Submanifolds and Isometric Immersions: class guide

Luis A. Florit (luis@impa.br, office 404)

Version: 20190715.1749

Periodically download the last version: http://luis.impa.br/aulas/imis/aulas.pdf

Subscribe to aulas-luis Google group

Prerequisites: Basics about manifolds, tensors, at least up to page 12 here. A bit of Riemannian geometry, fundamental group and covering maps.

Bibliography: [DT], [dC], [ON], [Pe], [Sp], [KN].

DO ALL THE EXERCISES IN [DT] !!!!

Clickable index

<table>
<thead>
<tr>
<th>1</th>
<th>Notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Riemannian metrics</td>
</tr>
<tr>
<td>3</td>
<td>Linear connections</td>
</tr>
<tr>
<td>4</td>
<td>Geodesics</td>
</tr>
<tr>
<td>5</td>
<td>Curvature</td>
</tr>
<tr>
<td>6</td>
<td>Isometric Immersions</td>
</tr>
<tr>
<td>7</td>
<td>Hypersurfaces</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
</tr>
</tbody>
</table>
§1. **Notations**

Top. manifolds: Hausdorff + countable basis. Partitions of unity.

\(n \)-dimensional differentiable manifolds: \(M^n \). Everything is \(C^\infty \).

\(\mathcal{F}(M) := C^\infty(M, \mathbb{R}) \); \(\mathcal{F}(M, N) := C^\infty(M, N) \).

\((x, U)\) chart \(\Rightarrow \) coordinate vector fields \(\partial_i := \partial/\partial x_i \in \mathfrak{X}(U) \).

Tangent bundle \(TM \), vector fields \(\mathfrak{X}(M) := \Gamma(TM) \cong \mathcal{D}(M) \).

Submersions, immersions, embeddings, local diffeomorphisms.

Vector bundles, trivializing charts, transition functions, sections.

Tensor fields \(\mathfrak{X}^{r,s}(M) \), \(k \)-forms \(\Omega^k(M) \), orientation, integration.

Pull-back of a vector bundle \(\pi : E \to N \) over \(N \): \(f^*(E) \).

Vector fields along a map \(f : M \to N \Rightarrow \mathfrak{X}_f \cong \Gamma(f^*(TN)) \).

\(f \)-related vector fields.

Example: Lie Groups \(G, L_g, R_g; \mathfrak{g} := T_eG \) is an algebra;

Integral curve \(\gamma \) of \(X \in \mathfrak{g} \) through \(e \) is a homomorphism \(\Rightarrow \)

\(\exp^G : \mathfrak{g} \to G, \exp^G(X) := \gamma(1) \Rightarrow \exp^G(tX) = \gamma(t) \).

§2. **Riemannian metrics**

Gauss, 1827: \(M^2 \subset \mathbb{R}^3 \Rightarrow \langle , \rangle|_{M^2}, \ K_M = K_M(\langle , \rangle) \), distances, areas, volumes... Non-Euclidean geometries.

Riemann, 1854: \(\langle , \rangle \Rightarrow K_M \) (relations proved decades later).

Slow development. General Relativity pushed up!

Riemannian metric, Riemannian manifold: \((M^n, \langle , \rangle) = M^n \).

\(g_{ij} := \langle \partial_i, \partial_j \rangle \in \mathcal{F}(U) \Rightarrow (g_{ij}) \in C^\infty(U, S(n, \mathbb{R}) \cap Gl(n, \mathbb{R})) \).

Isometries, local isometries, isometric immersions.

Product metric. \(T_pV \cong V, \ T\mathbb{V} \cong V \times V \).
Examples: \((\mathbb{R}^n, \langle \cdot, \cdot \rangle_{can})\), Euclidean submanifolds. Nash.

Example: (bi-)invariant metrics on Lie groups.

Proposition 1. Every differentiable manifold admits a Riemannian metric.

Angles between vectors at a point. Norm.
Riemannian vector bundles: \((E, \langle \cdot, \cdot \rangle)\).
It always exists local orthonormal frames: \(\{e_1, \ldots, e_n\}\).
Length of a piecewise differentiable curve \(\Rightarrow\) Riem. distance \(d\).
The topology of \(d\) coincides with the original one on \(M\).

§3. Linear connections

If \(M^n = \mathbb{R}^n\), or even if \(M^n \subset \mathbb{R}^N\), there is a natural way to differentiate vector fields. And this depends only on \(\langle \cdot, \cdot \rangle\).

Def.: An affine connection or a linear connection or a covariant derivative on \(M\) is a map

\[
\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
\]

with \(\nabla_X Y\) being \(\mathbb{R}\)-bilinear, tensorial in \(X\) and a derivation in \(Y\).

Tensoriality in \(X\) \(\Rightarrow\) \((\nabla_X Y)(p) = \nabla_{X(p)} Y\) makes sense.
Local oper.: \(Y|_U = 0 \Rightarrow (\nabla_X Y)|_U = 0 \Rightarrow (\nabla_X Z)|_U = \nabla^U_{X|_U}(Z|_U)
\Rightarrow\) The Christoffel symbols \(\Gamma^k_{ij}\) of \(\nabla\) in a coordinate system \(\Rightarrow\) Christoffel symbols completely determine the connection: all that is needed is to have local basis of sections \(\Rightarrow\)

Connections on vector bundles: formally exactly the same.
The above property on \(U\) is a particular case of the following:
Proposition 2. (or “everything I know about connections.”) Let ∇ be a linear connection on M (or any vector bundle). Then, for every smooth map $f : N \to M$, there exists a unique linear connection $\nabla^f : \mathfrak{X}(N) \times \mathfrak{X}_f \to \mathfrak{X}_f$ on $f^*(TM)$ such that

$$\nabla^f_Y(X \circ f) = \nabla_{f_\ast Y} X, \quad \forall Y \in \mathfrak{X}(N), X \in \mathfrak{X}(M).$$

We will omit the superindex f in ∇^f.

In particular, Proposition 2 holds for any smooth curve $\alpha(t) = \alpha : I \subset \mathbb{R} \to M$, and if $V \in \mathfrak{X}_\alpha$ we denote $V' := \nabla_{\partial_t} V \in \mathfrak{X}_\alpha$.

So, if $\alpha'(0) = v$, $\nabla_v Y = (Y \circ \alpha)'(0)$. But beware of “$\nabla_{\alpha'}(\alpha'')$”!!

Def.: $V \in \mathfrak{X}_\alpha$ is parallel if $V' = 0$. We denote by \mathfrak{X}_α'' the set of parallel vector fields along α.

Proposition 3. Let $\alpha : I \subset \mathbb{R} \to M$ be a piecewise smooth curve, and $t_0 \in I$. Then, for each $v \in T_{\alpha(t_0)} M$, there exists a unique parallel vector field $V_v \in \mathfrak{X}_\alpha$ such that $V_v(t_0) = v$.

The map $v \mapsto V_v$ is an isomorphism between $T_{\alpha(t_0)} M$ and \mathfrak{X}_α'', and the map $(v, t) \mapsto V_v(t)$ is smooth when α is smooth \Rightarrow

Def.: The parallel transport of $v \in T_{\alpha(t)} M$ along α between t and s is the map $P_{ts}^\alpha : T_{\alpha(t)} M \to T_{\alpha(s)} M$ given by $P_{ts}^\alpha(v) = V_v(s)$.

Notice that $\mathcal{F}(M) = \mathfrak{X}^0(M) = \mathfrak{X}^{0,0}(M)$ and $\mathfrak{X}(M) = \mathfrak{X}^{0,1}(M)$.

Covariant differentiation of 1-forms and tensors: $\forall r, s \geq 0$,

$$\nabla \Rightarrow \begin{cases} \nabla : \mathfrak{X}^r(M) \to \mathfrak{X}^{r+1}(M); \\ \nabla : \mathfrak{X}^{r,s}(M) \to \mathfrak{X}^{r+1,s}(M); \\ \nabla : \mathfrak{X}^{r,s}(E, \hat{\nabla}) \to \mathfrak{X}^{r+1,s}(E, \hat{\nabla}); \end{cases}$$

for any affine vector bundle $(E, \hat{\nabla})$ (in partic., for $E = (TM, \nabla)$).
3.1 The Levi-Civita connection

Def.: A linear connection ∇ on a Riemannian manifold (M, \langle , \rangle) is said to be *compatible* with \langle , \rangle if, for all $X, Y, Z \in \mathfrak{X}(M)$,

$$X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle.$$

Exercise. ∇ is compatible with $\langle , \rangle \iff \forall V, W \in \mathfrak{X}_\alpha, \langle V, W \rangle' = \langle V', W \rangle + \langle V, W' \rangle \iff \forall V, W \in \mathfrak{X}_\alpha, \langle V, W \rangle$ is constant $\iff P_{ts}^\alpha$ is an isometry, $\forall \alpha, t, s \iff \nabla \langle , \rangle = 0$.

Def.: The tensor $T_{\nabla}(X, Y) := \nabla_X Y - \nabla_Y X - [X, Y]$ is called the *torsion* of ∇. We say that ∇ is *symmetric* if $T_{\nabla} = 0$.

Miracle: Every Riemannian manifold (M, \langle , \rangle) has a unique linear connection that is symmetric and compatible with \langle , \rangle, called the **Levi-Civita connection** of (M, \langle , \rangle).

This is a consequence of the *Koszul formula*:

$$2\langle \nabla_X Y, Z \rangle = X \langle Y, Z \rangle + Y \langle X, Z \rangle - Z \langle X, Y \rangle - \langle X, [Y, Z] \rangle - \langle Y, [X, Z] \rangle + \langle Z, [X, Y] \rangle. $$

Exercise. Verify that this formula defines a linear connection with the desired properties.

This is the only connection that we will work with. In coordinates, if $(g^{ij}) := (g_{ij})^{-1}$,

$$\Gamma^k_{ij} = \frac{1}{2} \sum_r \left(\frac{\partial g_{ir}}{\partial x_j} + \frac{\partial g_{jr}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_r} \right) g^{rk}. $$

Exercise. Show that, for $(\mathbb{R}^n, \langle , \rangle_{\text{can}})$, $\Gamma^k_{ij} = 0$ and ∇ is the usual vector field derivative.

Exercise. Use Koszul formula to show that the Levi-Civita connection of a bi-invariant metric of a Lie Group satisfies, and is characterized, by the property that $\nabla_X X = 0 \forall X \in \mathfrak{g}$.

Lemma 4. *(Symmetry and Compatibility Lemma)* Let N be any manifold, and $f : N \rightarrow M$ a smooth map into a Riemannian manifold M. Then:
\(\nabla^f \) is symmetric, that is, \(\nabla^f_X f_* Y - \nabla^f_Y f_* X = f_* [X, Y] \), \(\forall X, Y \in \mathfrak{X}(N) \);

\(\nabla^f \) is compatible with the natural metric on \(f^*(TM) \).

Example: \(f : N \to M \) an isometric immersion \(\Rightarrow f^*(TM) = f^*(TN) \oplus \perp T^\perp f N \Rightarrow \forall Z \in \mathfrak{X}_f, Z = Z^\top + Z^\perp \Rightarrow \) the relation between the Levi-Civita connections is \(f_* \nabla^N_X Y = (\nabla^f_X f Y)^\top \).

\section*{4. Geodesics}

When do we have minimizing curves? What are those curves?

Critical points of the arc-length funct. \(L : \Omega_{p,q} \to \mathbb{R} : \text{geodesics} \):

\[\gamma'' := \nabla_d \gamma' = 0. \]

Geodesics = second order nonlinear nice ODE \(\Rightarrow \)

Proposition 5. \(\forall v \in TM, \exists \epsilon > 0 \) and a unique geodesic \(\gamma_v : (-\epsilon, \epsilon) \to M \) such that \(\gamma'_v(0) = v \) \((\Rightarrow \gamma_v(0) = \pi(v)) \).

\(\gamma \) a geodesic \(\Rightarrow \| \gamma' \| = \text{constant}. \)

\(\gamma \) and \(\gamma \circ r \) nonconstant geodesics \(\Rightarrow r(t) = at + b, a, b \in \mathbb{R} \Rightarrow \gamma_v(at) = \gamma_{av}(t); \gamma_v(t + s) = \gamma_{v(s)}(t) \Rightarrow \text{geodesic field} G \) of \(M \):

Proposition 6. There is a unique vector field \(G \in \mathfrak{X}(TM) \) such that its trajectories are \(\gamma' \), where \(\gamma \) are geodesics of \(M \).

The local flux of \(G \) is called the \textit{geodesic flow} of \(M \). In particular:

Corollary 7. For each \(p \in M \), there is a neighborhood \(U_p \subset M \) of \(p \) and positive real numbers \(\delta, \epsilon > 0 \) such that the map

\[\gamma : T_e U_p \times (-\delta, \delta) \to M, \quad \gamma(v, t) = \gamma_v(t), \]
is differentiable, where \(T_\epsilon U_p := \{ v \in TU_p : \|v\| < \epsilon \} \).

Since \(\gamma_v(at) = \gamma_{av}(t) \), changing \(\epsilon \) by \(\epsilon\delta/2 \) we can assume \(\delta = 2 \) \(\Rightarrow \)

We have the **exponential map** of \(M \) (terminology from \(O(n) \)):

\[
\exp : T_\epsilon U_p \to M, \quad \exp(v) = \gamma_v(1).
\]

\(\Rightarrow \) \(\exp(tv) = \gamma_v(t) \Rightarrow \exp_p = \exp |_{T_p M} : B_\epsilon(0_p) \subset T_p M \to M \Rightarrow \)

Proposition 8. For every \(p \in M \) there is \(\epsilon > 0 \) such that \(B_\epsilon(p) := \exp_p(B_\epsilon(0_p)) \subset M \) is open and \(\exp_p : B_\epsilon(0_p) \to B_\epsilon(p) \) is a diffeomorphism.

An open set \(p \in V \subset M \) onto which \(\exp_p \) is a diffeomorphism as above is called a normal neighborhood of \(p \), and when \(V = B_\epsilon(p) \) it is called a normal or geodesic ball centered at \(p \).

Proposition 8 \(\Rightarrow \) \((\exp_p |_{B_\epsilon(0_p)})^{-1} \) is a chart of \(M \) in \(B_\epsilon(p) \) \(\Rightarrow \)

We always have (local!) **polar coordinates** for any \((M, \langle , \rangle) \):

\[
\varphi : (0, \epsilon) \times S^{n-1} \to B_\epsilon(p) \setminus \{p\}, \quad \varphi(s, v) = \gamma_v(s), \quad (1)
\]

where \(S^{n-1} = \{ v \in T_p M : \|v\| = 1 \} \) is the unit sphere in \(T_p M \).

Examples: \((\mathbb{R}^n, \text{can}); (S^n, \text{can}) \).

Exercise. Show that for a bi-invariant metric on a Lie Group, it holds that \(\exp_e = \exp^G \).

4.1 Geodesics are (local) arc-length minimizers

Lemma 9. (*Gauss’ Lemma*) Let \(p \in M \) and \(v \in T_p M \) such that \(\gamma_v(s) \) is defined up to time \(s = 1 \). Then,

\[
\langle (\exp_p)_* v)(w), (\exp_p)_* w) \rangle = \langle v, w \rangle, \quad \forall \ w \in T_p M.
\]
Proof. If \(f(s, t) := γ_{v+tw}(s) = \exp_p(s(v + tw)) \) then, for \(t = 0 \), \(f_s = (\exp_p)_*sv \), \(f_t = (\exp_p)_*sw \) and \(\langle f_s, f_t \rangle_s = \langle v, w \rangle \).

Gauss’ Lemma ⇒ \(S_ε(p) := \partial B_ε(p) \subset M \) is a regular hypersurface of \(M \) orthogonal to the geodesics emanating from \(p \), called the geodesic sphere of radius \(ε \) centered at \(p \).

Now, \(B_ε(p) := \exp_p(B_ε(0_p)) \subset M \) as in Proposition 8 agrees with the metric ball of \((M, d) \) !!!!! More precisely:

Proposition 10. Let \(B_ε(p) \subset U \) a normal ball centered at \(p \in M \). Let \(γ : [0, a] → B_ε(p) \) be the geodesic segment with \(γ(0) = p \), \(γ(a) = q \). If \(c : [0, b] → M \) is another piecewise differentiable curve joining \(p \) and \(q \), then \(l(γ) ≤ l(c) \). Moreover, if equality holds, then \(c \) is a monotone reparametrization of \(γ \).

Proof. In polar coordinates, \(c(t) = \exp_p(s(t)v(t)) \) in \(B_ε(p) \{p\} \), and if \(f(s, t) := \exp_p(sv(t)) = γ_{v(t)}(s) \), we have that \(c’ = s’f_s + f_t \). Now, use that \(f_s \perp f_t \), by Gauss’ Lemma.

Corollary 11. \(d \) is a distance on \(M \), \(d_p := d(p, ·) \) is differentiable in \(B_ε(p) \{p\} \), and \(d_p^2 \) is differentiable in \(B_ε(p) \).

Exercise. Compute \(∥\nabla d_p∥ \) and the integral curves of \(\nabla d_p \) inside \(B_ε(p) \{p\} \).

Remark 12. Proposition 10 is LOCAL ONLY, and \(ε = ε(p) \): \(\mathbb{R}^n; \mathbb{S}^n; \mathbb{R}^n \setminus \{0\} \).

§5. **Curvature**

Gauss: \(K(M^2 ⊂ \mathbb{R}^3) = K(⟨ , ⟩) \). Riemann: \(K(σ) = K_p(\exp_p(σ)) \).
Def.: The *curvature tensor* or *Riemann tensor* of M is (sign!)

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

We also call R the $(4,0)$ tensor given by

$$R(X,Y,Z,W) = \langle R(X,Y)Z, W \rangle.$$

Curvature tensor $R_{\hat{\nabla}}$ of a vector bundle E with a connection $\hat{\nabla}$: exactly the same.

Proposition 13. For all $X,Y,Z,W \in \mathfrak{X}(M)$, it holds that:

- R is a tensor;
- $R(X,Y,Z,W)$ is skew-symmetric in X,Y and in Z,W;
- $R(X,Y,Z,W) = R(Z,W,X,Y)$;
- $R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0$ (first Bianchi id.);
- $R^s_{ijk} = \sum_l \Gamma^l_{ik} \Gamma^s_{jl} - \sum_l \Gamma^l_{jk} \Gamma^s_{il} + \partial_j \Gamma^s_{ik} - \partial_i \Gamma^s_{jk}$ ($\Rightarrow R \cong \partial^2 \langle , \rangle$).

Proof. Exercise. $lacksquare$

$\langle , \rangle \Rightarrow \mathfrak{X}(M) \cong \Omega^1(M)$ and \langle , \rangle extends to the tensor algebra \Rightarrow the curvature operator $R : \Omega^2(M) \to \Omega^2(M)$ is self-adjoint.

Def.: If $\sigma \subset T_pM$ is a plane, then the *sectional curvature* of M in σ is given by

$$K(\sigma) := \frac{R(u,v,v,u)}{\|u\|^2\|v\|^2 - \langle u,v \rangle^2}; \quad \sigma = \text{span}\{u,v\}. $$

Proposition 14. If R and R' are tensors with the symmetries of the curvature tensor $+$ Bianchi such that $R(u,v,v,u) = R'(u,v,v,u)$ for all u,v, then $R = R'$ ($\Rightarrow K$ determines R).
Corollary 15. If M has constant sectional curvature $c \in \mathbb{R}$, then $R(X, Y, Z, W) = c(\langle X, W \rangle \langle Y, Z \rangle - \langle X, Z \rangle \langle Y, W \rangle)$.

Def. The *Ricci tensor* is the symmetric $(2,0)$ tensor given by

$$Ric(X, Y) := \frac{1}{n-1} \text{trace} R(X, \cdot, \cdot, Y),$$

and the *Ricci curvature* is $Ric(X) = Ric(X, X)$ for $\|X\| = 1$.

Example: $\mathbb{C}P^n$ as S^{2n+1}/S^1 has $K(X, Y) = 1 + 3\langle JX, Y \rangle^2$ and $Ric \equiv (n+2)/(n-1)$.

Def. The *scalar curvature* of M is $\frac{1}{n} \text{trace} Ric$.

Lemma 16. (Compare with Lemma 4) Let $f : U \subset \mathbb{R}^2 \rightarrow M$ be a map into a Riemannian manifold and $V \in \mathfrak{X}_f$. Then,

$$\nabla_{\partial_t} \nabla_{\partial_s} V - \nabla_{\partial_s} \nabla_{\partial_t} V = R(f_* \partial_t, f_* \partial_s)V.$$

Equivalently, $R_{\nabla f}(\cdot, \cdot)V = R_{\nabla}(f_* \cdot, f_* \cdot)V$, $\forall f : N \rightarrow M$.

Proof. Since $R_{\nabla f}$ is a tensor, it is enough to check the lemma for coordinate vector fields on N and for $V = \overline{V} \circ f$, $\overline{V} \in \mathfrak{X}(M)$.
§6. **Isometric immersions**

As we have seen in the Example in page 5, if \(f : M \rightarrow N \) is an isometric immersion \(\Rightarrow f^*(TN) = f_*(TM) \oplus T^1_f M \), and

\[
\nabla^M_X Y = (\nabla^f_X f_* Y)^\top, \quad \forall X, Y \in TM.
\]

Moreover, we have that

\[
\alpha(X, Y) := \left(\nabla^f_X f_* Y\right)^\perp
\]

is a symmetric tensor, called the *second fundamental form of* \(f \).

In addition, \(\nabla^\perp : TM \times \Gamma(T^1_f M) \rightarrow \Gamma(T^1_f M) \) given by

\[
\nabla^\perp_X \eta = \left(\nabla^f_X \eta\right)^\perp
\]

is a connection in \(T^1_f M \), called the *normal connection of* \(f \).

Identifications.

Exercise. Show that \(\nabla^\perp \) is a compatible connection with the induced metric on \(T^1_f M \).

\(\alpha(p) \) is the quadratic approximation of \(f(M) \subset N \) at \(p \in M \).

Picture!

\(\eta \in T^1_{f(p)} M \Rightarrow \) (self-adjoint!) *shape operator* \(A_\eta : T_p M \rightarrow T_p M \).

The Fundamental Equations. Particular case: \(K = \text{constant} \Rightarrow \) the *Fundamental Theorem of Submanifolds.*

Gauss equation \(\iff K(\sigma) = K(\sigma) + \langle \alpha(u, u), \alpha(v, v) \rangle - \|\alpha(u, v)\|^2 \Rightarrow \) Riemann notion of sectional curvature agrees with ours.

Example: \(S^{n-1}(r) \subset \mathbb{R}^n \Rightarrow K \equiv 1/r^2 \) (it *had* to be constant!).

Model of the hyperbolic space \(\mathbb{H}^n \) as a submanifold of \(\mathbb{L}^{n+1} \).
§7. **Hypersurfaces**

Principal curvatures and directions; mean curvature; Gauss-Kronecker curvature; Gauss map.

Proposition 17.

§8.

References

