. Structure of the second fundamen-
tal forms and normal connections when a pair extends isometri-
cally: the extensions induce a natural parallel bundle isometry
between the normal subbundles F∗(T⊥j M)→ F̂∗(T⊥j M) that pre-
serves second fundamental forms. When is the converse state-
ment true?

Def.: Dd-ruled submanifolds, mutually ruled (sets!), ruled ex-
tensions.
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Let f : Mn → Rn+p and f̂ : Mn → Rn+q , and τ a parallel vector
bundle isometry that preserves second fundamental forms,

τ : L` ⊂ T⊥f M → L̂` ⊂ T⊥
f̂
M. (6)

Equivalently, the induced v.b. isometry τ̄ is parallel, where

τ̄ = Id⊕ τ : f∗TM ⊕ L→ f̂∗TM ⊕ L̂.

Define φτ : TM×(TM⊕L)→ (L⊥×L̂⊥, 〈 , 〉L⊥ − 〈 , 〉L̂⊥) by

φτ (X, η) =
(
(∇̃Xη)L⊥, (∇̃X τ̄ η)L̂⊥

)
.

Proposition 134. The bilinear form φτ is Codazzi and flat.

Proof. Exercise.

Notice that αL⊥⊕ α̂L̂⊥ = φτ |TM×TM . Assume that the subspaces

D = Dτ := N (αL⊥ ⊕ α̂L̂⊥) ⊂ TM,

∆ = ∆τ := Nr(φτ ) ⊂ TM ⊕ L
have constant dimensions dτ ≤ ντ respectively (observe that
∆ ∩ TM = D). It follows that τ̄ |∆ : ∆→ ∆̂ is a parallel vector
bundle isometry, and hence, we can identify ∆̂ with ∆.

Corollary 135. Nl(φτ ) ⊂ D ⊂ TM is integrable. In partic-
ular, if L and L̂ are parallel along D, namely, if D = Nl(φτ ),
then D ⊂ ∆ is integrable.

Corollary 136. If L and L̂ are parallel along D, Im (φτ ) and
∆ are smooth and parallel along its leaves. In particular, the
leaf through x ∈Mn is also given by ∆(x) ∩Mn.
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Let π : Λ→Mn be the vector bundle Λ := D⊥ ⊂ ∆ ⊂ TM⊕L,
and consider the extensions F : Λ→ Rn+p and F̂ : Λ→ Rn+q,

F ◦ ξ = f ◦ π + ξ, F̂ ◦ ξ = f̂ ◦ π + τ̄ ξ, ∀ξ ∈ Γ(Λ), (7)

restricted to a neighborhood N of Mn ∼= 0 ⊂ Λ to get immer-
sions. Observe that L⊥, D, ∆, etc, induce natural corresponding
bundles over Λ (e.g., L⊥(ξx) = L⊥(x), namely, π∗(L⊥)).

The following is the main result on isometric extensions:
Theorem 137. If L and L̂ are parallel along D, then F and
F̂ are isometric π∗(∆)-ruled extensions of f and f̂ . Moreover,
there are orthogonal splittings

T⊥F N = L ⊕⊥ π∗(L⊥), T⊥
F̂
N = L̂ ⊕⊥ π∗(L̂⊥),

and a parallel vector bundle isometry T : L → L̂ that pre-
serves second fundamental forms such that π∗(∆) = DT .
In addition, L and L̂ are parallel along π∗(∆).

Proof. Let’s argue first for F , F̂ being similar. Observe first that
ImF∗ ⊂ π∗(TfM ⊕ L) which is parallel along π∗(D) ⊂ TΛ.
Thus, π∗(L⊥) ⊂ T⊥F Λ, and we can write

TFΛ⊕⊥ L = π∗(TfM ⊕ L), L⊥ = π∗(L⊥). (8)

Since D is integrable and ∇̃D∆ ⊂ ∆ by Corollary 136, we easily
get that F is π∗(∆)-ruled. (Equivalently, we could have worked on
V := M/D and defined F over the bundle π∗(∆)→ V instead!).
Using (8) we define T̄ by T̄ ◦π∗ = π∗◦ τ̄ , which is clearly parallel,
and the extensions are isometric since F̂∗wx = τ̄x ◦ F∗wx.
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Now, take η ∈ Γ(L⊥) and Z ∈ Γ(∆). Since π∗(∆) = π−1
∗ (D),

(∇̃Z◦πη ◦ π)TFΛ⊕L = (∇̃Zη ◦ π)TfM⊕L = (∇̃π∗Z η)TfM⊕L = 0.

This proves the last assertion and π∗(∆) ⊂ DT . For the opposite
inclusion, since αL⊥⊕α̂L̂⊥ =αFL⊥⊕ α̂

F̂
L̂⊥|TjM×TjM , equality holds

along Mn, and hence in a neighborhood by semicontinuity.
Corollary 138. The extensions F and F̂ are trivial ⇐⇒
f and f̂ are mutually D-ruled.
Lemma 139. Let f : Mn → Rn+p be a D-ruled submanifold.
⇒ LD :=S(α|D×TM) is parallel along D (constant dimension).
Corollary 140. {f, f̂} is genuine ⇒ f and f̂ are mutually
D-ruled and we have:

T⊥f M = LD ⊕ L⊥D LD := span {α(D,TM)}

T⊥
f̂
M = L̂D ⊕ L̂⊥D L̂D := span {α̂(D,TM)}

?

T
D

:
(∇⊥)LD

= (∇̂⊥)L̂D

αLD
= α̂L̂D

@
@
@R

�
�
��

D = N
(
αL⊥

D
⊕ α̂L̂⊥

D

)
are rulings!!

In other words, if {f, f̂} is genuine, then they have a “partial rel-
ative nullity” in common, which, if not relative nullity (LD 6= 0),
then it is much bigger than it should be, i.e.: if we lose relative
nullity we gain dimension.

There are always isometries such as τ as in (6), e.g., τ = 0! In
this case Dd = ∆f ∩∆f̂ , where the result is obvious. But we have
no estimate on d for τ = 0, since φ0 may be degenerate...
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Yet, in [DF2] we explicitly constructed τ , L, and Dd for which
the rulings are big:

Theorem 141. Let f : Mn → Rn+p and f̂ : Mn → Rn+q a
genuine pair with p+ q < n and min{p, q} ≤ 5. Then, {f, f̂}
are mutually Dd-ruled a.e., with d ≥ n − p − q + 3 dimLD.
Moreover, the isometry τD is parallel and preserves second
fundamental forms.

Just the proof of the above (sharp!) estimate on d takes 5 pages
and it is quite delicate. But as we will see in the next section, the
above generalizes all known result about compositions, rigidity
with s-nullities, etc, i.e., the ones we studied so far (exercise).

Not surprisingly, we get several corollaries, like:
Corollary 142. Let f : Mn → Rn+p and q a positive integer
with p+ q < n. If min {p, q} ≤ 5 and f is not (n−p−q)–ruled
on any open subset of Mn, then f is genuinely rigid in Rn+q.
Corollary 143. Let f : Mn → Rn+p and q a positive integer
with p + q < n. If min {p, q} ≤ 5 and RicM > 0 then f is
genuinely rigid in Rn+q.
Corollary 144. Any f : U⊂SN→R2n−2 is a composition a.e.
We even get topological criteria for genuine rigidity in line with
the rigidity question proposed by M. Gromov in Partial Differ-
ential Relations p.259 (and answered in [DG]):
Corollary 145. Let Mn be a compact manifold whose first
Pontrjagin class satisfies that [p1]2 6= 0. If n > p + q and
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p + q ≤ 6, then any analytic immersion f : Mn → Rn+p is
(with the induced metric) genuinely rigid in Rn+q.

§29. Better s-nullities

Since LD is always parallel along D by Lemma 139, Corollary 138
screams to use the s-nullity of another bilinear form instead of
the ones for the second fundamental form. Indeed, given V s ⊂
T⊥M a normal subbundle of rank s of an isometric immersion
f : Mn → Rn+p, define as in [FG] the tensor

φV : TM × (TM ⊕ V ⊥)→ V, φV (X, v) = (∇̃Xv)V .

Notice that φτ = (φL⊥, φ̂L̂⊥). As before, since φV is Codazzi, its
left nullity

Nl(φV ) = {X ∈ N (αV ) : ∇⊥XV ⊂ V }

is integrable where it has constant dimension. Set

ν̄fs := max
V s⊂T⊥M

dimNl(φV ).

Thus Lemma 139, Corollary 138 and Theorem 141 imply that
D = Nl(φτ ) ⊂ Nl(φL⊥D) ⇒

Corollary 146. Let f : Mn → Rn+p, and q ∈ N such that
min{p, q} ≤ 5 . If ν̄fs < n+ 2p− q− 3s almost everywhere for
all 1 ≤ s ≤ p, then f is genuinely rigid in Rn+q.

Remark 147. This result is stronger than all the ones with
s-nullities cited before (and probably all the ones not cited too...):

• We can work with q 6= p;
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• ν̄fs ≤ νfs since Nl(φV ) ⊂ N (αV );

• The bound on ν̄fs is weaker than the usual one for νfs by p−s;

• Nl(φV ) is always integrable, and ‘almost’ totally geodesic;

• We can require in the definition of ν̄fs to Nl(φV ) be totally
geodesic, or asymptotic, since the leaves of D are rulings,
which makes ν̄fs even smaller. That is:

We define the (local) rulling index νR(f ) for f : Mn → Rn+p by

νR(f ) = max{d− 3`D : f |U is Dd-ruled for some U ⊂Mn}.

Corollary 148. Let f : Mn → Rn+p and let q be a positive
integer such that p + q < n and min {p, q} ≤ 5. If νR(f ) ≤
n− p− q − 1, then f is genuinely rigid in Rn+q.

§30. Global rigidity

Global rigidity results in submanifold theory are way more scarce
than local ones, the most beautiful of which is Sacksteder’s:
Theorem 149. A compact Euclidean hypersurface of dimen-
sion at least 3 is rigid provided its set of non-totally geodesic
points is connected. (And we understand if not!). Same for
complete bounded.

Proof. By Proposition 134, β := φ0 is flat and Codazzi. Hence,
Propositions 66, 70 and Corollary 71 hold for ∆0 = N (β) (see
Remark 72). Now use the spirit of the proof of Theorem 109 to
show that A = ±Â everywhere.
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Remark 150. Same result and proof hold for f : Mn → Hn+1.
For f : Mn → Sn+1 complete and n ≥ 4 it also holds by the proof
of Corollary 73 since no leaf of relative nullity with ν ≥ n−2 can
be complete: {X, . . . , CTνX} would be n−1 L.I. vectors in ∆⊥.
In [DG] the codimension two case was solved by showing that,
giving a pair of is.ims., along each connected component of an
open dense subset, the immersions are either congruent or
extend isometrically to flat hypersurfaces, or to singular Sbrana-
Cartan hypersurfaces. That singularities are necessary was proved
much later in [FF] (also in the flat case, filling a gap in [DG]).
In other words, compact codimension two Euclidean submanifolds
are singularly genuinely rigid, and singularities are needed!

§31. Singular genuine rigidity ([FG])

As we saw in Theorem 137, given τ : L → L̂ we get isometric
(possibly trivial) ruled extensions as in (7). In particular, this
holds for τ = 0, in which case φ0 = β := (α, α̂). The key
distribution here was thus ∆0 = Ker β. The extensions in (7) are
then obviously isometric since F̂∗ = τ̄ ◦ F∗. This is a sufficient
condition, but not a necessary one (!!!). Indeed, a tautology:
Proposition 151. Let f, f̂ and τ : L → L̂ parallel that pre-
serves second fundamental forms. Let Λ ⊂ TM ⊕ L be any
subbundle. Then, F and F̂ in (7) are isometric ⇐⇒

φτ (TM,Λ) ⊂ L⊥ ⊕ L̂⊥ is null. (9)

Of course this holds if Λ ⊂ ∆τ as before, but it has two very
important advantages:
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• No Main Lemma! In particular, no need for min{p, q} ≤ 5
in an analogous to Theorem 141.

• Null subspaces are much, Much, MUCH easier to get than
nullities due to Proposition 34. Thanks J.D.Moore!

Observe that Proposition 151 holds even if Λ is not transversal to
Mn. In this case, F and F̂ are not immersions along Mn ⊂ Λ.
Actually, the only problem to extend is when Λ = D ⊂ TM ,
otherwise we just take a subbundle of Λ transversal to Mn.
If f is D-ruled, then F is not an immersion, it has constant rank
equal to n, and F (D) = f (M). But what if not?
Def.: We say that F = FΛ,f in (7) is a singular extension of
f if it is an immersion in some open neighborhood of Mn (the
0-section of Λ), except of course at Mn itself.
Def.: We say that f̂ is a strongly genuine deformation of f , or
that {f, f̂} is a strongly genuine pair, if there is no open subset
U where f |U and f̂ |U singularly extend isometrically.
Def.: Given q ∈ N, the isometric immersion f is said to be
singularly genuinely rigid in Rn+q if, for any isometric immer-
sion f̂ : Mn → Rn+q , {f, f̂} singularly extend isometrically a.e..
We say that F = FΛ,f nowhere induces a singular extension
of f if, for every open subset U ⊂ Mn and every subbundle
Λ′ ⊂ Λ|U , the restriction of F |Λ′ is not a singular extension of f |U .
The key point is that this only happens when f is Λ̄-ruled (observe
that now Λ ⊂ TM is not necessarily integrable, so Λ̄-ruled means
that f∗x(Λ(x) ∩ U) ⊂ f (M)):
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Proposition 152. Let Λ ⊂ TM any smooth distribution.
Then, FΛ,f nowhere induces a singular extension of f ⇐⇒
f is Λ̄-ruled.

Proof. We only need to prove the direct statement. SPG, Λ ⊂
TM with rank Λ = 1. So we may parametrize F (x, t) = f (x) +
tX(x) where ‖X‖ = 1. Then, ∀p ∈M there is (pm, tn)→ (p, 0)
with tm 6= 0 such that rankF∗(pm, tn) = n. Define the tensors on
M by K = ∇•X and Ht = I + tK. Hence, there is Ym ∈ TpmM
such that F∗(pm,tm)Ym = X(pm), i.e., HtmYm = X(pm) and

α(X(pm), H−1
tm
X(pm)) = 0. (10)

Consider a precompact open neighborhood U ⊂ Mn of p, so
‖α‖ < c and ‖K‖ < c for some constant c > 1. Hence for
t ∈ I = (− 1

c2 ,
1
c2) we have that Ht is invertible on U , and

H−1
t =

∑
i≥0

(−t)iK i,

since Ht ◦
∑N

i=0(−t)iK i = Id− (−t)N+1KN+1.
We claim that α(X,SX) = 0 on Mn, where SX is the K-invariant
subspace generated by X , i.e., SX = span{X,KX,K2X, . . . }.
If otherwise, set j := min{k ∈ N : α(X(q), Kk(X(q))) 6= 0, q ∈
Mn} and take p ∈ Mn such that α(X(p), Kj(X(p))) 6= 0.
By (10), ∑

i≥0
(−tm)iα(X(pm), Kj+i(X(pm))) = 0.

Taking m→∞ we get α(X(p), Kj(X(p))) = 0, a contradiction.
Now, since α(X,SX) = 0 on Mn, for any t ∈ I and p ∈ U we
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get F∗(p,t)(H−1
t (X)) = X since H−1

t (X) ∈ SX . It follows that
rank(F∗) = n in all U×I , and therefore F (U×I) = f (U). Hence
a segment of the line generated by X is contained in f (U).

We have thus shown:
Theorem 153. Let {f, f̂} be a strongly genuine pair and
τ : L`⊂T⊥f M→ L̂`⊂T⊥

f̂
M a parallel vector bundle isometry

that preserves second fundamental forms. Let D ⊂ TM ⊕ L`
be a subbundle such that φτ (TM,D) is a null subset. Then
D ⊂ TM and f and f̂ are mutually D̄-ruled.
From Proposition 34 we immediately get the following, where

i(φτ )(x) := max{rank (φτ (X, · )) : X ∈ TxM}.

Corollary 154. Under the assumptions of Theorem 153, along
each connected component of an open dense subset of Mn,
i(φτ ) is constant and f and f̂ are mutually D̄d

Y -ruled for any
smooth vector field Y ∈Re(φτ ), where Dd

Y := Ker (φYτ ) ⊂ TM .
In particular, f and f̂ are mutually d-ruled with

d = n + `− i(φτ ) ≥ n− p− q + 3`.

By allowing singular extensions we recover all the corollaries in
[DF2], and even without the technical restrictions on the codi-
mensions required there due to the Main Lemma. For example:
Corollary 155. Any Mn ⊂ Rn+p with positive Ricci curva-
ture is singularly genuinely rigid in Rn+q, for every q < n−p.
Now, we did all this to apply to global rigidity. Indeed we have:
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Theorem 156. Let f : Mn → Rn+p and f̂ : Mn → Rn+q be
isometric immersions of a compact Riemannian manifold with
p+ q < n. Then, along each connected component of an open
dense subset of Mn, either f and f̂ singularly extend isomet-
rically, or f and f̂ are mutually d-ruled, with d ≥ n−p−q+3.
This is an immediate consequence of Corollary 154 and the next,
which shows that we have ` ≥ 1 a.e.:
Lemma 157. Under the assumptions of Theorem 156, at
each point of Mn either i(β) ≤ p + q − 3, or S(β)⊥ is not
definite. The last possibility holds globally if min{p, q} ≤ 5.

Proof. Let W be the complement, i.e., where either S(β)⊥ is
definite, and i(β) ≥ p + q − 2 if min{p, q} ≥ 6. So, ν0 > 0
on W since this is the easy part of the Main Lemma where no
hypothesis is needed; see the first exercise in Section 16. Then,
use Sacksteder’s trick: not only ν0, but also i(β) (by the proof of
Proposition 70), are constant along a geodesic in ∆0.

In particular, for p + q ≤ 4, Theorem 156 easily unifies Sackst-
eder and Dajczer-Gromoll Theorems above, states that the only
way to isometrically immerse a compact Euclidean hypersurface
in codimension 3 is through compositions (which in turn were
classified in [DF1]), and provides a global version of the main
result in [DFT]:
Corollary 158. Any compact (or complete and bounded) iso-
metrically immersed submanifold Mn of Rn+p is singularly
genuinely rigid in Rn+q for all q < min{5, n} − p.
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Proof. The only case left is the (n − 1)-ruled one, which is not
hard, or you can attack it directly; see Section 3.1 in [FG].

From Theorem 156 we also get the following topological criteria
for singular genuine rigidity with the same spirit as Corollary 145,
yet without any a priori assumption on the codimensions:
Corollary 159. Mn a compact manifold whose k-th Pontr-
jagin class [pk] 6= 0 for some k > 3

4(p + q − 3). Then, any
analytic immersion f : Mn → Rn+p (with the induced metric)
is singularly genuinely rigid in Rn+q in the C∞-category.

§32.
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