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Preface

Submanifold theory has emerged as a natural development of the classical study
of curves and surfaces in Euclidean three space with the methods of differential calculus.
In the last century, it has evolved into a broad subarea of differential geometry with
many distinct branches, and making use of a variety of techniques. As a consequence,
any book on the subject must necessarily be restricted to some particular directions in
the field. Our choices in this book were certainly driven by our own research experiences
and personal tastes. The initial goal was to write an updated version of the lecture notes
“Submanifolds and isometric immersion”, published in 1990. However, the contents of
that book now cover roughly one third of the material of this book, and virtually all
chapters of the original manuscript have been completely rewritten and substantially
enlarged.

The focus of this book is on the general properties of isometric and conformal
immersions of Riemannian manifolds into space forms, rather than on results that can
be derived for some special classes of submanifolds. One main theme is the isometric
and conformal deformation problem for submanifolds with arbitrary dimension and
codimension. Besides providing a modern treatment of some classical theorems on
this topic, a special emphasis has been given to the notion of genuine (isometric and
conformal) deformations of submanifolds. A basic algebraic tool is the theory of flat
bilinear forms introduced by J. D. Moore as an outgrowth of the theory of exteriorly
orthogonal quadratic forms due to E. Cartan.

The first seven chapters of the book are suitable for an introductory course on
submanifold theory for students with a basic background on Riemannian geometry.
The language and some standard results on vector bundles are also needed and are
summarized in an appendix to the book. With the omission of a few sections of a
more technical nature, and of some others devoted to applications of the theory, the
material of the first seven chapters could be covered in a one-semester course. More
specifically, Sections 1.10 and 4.4.3, as well as the appendices to Chapters 1 and 4,
could be skipped in a first reading, and the instructor could make some choices among
the materials of Sections 2.3, 3.5, 3.6 and 4.3, depending on the students’ interests and
on his own.

The remaining chapters account for the second part of the title of the book,
borrowed from Knapp’s book on Lie groups. They could be used in a more advanced
course by students aiming at initiating research on the subject, and are also intended to
serve as a reference material for specialists in the field. A brief outline of each chapter
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2 Contents

is given next.
Chapter 1 establishes some basic facts of the theory of submanifolds that are used

throughout the rest of the book. The second fundamental form and normal connection
of an isometric immersion are introduced by means of the Gauss and Weingarten for-
mulas, and their compatibility equations are derived, namely, the Gauss, Codazzi and
Ricci equations. A complete proof is provided of the so-called Fundamental theorem
of submanifolds, according to which these data are sufficient to determine uniquely
any submanifold of a Riemannian manifold with constant sectional curvature, up to
isometries of the ambient space. Among the remaining topics covered in this chapter
are totally geodesic and umbilical submanifolds of space forms, the relative nullity dis-
tribution, principal normal vector fields and submanifolds with flat normal bundle. An
alternative approach to the basic equations and the Fundamental theorem of subman-
ifolds, namely, the Burstin-Mayer-Allendoerfer theory, is summarized in an appendix
to the chapter, which involve the Gauss, Codazzi and Ricci equations of higher order.

Chapter 2 discusses conditions under which the codimension of an isometric im-
mersion of a Riemannian manifold into a space form can be reduced, that is, conditions
implying that the image of the isometric immersion is contained in a totally geodesic
submanifold of the ambient space. Some of them are given in terms of the s-nullities
and the type number of the isometric immersion, which play a key role in the study
of the rigidity of submanifolds in Chapter 4. The results of this chapter, as well as
some of those in Chapter 1, are illustrated with the classification of constant curvature
submanifolds with flat normal bundle and parallel mean curvature vector field of space
forms.

In Chapter 3 some general aspects of the theory of minimal submanifolds are
introduced, starting with a proof of the first variational formula. The characterization
of minimal submanifolds of Euclidean space by the harmonicity of its coordinate func-
tions is then discussed, and a few of its consequences are derived. The construction
of minimal isometric immersions of spheres into spheres in terms of eigenfunctions of
the Laplacian is presented. The Ricci tensor of a submanifold of a space form is com-
puted in terms of its second fundamental form, and it is shown how this can be used
to derive an obstruction to the existence of minimal isometric immersions into a space
of constant sectional curvature. A strong rigidity result for minimal hypersurfaces of
space forms within the class of minimal isometric immersions is given. The last section
of the chapter contains a generalization for hypersurfaces with arbitrary dimension of
space forms of the classical Ricci condition, which gives necessary and sufficient con-
ditions for some neighborhood of a point with nonpositive Gaussian curvature of a
two-dimensional Riemannian manifold to admit a minimal isometric immersion in R3.

Chapter 4 initiates the study of a central topic of this book, namely, the iso-
metric rigidity/deformation problem for submanifolds of space forms. The theory of
flat bilinear forms is developed, and applied in particular to prove two basic rigidity
theorems due to Allendoerfer and do Carmo and Dajczer, respectively. The classical
inequalities due to Chern and Kuiper are also derived. The proof of the main lemma
on flat bilinear forms is provided in an appendix to the chapter.

In Chapter 5, the theory of flat bilinear forms is applied to the study of isometric
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immersions of space forms into space forms. This is in fact its primary application,
and goes back to Cartan’s theory of exteriorly orthogonal quadratic forms. The cor-
respondence between constant curvature submanifolds of space forms satisfying some
additional conditions and solutions of certain nonlinear systems of partial differential
equations is also discussed. In the surface case, this reduces to the classical corre-
spondence between constant curvature surfaces and solutions of the sine-Gordon, sinh-
Gordon, Laplace and wave equations. We conclude the chapter with Nikolayevsky’s
proof of the nonexistence of an isometric immersion of a complete non-simply connected
n-dimensional Riemannian manifold of constant sectional curvature c < 0 into a com-
plete and simply connected (2n − 1)-dimensional Riemannian manifold of constant
sectional curvature c̃ > c.

Chapter 6 deals with the geometric restrictions that are imposed on submanifolds
with nonpositive extrinsic curvatures of space forms. The main tools are, on the one
hand, an algebraic lemma due to Otsuki and, on the other hand, a maximum principle
due to Omori and Yau and generalized by Pigola, Rigoli and Setti. The latter is a key
ingredient to replace compactness. Also discussed in this chapter is Florit’s estimate on
the index of relative nullity of a submanifold whose extrinsic curvatures are nonpositive
at some point, under the assumption that its codimension does not exceed half of its
dimension.

Chapter 7 studies complete submanifolds of low codimension of space forms with
positive index of relative nullity everywhere. Among the main results of the chapter
are Hartman’s splitting theorem for complete Euclidean submanifolds with nonnega-
tive Ricci curvature and Dajczer-Gromoll’s generalization of the rigidity of the totally
geodesic inclusion of a round sphere Sn into Sn+p, p ≤ n−1. The proofs of both results
rely on the fact that the leaves of the minimum relative nullity foliation of a complete
submanifold are also complete. This is proved in detail, after developing the necessary
tools, especially the splitting tensor of a totally geodesic foliation. The chapter pro-
ceeds with a discussion of the Gauss parametrization of oriented hypersurfaces with
constant index of relative nullity. Besides several applications presented in the chapter,
the Gauss parametrization plays a key role in the classifications in Chapters 11 and 14,
respectively, of hypersurfaces of space forms that are isometrically deformable or in-
finitesimally bendable. The chapter ends with a discussion of intrinsically homogeneous
hypersurfaces of space forms.

Chapter 8 introduces the notion of extrinsic products of immersions, which is the
simplest way of constructing an immersion of a product manifold into a space form.
It is a basic fact that an isometric immersion of a Riemannian product into a space
form must be an extrinsic product of isometric immersions of the factors whenever its
second fundamental form is adapted to the product structure of the manifold, in the
sense that the tangent spaces to each factor are preserved by all shape operators. This
was proved by Moore for isometric immersions into Euclidean space, and extended by
Molzan for any space form as ambient space. After giving a proof of these results, the
remainder of the chapter is devoted to proving several results which assure that this
condition is satisfied under assumptions of both local and global natures.

In Chapter 9 we initiate the study of conformal immersions. Our approach is
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based on the fact that, to any conformal immersion f : Mn → Rm of a Riemannian
manifold Mn into Euclidean space one can naturally associate an isometric immersion
F : Mn → Vm+1 into the light-cone Vm+1 of Lorentzian space Lm+2, called its isometric
light-cone representative. This relies on the fact that Rm can be isometrically embedded
into Vm+1, giving rise to a model of Euclidean space as a hypersurface of Vm+1, which
is a very suitable setting for dealing with Moebius geometric notions. We provide
an elementary and self-contained account of the fact that Moebius transformations of
Euclidean space are given by linear orthogonal transformations of Lm+2 that preserve
the upper half of Vm+1, as well as of the natural identification of the space of oriented
hyperspheres of Rm with de Sitter space Sm+1

1,1 ⊂ Lm+2. This is first applied to study
envelopes of congruences of spheres in Euclidean space and their relation to Dupin
principal normal vector fields. A conformal version of the Gauss parametrization is
presented, which allows to parametrize a Euclidean hypersurface that envelops a k-
parameter congruence of hyperspheres in terms of the locus of their centers and their
radii. As another illustration of this approach, it is shown that the classical theorem
of Liouville on the classification of conformal maps between open subsets of Euclidean
space of dimension m ≥ 3 is equivalent to the isometric rigidity of the light-cone
hypersurface model of Rm.

The chapter proceeds by defining the notions of Moebius metric, Moebius second
fundamental form, Blaschke tensor and Moebius form of a Euclidean submanifold.
These concepts have been introduced by C. Wang, and have proved to be useful tools
in the study of Moebius geometric properties of submanifolds. A Fundamental theorem
of submanifolds within the context of Moebius geometry is derived, according to which
a Euclidean submanifold is completely determined, up to Moebius transformations
of the ambient space, by its Moebius metric, Moebius second fundamental form and
normal connection. Our main interest in this chapter is on the study of conformal
deformations of Euclidean submanifolds, which is pursued in the last chapters of the
book. In particular, a proof of do Carmo-Dajczer conformal rigidity theorem is given,
which provides sufficient conditions, in terms of the so-called conformal s-nullities, for
a Euclidean submanifold with codimension less than five to be conformally rigid, a
generalization of a well-known conformal rigidity criterion for hypersurfaces due to
Cartan. The chapter also includes a conformal version, due to Tojeiro, of Moore’s
decomposition theorem.

In Chapter 10 two other useful ways of constructing immersions of product mani-
folds from immersions of the factors are discussed, namely (extrinsic) warped products
of immersions and, more generally, partial tubes over extrinsic products of immersions.
Both types of immersions share with extrinsic products of immersions the property that
their second fundamental forms are adapted to the product structure of the manifold.
Nölker’s and Tojeiro’s decomposition theorems are then presented, showing that, once
this condition is satisfied, immersions of each kind are characterized by the special types
of metrics they induce on the product manifold. These are, respectively, warped prod-
uct metrics and metrics called polar. The remainder of the chapter presents Dajczer
and Vlachos’ sufficient conditions, in terms of the s-nullities, for the second funda-
mental form of an isometric immersion of a product manifold endowed with a warped



Contents 5

product metric to be adapted to the product structure of the manifold.
The purpose of Chapter 11 is to provide a proof of the parametric description of

hypersurfaces of space forms that admit nontrivial isometric deformations. The study
of such hypersurfaces in Euclidean space goes back to Sbrana in 1909 and Cartan in
1916, and their classification has been extended to the case of nonflat ambient space
forms by Dajczer, Florit and Tojeiro. Apart from the hypersurfaces with the same
constant curvature as the ambient space, they split into four distinct classes. The
main goal of the chapter is to show how the hypersurfaces in the two most interesting
classes, which admit either a one-parameter family of isometric deformations or a single
one, can be parametrized in terms of the Gauss parametrization studied in Chapter 7.

Chapter 12 deals with one of the central concepts of the book, namely, that
of a genuine deformation. It comes from the observation that any submanifold of a
deformable submanifold already possesses the isometric deformations induced by the
latter. Therefore, when studying the isometric deformations of a submanifold with
codimension greater than one, one should look for the “genuine” ones, that is, those
which are not induced by isometric deformations of an “extended” submanifold of
higher dimension. One of the main results of the chapter is Dajczer-Florit’s theorem
showing that only ruled submanifolds admit genuine deformations, among Euclidean
submanifolds with low codimension. A conformal version of this result, due to Florit
and Tojeiro, is also discussed. The notions of genuine isometric and conformal defor-
mations give rise to corresponding notions of isometric and conformal genuine rigidity.
Dajczer-Florit’s theorem, and its conformal version by Florit andTojeiro, provide suf-
ficient conditions for a submanifold to be genuinely rigid. These results are of local
nature, and their unifying character is then explored by showing how they imply several
previously known results in the literature.

The theory of genuine isometric deformations is also applied to the problem of
determining the isometric immersions f : Mn → Qn+p

c into a complete and simply
connected Riemannian manifold of dimension (n+ p) and constant sectional curvature
c for which Mn also admits an isometric immersion f̂ : Mn → Qn+q

c̃ with c̃ 6= c.
The chapter proceeds by discussing a weaker version of genuine isometric rigidity, in
which one allows isometric deformations of a submanifold that are induced by isometric
deformations of an extended submanifold whose singular set may intersect the initial
submanifold. This version of genuine rigidity turns out to be essential when studying
in Chapter 13 global rigidity aspects of compact submanifolds of higher codimension.
The final section of this chapter is devoted to the description of submanifolds that
have a nonparallel first normal bundle of low rank. Although apparently unrelated to
the main subject of this chapter, the description of such submanifolds relies on similar
techniques, namely, the study of conditions under which a given submanifold can be
isometrically extended to a ruled submanifold.

The results of Chapter 13 are global in nature and show that complete Euclidean
submanifolds with low codimension can be isometrically deformed only in very special
ways. A simple proof is given of a basic theorem due to Sacksteder, according to
which any compact Euclidean hypersurface f : Mn → Rn+1, n ≥ 3, is isometrically
rigid, provided that the subset of totally geodesic points of f does not disconnect
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Mn. A proof of a generalization by Dajczer and Gromoll of Sacksteder’s result for
complete Euclidean hypersurfaces of dimension n ≥ 3 is provided, which is preceded
by a description of the geometric structure of complete Euclidean submanifolds whose
rank is at most two. A far-reaching extension of Sacksteder’s result, due to Florit and
Guimarães, is then presented, which implies that an isometric immersion f : Mn →
Rn+p of a compact Riemannian manifold is genuinely rigid in Rn+q in the singular
sense if p+ q ≤ min{4, n− 1}. As a particular case, it includes a previous theorem of
Dajczer and Gromoll for p = 2 = q.

Chapter 14 discusses a linearized version of the notion of an isometric bending
of a submanifold, that is, of a continuous isometric deformation, namely, the notion of
infinitesimal bending. Local rigidity results due to Dajczer and Rodŕıguez that consti-
tute the infinitesimal counterparts of the theorems of Allendoerfer and do Carmo and
Dajczer on isometric rigidity are presented. A complete local parametric description,
based on the work by Dajczer and Vlachos, is then given of the nonflat infinitesi-
mally deformable hypersurfaces, which completes and provides a modern presentation
of work by Sbrana. The chapter also contains a description of the Sbrana-Cartan hy-
persurfaces of the continuous class as envelopes of certain two-parameter congruences
of affine hyperplanes.

The purpose of Chapter 15 is to present several general results on isometric im-
mersions of Kaehler manifolds into space forms. Most of them are about real Kaehler
submanifolds, that is, isometric immersions of a Kaehler manifold M2n of complex
dimension n ≥ 2 into Euclidean space. The main interest is on those real Kaehler sub-
manifolds that are not holomorphic, specially on minimal real Kaehler submanifolds.
It is shown that these submanifolds enjoy many of the basic properties of minimal
surfaces in Euclidean three space, like the local existence of one-parameter families of
isometric submanifolds with the same generalized Gauss map. Another property that
any such submanifold shares with minimal surfaces is the fact it can be realized as the
real part of a holomorphic isometric immersion, called its holomorphic representative.
Real Kaehler submanifolds with type number greater than or equal to three at any
point are shown to be holomorphic. In particular, this implies that real Kaehler hyper-
surfaces that are free of flat points have rank two. For these, a parametric description
is given in terms of the Gauss parametrization.

Chapter 16 is devoted to conformally flat submanifolds in Euclidean space with
low codimension. First, the characterization of conformally flat manifolds in terms of
the Weyl and Schouten tensors is derived as a consequence of the fact that conformally
flat manifolds are precisely those Riemannian manifolds that admit locally (globally,
if simply connected) an isometric immersion with codimension one into the light cone
of Lorentzian space. This basic fact is also used to prove that any simply connected
compact conformally flat manifold is conformally diffeomorphic to the sphere. Then,
it is shown that a generic conformally flat submanifold f : Mn → Rn+p of dimen-
sion n ≥ 4 and codimension p ≤ n − 3 is the envelope of a p-parameter family of
spheres. A geometric explanation of this fact is provided by means of a nonparametric
description of such submanifolds. The chapter ends with a discussion of conformally
flat hypersurfaces of dimension n ≥ 3 of Euclidean space. After providing an explicit
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parametrization of them for n ≥ 4 by means of the conformal version of the Gauss
parametrization, the interesting class of conformally flat Euclidean hypersurfaces of
dimension three having three distinct principal curvatures is discussed in the last sec-
tion of the chapter, where they are characterized as holonomic hypersurfaces satisfying
some additional conditions.

The aim of Chapter 17 is to present the classification of Euclidean hypersurfaces
Mn of dimension n ≥ 5 that admit nontrivial conformal deformations, whose study
goes back to Cartan in 1917. The most interesting classes of such hypersurfaces are
envelopes of some two-parameter congruences of hyperspheres that are determined by
certain space-like surfaces in the de Sitter space Sn+2

1,1 .
As a general rule, with a few exceptions, results are stated along the text without

giving credits to their authors. This is done at the Notes that are included at the end of
each chapter, where the corresponding references are provided. The Notes also mention
some further developments and open problems on the subject of the chapter. Also, with
the exception of a few survey articles, in the Bibliography we have only included articles
and books that are cited along the text or at the Notes to the chapters.

At the end of each chapter, we include a list of exercises. While some of them
are routine exercises, others are additional results on the subject of the chapter that
might as well be part of the text. Some exercises are taken from research articles on
the topic, in which case a reference to the original source may be found at the Notes
to that chapter. Hints, and in some cases almost complete solutions, are provided for
a good part of them.

As anticipated in the first paragraph of this preface, the topics covered in the
book have left aside some important (and even central) subjects of submanifold the-
ory, even if the latter is not regarded in the broader sense it has acquired nowadays,
finding applications in many areas far beyond Riemannian geometry. To mention just
a few, as a means of indicating to the reader the richness of the area, neither the
beautiful theory of isoparametric submanifolds of the sphere nor is that of the more
general class of Dupin submanifolds is discussed. The fruitful connection between the
submanifold theory and Morse theory is also barely touched, leaving important classes
of submanifolds such as tight, taut and equifocal submanifolds out of the scope of this
book. Extrinsically homogeneous submanifolds, that is, submanifolds that appear as
orbits of linear Lie group actions, form another important class of submanifolds that
is almost completely ignored in this book, except for a few examples and exercises.
Among other important omissions we mention submanifolds of complex space forms,
including complex, Lagrangian and CR submanifolds, and of other ambient spaces,
such as symmetric spaces and, more generally, homogeneous spaces. Of course, many
other topics could be added to this list. Fortunately, however, some of the preceding
topics have already excellent expositions in existing books in the literature. For in-
stance, for the theory of isoparametric and Dupin hypersurfaces of the sphere, as well
as that of hypersurfaces of complex space forms, among other related topics, we refer
to [74]. Applications of Morse theory to submanifold theory are well illustrated in [74],
[75] and [286]. A nice exposition of the theory of extrinsically homogeneous submani-
folds and, more generally, of the applications of methods involving the holonomy group
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of the normal connection to the study of submanifolds, also including a discussion on
isoparametric submanifolds of higher codimension, is given in [34]. The fact that such
books are already available in the literature provides a strong additional support for
the choices we have made.

It is a pleasure to conclude this introduction by acknowledging our indebtedness
to Theodoros Vlachos, Miguel Jimenez and Sergio Chion for useful suggestions and for
proofreading various portions of the book. We are also grateful to Steven Zylberman for
his support with editing the English text, and to Guillermo Lobos, Felippe Guimarães,
Athina Eleni Kanellopoulou, Marcos Tassi, Amalia-Sofia Tsouri and Ion Moutinho for
pointing out several corrections while reading the earlier versions of the manuscript.
Last but not least, the completion of this work would not have been possible without
the encouragement and understanding of our spouses, Maria José and Vanessa.



Chapter 1

The basic equations of a
submanifold

In this chapter we establish several basic facts of the theory of submanifolds that
will be used throughout the book. We first introduce the second fundamental form and
normal connection of an isometric immersion by means of the Gauss and Weingarten
formulas. Then we derive their compatibility conditions, namely, the Gauss, Codazzi
and Ricci equations. The main result of the chapter is the Fundamental theorem
of submanifolds, which asserts that these data are sufficient to determine uniquely
a submanifold of a Riemannian manifold with constant sectional curvature, up to
isometries of the ambient space. As an application, we classify totally geodesic and
umbilical submanifolds of space forms. We introduce the relative nullity distribution
as well as the notion of principal normal vector fields of an isometric immersion, and
derive some of their elementary properties. Submanifolds with flat normal bundle are
briefly discussed.

An appendix to this chapter summarizes the Burstin-Mayer-Allendoerfer theory,
which provides an alternative approach to the basic equations and the Fundamental
theorem of submanifolds in the spirit of the Frenet equations for a curve.

1.1 Gauss and Weingarten formulas

Let Mn and M̃m denote differentiable manifolds of dimensions n and m. Here,
and throughout the book, manifolds are assumed to be connected. A differentiable
map f : Mn → M̃m is called an immersion if the differential f∗(x) : TxM → Tf(x)M̃ is
injective for all points x ∈ Mn. The number p = m − n is called the codimension of
f . It is also usual to refer to f , or to f(M), as an immersed submanifold, or simply a
submanifold, of M̃m.

An immersion f : Mn → M̃m between Riemannian manifolds with metrics 〈 , 〉M
and 〈 , 〉M̃ is said to be an isometric immersion if

〈X, Y 〉M = 〈f∗(x)X, f∗(x)Y 〉M̃ (1.1)

9
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for all x ∈Mn and X, Y ∈ TxM .

If f : Mn → M̃m is an immersion and 〈 , 〉M̃ is a Riemannian metric on M̃m, then
(1.1) defines a Riemannian metric on Mn, called the metric induced by f , with respect
to which f becomes an isometric immersion. We will often drop the subscript and
denote a Riemannian metric simply by 〈 , 〉, assuming that the underlying manifold
will be clear from the context.

Notice that f : Mn → M̃m is an isometric immersion if and only if for all local
coordinates ϕ = (ϕ1, . . . , ϕn) : U → Rn and ψ = (ψ1, . . . , ψm) : V → Rm on Mn and
M̃m, respectively, with f(U) ⊂ V , the map

f̄ = (f̄1, . . . , f̄m) = ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V )

is a solution of the nonlinear system of (1/2)n(n+ 1) partial differential equations

m∑
i,`=1

∂f̄i
∂xj

(x̄)
∂f̄`
∂xk

(x̄)g̃i`(f̄(x̄)) = gjk(x̄), 1 ≤ j, k ≤ n, (1.2)

for all x̄ ∈ ϕ(U), where gjk and g̃i` are the coefficients of the metrics of Mn and M̃m

with respect to ϕ and ψ, respectively.

Given an isometric immersion f : Mn → M̃m, we denote by f ∗TM̃ the induced
bundle over Mn whose fiber at x ∈ Mn is Tf(x)M̃ . The orthogonal complement of

f∗TxM in Tf(x)M̃ is called the normal space of f at x and is denoted by NfM(x).

The normal bundle NfM of f is the vector subbundle of f ∗TM̃ whose fiber at a point
x ∈Mn is NfM(x).

In the sequel, the set of smooth local vector fields on a manifold Mn is denoted
by X(M), whereas for a general vector bundle E the set of its smooth local sections is
denoted by Γ(E).

The Levi-Civita connection ∇̃ of M̃m naturally induces a unique connection ∇̂
on f ∗TM̃ such that

∇̂X(Z ◦ f) = ∇̃f∗XZ

for all x ∈ Mn, X ∈ TxM and Z ∈ X(M̃). We always identify ∇̂ and ∇̃, and denote
the former also by ∇̃. Given vector fields X, Y ∈ X(M), decompose

∇̃Xf∗Y = (∇̃Xf∗Y )T + (∇̃Xf∗Y )⊥

with respect to the orthogonal decomposition

f ∗TM̃ = f∗TM ⊕NfM.

It is easy to verify (see Exercise 1.1) that

∇XY = f−1
∗ (∇̃Xf∗Y )T

defines a compatible torsion-free connection on TM , which must therefore coincide
with the Levi-Civita connection of Mn.
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The map αf : X(M)× X(M)→ Γ(NfM) defined by

αf (X, Y ) = (∇̃Xf∗Y )⊥

is called the second fundamental form (or shape tensor) of f .

We write simply α, instead of αf , when there is no ambiguity to which immersion
it refers to. Thus we can write the first basic formula of the theory of submanifolds,
known as the

Gauss formula:
∇̃Xf∗Y = f∗∇XY + α(X, Y ).

Since
∇̃Xf∗Y − ∇̃Y f∗X = f∗[X, Y ],

where [X, Y ] is the Lie-bracket of X and Y , it follows that α is symmetric. One can
easily check that α is C∞(M)-bilinear, hence the value of α(X, Y ) at x ∈Mn depends
only on the values of X and Y at that point. In other words, we can regard α as a
section of Hom2(TM, TM ;NfM).

The shape operator Aξ of f at x ∈Mn with respect to ξ ∈ NfM(x) is defined by

〈AξX, Y 〉 = 〈α(X, Y ), ξ〉

for all X, Y ∈ TxM .

Given vector fields X, Y ∈ X(M) and ξ ∈ Γ(NfM), we have

〈∇̃Xξ, f∗Y 〉 = −〈ξ, ∇̃Xf∗Y 〉
= −〈ξ, α(X, Y )〉
= −〈AξX, Y 〉.

Hence the tangent component of ∇̃Xξ is −f∗AξX. On the other hand, it is easily seen
(see Exercise 1.2) that the normal component

∇⊥Xξ = (∇̃Xξ)
⊥

defines a compatible connection on NfM , called the normal connection of f . This
gives us our second basic formula, namely, the

Weingarten formula:

∇̃Xξ = −f∗AξX +∇⊥Xξ.

The mean curvature vector of f at x ∈Mn is the normal vector defined by

H(x) =
1

n

n∑
j=1

α(Xj, Xj) (1.3)
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in terms of an orthonormal basis X1, . . . , Xn of TxM .

The preceding expression implies that

n〈H, ξ〉 = trAξ

for any ξ ∈ NfM(x), hence the right-hand side of (1.3) does not depend on the choice
of the orthonormal basis.

The immersion f is said to be minimal at x if H(x) = 0. We call f a minimal
immersion if H is identically zero.

For a hypersurface f : Mn → M̃n+1, a smooth unit normal vector field ξ is locally
unique up to sign. Once it has been fixed, we simply write A for the shape operator
Aξ. Then the Gauss formula becomes

∇̃Xf∗Y = f∗∇XY + 〈AX, Y 〉ξ,

whereas the Weingarten formula reduces to

∇̃Xξ = −f∗AX.

1.2 Interpretations of the second fundamental form

A smooth variation of an isometric immersion f : Mn → M̃m is a smooth mapping
F : I ×Mn → M̃m, where 0 ∈ I ⊂ R is an open interval, such that

ft = F (t, ·) : Mn → M̃m

is an immersion for any t ∈ I and f0 = f .

Let ∂/∂t denote the canonical vector field along the I factor and set

T = F∗∂/∂t|t=0

regarded as a section of f ∗TM̃ . We say that F is a normal variation if the variational
vector field T is everywhere normal to f . The following result gives, in particular, an
interpretation of the second fundamental form.

Proposition 1.1. Let F : I × Mn → M̃m be a smooth variation of an isometric
immersion f : Mn → M̃m. Decompose the variational vector field

T = f∗Z + η

into its tangent and normal components. Then

d

dt
|t=0〈ft∗X, ft∗Y 〉 = 〈∇̃XT, f∗Y 〉+ 〈f∗X, ∇̃Y T〉

= −2〈α(X, Y ), η〉+ 〈∇XZ, Y 〉+ 〈∇YZ,X〉 (1.4)

for all x ∈Mn and X, Y ∈ TxM . In particular, if F is a normal variation, then

〈α(X, Y ), η〉 = −1

2

d

dt
|t=0〈ft∗X, ft∗Y 〉.
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Proof: Extend X, Y ∈ TxM to vector fields X, Y ∈ X(M), and then to X(I × M)
in the standard way, that is, at each (t, x) ∈ I ×Mn consider the unique vectors in
T(t,x)(I ×M) that project to X(x) and Y (x) under π2∗(t, x), respectively, and project
to 0 under π1∗(t, x). Here π1 and π2 stand for the projections of I ×Mn onto I and
Mn, respectively. Denote the extensions of X and Y to I ×Mn still by X and Y ,
respectively, and note that

[X, ∂/∂t] = 0 = [Y, ∂/∂t],

for the flows of X (or Y ) and ∂/∂t clearly commute. Then

d

dt
〈ft∗X, ft∗Y 〉 = 〈∇̃∂/∂tF∗X,F∗Y 〉+ 〈F∗X, ∇̃∂/∂tF∗Y 〉

= 〈∇̃XF∗∂/∂t, F∗Y 〉+ 〈F∗X, ∇̃Y F∗∂/∂t〉.

Hence, using the Gauss and Weingarten formulas, we obtain

d

dt
|t=0〈ft∗X, ft∗Y 〉 = 〈∇XZ, Y 〉 − 〈AηX, Y 〉+ 〈∇YZ,X〉 − 〈X,AηY 〉

= −2〈α(X, Y ), η〉+ 〈∇XZ, Y 〉+ 〈∇YZ,X〉,

which proves (1.4). �

1.2.1 The second fundamental form in Euclidean space

Let Mn be a Riemannian manifold. The gradient of g ∈ C∞(M) is the vector
field grad g on Mn given by

〈grad g(x), X〉 = X(g)

for all x ∈Mn and X ∈ TxM . The Hessian of g is defined by

Hess g(X, Y ) = (∇Xdg)Y

= XY (g)−∇XY (g)

for all X, Y ∈ X(M).

Note that the Hessian is symmetric and that

Hess g(X, Y ) = 〈∇Xgrad g, Y 〉,

which shows that it can be regarded as a section of T ∗M ⊗ T ∗M .
For another useful interpretation of the second fundamental form of an isometric

immersion f : Mn → Rm, we first prove the following general result that will also be
needed later.
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Proposition 1.2. Let f : Mn → M̃m be an isometric immersion and let g ∈ C∞(M̃).
Then the gradient and Hessian of g and h = g ◦ f are related by

f∗gradh = (grad g)T (1.5)

and
Hessh(X, Y ) = Hess g(f∗X, f∗Y ) + 〈grad g, α(X, Y )〉 (1.6)

for all x ∈Mn and X, Y ∈ TxM .

Proof: We have
〈gradh,X〉 = X(h) = f∗X(g) = 〈grad g, f∗X〉

for all x ∈ Mn and X ∈ TxM , which proves (1.5). Using this and the Gauss formula
we obtain

Hessh(X, Y ) = 〈∇Xgradh, Y 〉
= 〈∇̃Xf∗gradh, f∗Y 〉
= 〈∇̃Xgrad g, f∗Y 〉 − 〈∇̃X(grad g)⊥, f∗Y 〉
= Hess g(f∗X, f∗Y ) + 〈(grad g)⊥, ∇̃Xf∗Y 〉
= Hess g(f∗X, f∗Y ) + 〈grad g, α(X, Y )〉

for all x ∈Mn and X, Y ∈ TxM . �

Corollary 1.3. Let f : Mn → Rm be an isometric immersion and let hv ∈ C∞(M) be
the height function

hv(x) = 〈f(x), v〉
with respect to the hyperplane normal to v ∈ Rm. Then

Hesshv(x)(X, Y ) = 〈α(X, Y ), v〉 (1.7)

for all x ∈ Mn and X, Y ∈ TxM . Moreover, a point x0 ∈ Mn is a critical point of hv

if and only if v ∈ NfM(x0).

Proof: Apply Proposition 1.2 to g ∈ C∞(Rm) given by

g(x) = 〈x, v〉,

for which we have grad g = v at any point and Hess g = 0. The last assertion follows
easily by differentiating hv. �

A hypersurface f : Mn → Rn+1 is said to be locally convex at a point x ∈ Mn

if there exists a neighborhood U of x such that f(U) lies on one side of the affine
hyperplane that is tangent to f at x. We say that f is strictly locally convex at x if,
in addition, f(x) is the unique point in

f(U) ∩ (f(x) + f∗TxM).

For instance, the sphere is strictly locally convex everywhere, but a cylinder over
a plane curve is locally convex but not strictly locally convex at any point.
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Corollary 1.4. If the second fundamental form of a hypersurface f : Mn → Rn+1 is
definite at a point x0 ∈Mn, then f is strictly locally convex at x0.

Proof: Let ξ ∈ NfM(x0) and let hξ ∈ C∞(M) be the height function

hξ(x) = 〈f(x)− f(x0), ξ〉.

By the last assertion in Corollary 1.3, the point x0 is a critical point of hξ. Moreover,
since the second fundamental form of f is definite at x0, it follows from (1.7) that hξ

has a strict local maximum or minimum at x0. Since hξ vanishes at x0, we conclude
that it is either strictly positive or strictly negative in a neighborhood U of x0. �

Another useful consequence of Proposition 1.2 is the following.

Corollary 1.5. Let f : Mn → Rm be an isometric immersion. Given q ∈ Rm, let
h ∈ C∞(M) be defined by

h(x) =
1

2
‖f(x)− q‖2.

Then
Hessh(x)(X, Y ) = 〈α(X, Y ), f(x)− q〉+ 〈X, Y 〉

for all x ∈Mn and X, Y ∈ TxM . Moreover, a point x0 ∈Mn is a critical point of h if
and only if f(x0)− q ∈ NfM(x0).

Proof: Apply Proposition 1.2 to g ∈ C∞(Rm) given by

g(x) =
1

2
‖x− q‖2.

Then
grad g(x) = x− q

and
Hess g(x)(X, Y ) = 〈X, Y 〉

for all X, Y ∈ Rm. Differentiating h yields the last assertion. �

As an application of the preceding corollary, we prove the following extension of
the fact that any compact surface in R3 has an elliptic point, that is, a point with
positive Gaussian curvature.

Corollary 1.6. Let f : Mn → Rm be an isometric immersion of a compact Rieman-
nian manifold. Then there exist a point x0 ∈ Mn and a normal vector ξ ∈ NfM(x0)
such that the shape operator Aξ is positive definite.

Proof: Let x0 ∈Mn be a point where

h(x) =
1

2
‖f(x)‖2
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attains its maximum. It follows from Corollary 1.5 that f(x0) ∈ NfM(x0). Moreover,
for ξ = −f(x0) we have

〈AξX,X〉 = −〈α(X,X), f(x0)〉
= −Hessh(x0)(X,X) + ‖X‖2

≥ ‖X‖2

for all X ∈ Tx0M . �

1.2.2 The Gauss map of a Euclidean hypersurface

Let f : Mn → Rn+1 be an orientable hypersurface and let ξ be a globally defined
smooth unit normal vector field along f .

The Gauss map of f is the map φ : Mn → Sn into the unit sphere whose value at
x ∈Mn is ξx ∈ NfM(x).

Since the vector subspaces f∗TxM and i∗Tφ(x)Sn both have φ(x) = ξx as a normal
vector, where i : Sn → Rn+1 is the inclusion map, we may identify them and write the
Weingarten formula as

i∗φ∗ = −f∗A. (1.8)

The Gauss-Kronecker curvature K of f at x ∈Mn is defined as the determinant
of its shape operator A = Aξx .

Proposition 1.7. If f : Mn → Rn+1 is a compact hypersurface, then the following
assertions are equivalent:

(i) The second fundamental form is definite at every point of Mn.

(ii) Mn is orientable and the Gauss map is a diffeomorphism.

(iii) The Gauss-Kronecker curvature K is nonzero at every point.

Proof: (i) ⇒ (ii). First notice that, if f : Mn → Rn+1 is any hypersurface and there
exists at x ∈ Mn a unit normal vector ξx such that Aξx is negative definite, then one
can extend ξx to a smooth unit normal vector field ξ in a neighborhood V of x such
that Aξ(y) is negative definite for any y ∈ V . Simply choose an orthonormal basis
X1, . . . , Xn of TxM such that ξx is the cross-product

ξx = f∗X1 × · · · × f∗Xn,

extend X1, . . . , Xn to a smooth orthonormal frame in a neighborhood U of x and define

ξ = f∗X1 × · · · × f∗Xn

on U . Then ξ is a smooth unit normal vector field and Aξ(y) is also negative definite
for any y in a possibly smaller neighborhood V ⊂ U .
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Now, under the assumption in part (i), at every point x ∈ Mn there exists a
unique unit normal vector ξx such that Aξx is negative definite. Therefore, assigning
to each x ∈Mn such unique unit normal vector ξx defines a global unit normal vector
field on Mn. Uniqueness implies that it locally coincides with the smooth unit normal
vector field constructed in the preceding paragraph. Therefore it is smooth, and hence
Mn is orientable.

Since A = Aξ is nonsingular, it follows from (1.8) that (φ∗)x is injective for any
x ∈Mn. Hence φ is a local diffeomorphism. Actually, φ is a covering map because Mn

is compact. We conclude that φ is a diffeomorphism from the fact that Sn is simply
connected for n ≥ 2.

(ii)⇒ (iii). Since φ is a diffeomorphism, its differential is everywhere nonsingular. We
conclude from (1.8) that the Gauss-Kronecker curvature is nonzero at any point.

(iii) ⇒ (i). Since the Gauss-Kronecker curvature is nowhere vanishing, the second
fundamental form is everywhere nondegenerate. On the other hand, we know from
Corollary 1.6 that there exist x0 ∈ Mn and ξx0 ∈ NfM(x0) such that Aξx0

is definite.
It follows that the second fundamental form is definite at all points. �

We say that an embedded hypersurface f : Mn → Rn+1 is a convex hypersurface
when it is the boundary of a convex body B ⊂ Rn+1. By a convex body we mean an
open subset B of Rn+1 such that, for any pair of points p, q ∈ B, the line segment
joining p and q is contained in B.

Theorem 1.8. Let f : Mn → Rn+1 be a compact hypersurface satisfying any of the
conditions in the preceding result. Then f is a convex hypersurface.

Proof: First we prove that f is an embedding. Since Mn is compact, it suffices to show
that f is one-to-one. Suppose there exist x1, x2 ∈Mn such that f(x1) = f(x2). Choose
a unit normal vector field ξ such that Aξ is negative definite and consider the height
function h = hξ(x1) : Mn → R given by

h(x) = 〈f(x)− f(x1), ξ(x1)〉.

Then h(x1) = 0 = h(x2). It follows from Corollary 1.3 that x1 is a strict local maximum
of h. We claim that x1 is, in fact, the unique strict local maximum of h, and hence
the unique global maximum of h. For if y ∈ Mn is a strict local maximum of h then
ξ(x1) = ±ξ(y) by the last assertion in Corollary 1.3, whereas (1.7) implies that Aξ(x1)

is negative semi-definite (hence negative definite) at y. Thus ξ(y) = ξ(x1), that is, the
Gauss map satisfies φ(x1) = φ(y). Therefore x1 = y because φ is a diffeomorphism,
and our claim is proved. From h(x1) = h(x2) we obtain x1 = x2.

Since f is an embedding, it follows from the Jordan-Brower separation theorem
that f(M) divides Rn+1 into two arcwise-connected components. Both components
have f(M) as boundary, and one of them, say, B, is bounded. We conclude the proof
by showing that the interior Bo of B is a convex body.

Consider arbitrary points p, q ∈ Bo. There exist points p = y0, y1, . . . , yr = q inBo

such that the segments y0y1, y1y2, . . . , yr−1yr form a polygonal path entirely contained
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in Bo. We want to prove that the segment pq itself is contained in Bo. Suppose, by
contradiction, that there exists some 1 < j ≤ r such that pyi ⊂ Bo, 1 ≤ i ≤ j − 1, but
pyj 6⊂ Bo. Let β : [0, 1]→ Bo be given by

β(s) = syj + (1− s)yj−1,

and define αs : [0, 1]→ Rn+1 by

αs(t) = tβ(s) + (1− t)p.

Since f(M) is closed, z1 = αs1(t1) ∈ f(M), where

s1 = sup{s ∈ [0, 1] : αs([0, 1]) ∩ f(M) = ∅}

and
t1 = inf{t ∈ [0, 1] : αs1([0, t]) ∩ f(M) 6= ∅}.

Let x1 ∈M be such that f(x1) = z1. Choose a unit normal vector field ξ such that Aξ
is negative definite. From a previous argument, the function

h(x) = 〈f(x)− f(x1), ξ(x1)〉

has a unique global maximum which is x1. On the other hand, by construction, ξ(x1)
points inward, and this allows us to find λ > 0 such that

f(x1) + λξ(x1) = f(x2) ∈ f(M) = ∂B,

since f(M) is compact. Thus h(x2) = λ > 0, and this is a contradiction since x1 is the
maximum of h and h(x1) = 0. �

1.3 The Gauss, Codazzi and Ricci equations

Using the Gauss and Weingarten formulas, we derive the compatibility equations
of an isometric immersion. In order to simplify the notation, we use the fact that any
immersion f : Mn → M̃m is locally an embedding to identify locally Mn with f(M)
and regard f as the inclusion map.

Let R and R̃ denote the curvature tensors of Mn and M̃m, respectively. We
first compute the tangent and normal components of R̃(X, Y )Z for any vector fields
X, Y, Z ∈ X(M). By the Gauss and Weingarten formulas we have

∇̃X∇̃YZ = ∇̃X∇YZ + ∇̃Xα(Y, Z)

= ∇X∇YZ + α(X,∇YZ)− Aα(Y,Z)X +∇⊥Xα(Y, Z), (1.9)

and similarly,

∇̃Y ∇̃XZ = ∇Y∇XZ + α(Y,∇XZ)− Aα(X,Z)Y +∇⊥Y α(X,Z). (1.10)
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Also
∇̃[X,Y ]Z = ∇[X,Y ]Z + α([X, Y ], Z). (1.11)

Subtracting (1.10) and (1.11) from (1.9) and taking tangent components yield

R(X, Y )Z = (R̃(X, Y )Z)T + Aα(Y,Z)X − Aα(X,Z)Y,

known as the Gauss equation. Taking the inner product of both sides of the preceding
equation with W ∈ X(M) gives its equivalent form below.

Gauss equation

〈R(X, Y )Z,W 〉 = 〈R̃(X, Y )Z,W 〉+ 〈α(X,W ), α(Y, Z)〉 − 〈α(X,Z), α(Y,W )〉.

Another equivalent way of writing the Gauss equation is

K(X, Y ) = K̃(X, Y ) + 〈α(X,X), α(Y, Y )〉 − ‖α(X, Y )‖2,

where K(X, Y ) denotes the sectional curvature at x ∈Mn along the plane spanned by
the orthonormal vectors X, Y ∈ TxM , and similarly for K̃(X, Y ).

Computing in a similar way the normal component of R̃(X, Y )Z gives the Codazzi
equation of f , which can be written as

Codazzi equation

(R̃(X, Y )Z)⊥ = (∇⊥Xα)(Y, Z)− (∇⊥Y α)(X,Z).

Here
(∇⊥Xα)(Y, Z) = ∇⊥Xα(Y, Z)− α(∇XY, Z)− α(Y,∇XZ)

is the canonical connection on Hom2(TM, TM ;NfM).

Let R⊥ denote the curvature tensor of the normal bundle NfM , that is,

R⊥(X, Y )ξ = ∇⊥X∇⊥Y ξ −∇⊥Y∇⊥Xξ −∇⊥[X,Y ]ξ

for all X, Y ∈ X(M) and ξ ∈ Γ(NfM). Using the Gauss and Weingarten formulas to
compute the normal component of R̃(X, Y )ξ yields the Ricci equation

(R̃(X, Y )ξ)⊥ = R⊥(X, Y )ξ − α(X,AξY ) + α(AξX, Y ). (1.12)

Taking the inner product of both sides of (1.12) with η ∈ Γ(NfM) and denoting by

[Aξ, Aη] = AξAη − AηAξ

the bracket of Aξ and Aη yields the following equivalent form of the Ricci equation.
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Ricci equation

〈R⊥(X, Y )ξ, η〉 = 〈R̃(X, Y )ξ, η〉+ 〈[Aξ, Aη]X, Y 〉.

On the other hand, if we calculate the tangent component of R̃(X, Y )ξ we obtain

(R̃(X, Y )ξ)T = (∇YA)(X, ξ)− (∇XA)(Y, ξ), (1.13)

where
(∇YA)(X, ξ) = ∇YAξX − Aξ∇YX − A∇⊥Y ξX

is the canonical connection on Hom2(TM,NfM ;TM). It is easily seen that (1.13) is
just an equivalent form of the Codazzi equation.

If M̃m = M̃m
c denotes a Riemannian manifold with constant sectional curvature c,

then the Gauss equation becomes

R(X, Y )Z = c(X ∧ Y )Z + Aα(Y,Z)X − Aα(X,Z)Y,

where
(X ∧ Y )Z = 〈Y, Z〉X − 〈X,Z〉Y,

or equivalently,

〈R(X, Y )Z,W 〉 = c〈(X ∧Y )Z,W 〉+ 〈α(X,W ), α(Y, Z)〉−〈α(X,Z), α(Y,W )〉. (1.14)

The Codazzi equation has now the two equivalent versions

(∇⊥Xα)(Y, Z) = (∇⊥Y α)(X,Z) (1.15)

and
(∇XA)(Y, ξ) = (∇YA)(X, ξ), (1.16)

whereas the Ricci equation reduces to

R⊥(X, Y )ξ = α(X,AξY )− α(AξX, Y ), (1.17)

or equivalently, to
〈R⊥(X, Y )ξ, η〉 = 〈[Aξ, Aη]X, Y 〉.

For easy reference, we display together the fundamental equations derived in this
section for an isometric immersion f : Mn → M̃m

c .

Gauss equation

〈R(X, Y )Z,W 〉 = c〈(X ∧ Y )Z,W 〉+ 〈α(X,W ), α(Y, Z)〉 − 〈α(X,Z), α(Y,W )〉.

Codazzi equation

(∇⊥Xα)(Y, Z) = (∇⊥Y α)(X,Z).

Ricci equation

〈R⊥(X, Y )ξ, η〉 = 〈[Aξ, Aη]X, Y 〉.
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Remark 1.9. The theory developed so far can be extended with minor modifications
to isometric immersions between semi-Riemannian manifolds, that is, differentiable
manifolds endowed with an indefinite metric (cf. O’Neill [277]).

1.3.1 The Fundamental theorem of submanifolds

In most of this book we focus on isometric immersions f : Mn → Qm
c of a Rie-

mannian manifold into one of the simply connected complete space forms Qm
c with

constant sectional curvature c, that is, Euclidean space Rm, the sphere Smc or the hy-
perbolic space Hm

c , according to whether c = 0, c > 0 or c < 0, respectively. We write
simply Sm and Hm when c = 1 and c = −1, respectively.

For these ambient spaces, the compatibility equations derived in the previous sec-
tion are intrinsic equations relating the curvature tensor of Mn, the second fundamental
form of f and the curvature tensor of the normal connection. Thus, it makes sense,
and is a natural question, to ask whether any such data satisfying the compatibility
equations on a vector bundle over a given Riemannian manifold Mn can be realized as
the data associated with an isometric immersion of Mn into Qm

c .
The following fundamental result states that this is always true locally, and even

globally whenever Mn is simply connected. Moreover, regardless of the assumption
that Mn is simply connected, the isometric immersion is unique up to isometries of the
ambient space. In other words, any other isometric immersion g : Mn → Qm

c must be
congruent to f , that is, the composition g = τ ◦ f of f with an isometry τ : Qm

c → Qm
c .

Theorem 1.10. (Fundamental theorem of submanifolds)
Existence: Let Mn be a simply connected Riemannian manifold, let E be a Riemannian
vector bundle of rank p over Mn with compatible connection ∇E and curvature tensor
RE, and let αE be a symmetric section of Hom2(TM, TM ;E). For each ξ ∈ Γ(E), define
AE
ξ ∈ Γ(End(TM)) by

〈AE
ξX, Y 〉 = 〈αE(X, Y ), ξ〉.

Assume that (∇E, αE, AE, RE) satisfies (1.14), (1.15) and (1.17). Then there exist an
isometric immersion f : Mn → Qn+p

c and a vector bundle isometry φ : E→ NfM such
that

∇⊥φ = φ∇E and αf = φ ◦ αE.

Uniqueness: Let f, g : Mn → Qn+p
c be isometric immersions of a Riemannian manifold.

Assume that there exists a vector bundle isometry φ : NfM → NgM such that

φf∇⊥ = g∇⊥φ and φ ◦ αf = αg.

Then there exists an isometry τ : Qn+p
c → Qn+p

c such that

τ ◦ f = g and τ∗|NfM = φ.

A proof of Theorem 1.10 is given in Sect. 1.10.
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1.4 The basic equations of a hypersurface

In the case of a hypersurface f : Mn → M̃n+1, the compatibility equations take a
rather simpler form. Namely, choosing a local smooth unit normal vector field ξ along
f and writing A = Aξ, the Gauss equation can be written as

(R̃(X, Y )Z)T = R(X, Y )Z − (AX ∧ AY )Z.

Equivalently,

〈R(X, Y )Z,W 〉 = 〈R̃(X, Y )Z,W 〉+ 〈AX,W 〉〈AY,Z〉 − 〈AX,Z〉〈AY,W 〉,

or in terms of sectional curvatures,

K(X, Y ) = K̃(X, Y ) + 〈AX,X〉〈AY, Y 〉 − 〈AX, Y 〉2.

The Codazzi equation becomes

(R̃(X, Y )ξ)T = (∇YA)X − (∇XA)Y,

where
(∇YA)X = ∇YAX − A∇YX.

If M̃n+1 = M̃n+1
c , then the equations reduce, respectively, to

Gauss equation

R(X, Y )Z = c(X ∧ Y )Z + (AX ∧ AY )Z.

Codazzi equation
(∇YA)X = (∇XA)Y.

1.4.1 The Fundamental theorem of hypersurfaces

The statement of the Fundamental theorem of submanifolds also simplifies con-
siderably in the case of hypersurfaces. We first observe that, given an orientable
Riemannian manifold M̃n+1 and hypersurfaces f, g : Mn → M̃n+1, there is always a
well-defined vector bundle isometry

φ : NfM → NgM.

Namely, fixed an orientation of M̃n+1, for each x ∈ Mn choose an ordered basis
X1, . . . , Xn ∈ TxM and a unit normal vector ξx ∈ NfM(x) such that

f∗X1, . . . , f∗Xn, ξx

is positively oriented in Tf(x)M̃ . Let ηx ∈ NgM(x) be the unit normal vector such that
the ordered basis

g∗X1, . . . , g∗Xn, ηx

is positively oriented in Tg(x)M̃ . It suffices to define φ : NfM → NgM as the bundle
map that takes ξx to ηx for each x ∈Mn. Clearly φ and −φ are the only such maps.
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Theorem 1.11. Existence: Let Mn be a simply connected Riemannian manifold, and
let A be a symmetric section of End(TM) satisfying the Gauss and Codazzi equations.
Then there exist an isometric immersion f : Mn → Qn+1

c and a unit normal vector
field ξ such that A coincides with the shape operator Aξ of f with respect to ξ.

Uniqueness: Let f, g : Mn → Qn+1
c be isometric immersions of a Riemannian manifold.

Assume that
φ ◦ αf = αg

for one of the vector bundle isometries φ : NfM → NgM . Then there exists an isometry
τ : Qn+1

c → Qn+1
c such that

τ ◦ f = g and τ∗|NfM = φ.

1.4.2 The principal curvatures

Let f : Mn → M̃n+1 be a hypersurface and let ξx denote a unit normal vector at
a point x ∈ Mn. The principal curvatures λ1 ≤ λ2 ≤ · · · ≤ λn of f at x with respect
to ξx are defined as the eigenvalues of Aξx . Any eigenvector of unit length of Aξx is
called a principal direction of f at x.

Assume that Mn is orientable, and suppose that an orientation is fixed by a global
smooth unit normal vector field ξ. Then one can show that the functions x ∈ Mn 7→
λi(x) are continuous in Mn for 1 ≤ i ≤ n. In fact, this is true for the eigenvalues of
any symmetric smooth tensor on Mn. Moreover, if λi has constant multiplicity then
it is smooth, and so is the distribution Eλi given by its eigenspaces. For the proofs of
these statements we refer to [73], [268] or [305].

In terms of an orthonormal frame X1, . . . Xn of principal directions of f at
x ∈Mn, the Gauss equation reads

K(Xi, Xj) = K̃(Xi, Xj) + λiλj,

or simply
K(Xi, Xj) = c+ λiλj (1.18)

if M̃n+1 = M̃n+1
c .

On an open subset where the principal curvatures have constant multiplicities,
the Codazzi equation of an isometric immersion f : Mn → M̃n+1

c is equivalent to the
set of equations

Xi(λj) = 0, λi = λj,

Xk(λi)〈Xi, Xj〉 = (λi − λk)〈∇XiXj, Xk〉, λi = λj, (1.19)

and

(λk − λj)〈∇XiXj, Xk〉 = (λk − λi)〈∇XjXi, Xk〉, λi 6= λj 6= λk 6= λi. (1.20)
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Given a hypersurface f : Mn → M̃n+1 with principal curvatures λ1 ≤ . . . ≤ λn at
x ∈ Mn with respect to a unit vector ξx ∈ NfM(x), the rth-mean curvature Hr of f
at x is defined by (

n

r

)
Hr(x) = Sr(x),

where Sr : Mn → R, 1 ≤ r ≤ n, is given by

Sr(x) = σr(λ1(x), . . . , λn(x))

in terms of the elementary symmetric function σr : Rn → R, 1 ≤ r ≤ n,

σr(x1, . . . , xn) =
∑

i1<···<ir

xi1 · · ·xir .

In particular, H1 is the mean curvature of f and Hn its Gauss-Kronecker curvature.
In Exercise 1.9, the reader is asked to prove that Hr is intrinsic if r is even, and

that the Gauss-Kronecker curvature is intrinsic if n is even and intrinsic up to sign if
n is odd.

1.4.3 Holonomic hypersurfaces

A hypersurface f : Mn → Qn+1
c is called holonomic if Mn carries a global system

of orthogonal coordinates (u1, . . . , un) such that at any point the coordinate vector
fields ∂/∂uj, 1 ≤ j ≤ n, are eigenvectors of its shape operator. It is called locally
holonomic if each point x ∈Mn lies in an open neighborhood U ⊂Mn where one can
define such a system of orthogonal coordinates.

For a holonomic hypersurface f : Mn → Qn+1
c , oriented by a smooth unit normal

vector field N , define Vj ∈ C∞(M) by

A∂/∂uj =
Vj
vj
∂/∂uj, 1 ≤ j ≤ n,

where vj = ‖∂/∂uj‖ and A = AN . Thus the induced metric and the second fundamen-
tal form of f are given by

ds2 =
n∑
i=1

v2
i du

2
i and α(∂/∂ui, ∂/∂uj) = δijviViN. (1.21)

We call (v, V ), with v = (v1, . . . , vn) and V = (V1, . . . , Vn), the pair associated with f .

To compute the Gauss and Codazzi equations of f in terms of (v, V ) we need the
following elementary fact.
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Proposition 1.12. Let (u1, . . . , un) be local coordinates on a Riemannian manifold
Mn with respect to which the metric is given by

ds2 =
n∑
i=1

v2
i du

2
i .

The following assertions hold:

(i) The Levi-Civita connection of Mn satisfies

∇∂/∂uiXj = hjiXi, 1 ≤ i 6= j ≤ n, (1.22)

where Xj = (1/vj)∂/∂uj and

hji =
1

vj

∂vi
∂uj
· (1.23)

(ii) The curvature tensor of Mn is given by

R(∂/∂ui, ∂/∂uj)Xk =

(
∂hkj
∂ui
− hkihij

)
Xj −

(
∂hki
∂uj
− hkjhji

)
Xi if i 6= j 6= k 6= i

(1.24)
and

− 〈R(∂/∂ui, ∂/∂uj)Xj, Xi〉 =
∂hij
∂ui

+
∂hji
∂uj

+
∑
k 6=i,j

hkihkj if i 6= j. (1.25)

Proof: Since [∂/∂ui, ∂/∂uj] = 0 for all 1 ≤ i 6= j ≤ n, we have

〈∇∂/∂ui∂/∂uj, ∂/∂uk〉 = −〈∇∂/∂ui∂/∂uk, ∂/∂uj〉
= −〈∇∂/∂uk∂/∂ui, ∂/∂uj〉
= 〈∇∂/∂uk∂/∂uj, ∂/∂ui〉
= 〈∇∂/∂uj∂/∂uk, ∂/∂ui〉
= −〈∇∂/∂uj∂/∂ui, ∂/∂uk〉
= −〈∇∂/∂ui∂/∂uj, ∂/∂uk〉.

Hence
〈∇∂/∂uiXj, Xk〉 = 0 if i 6= j 6= k 6= i.

Then (1.22) follows from

vivj〈∇∂/∂uiXj, Xi〉 = 〈∇∂/∂ui∂/∂uj, ∂/∂ui〉
= 〈∇∂/∂uj∂/∂ui, ∂/∂ui〉
= vi∂vi/∂uj·

Now (1.24) and (1.25) follow easily using (1.22). �
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For a holonomic hypersurface f : Mn → Qn+1
c , the Codazzi equation

∇∂/∂uiA∂/∂uj = ∇∂/∂ujA∂/∂ui

becomes
∂Vi
∂uj

= hjiVj, 1 ≤ i 6= j ≤ n.

In summary, the Gauss and Codazzi equations for f reduce to the system of
partial differential equations

(i)
∂vi
∂uj

= hjivj

(ii)
∂hik
∂uj

= hijhjk

(iii)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k 6=i,j

hkihkj + ViVj + cvivj = 0

(iv)
∂Vi
∂uj

= hjiVj, 1 ≤ i 6= j 6= k 6= i ≤ n.

(1.26)

Proposition 1.13. If (v, h, V ) is a solution of (1.26) on a simply connected open
subset U ⊂ Rn, with vi 6= 0 everywhere for all 1 ≤ i ≤ n, then there exists a holonomic
hypersurface f : U → Qn+1

c whose induced metric and second fundamental form are
given by (1.21).

Proof: Define a metric ds2 on U by the first formula in (1.21), and let A be the
symmetric tensor on Mn = (U, ds2) given by

A∂/∂uj =
Vj
vj
∂/∂uj, 1 ≤ j ≤ n.

The Gauss and Codazzi equations for an isometric immersion into Qn+1
c are then sat-

isfied by virtue of (1.26), and the statement follows from Theorem 1.11. �

1.5 Totally geodesic submanifolds

An isometric immersion f : Mn → M̃m is said to be totally geodesic at x ∈ Mn

if the second fundamental form α of f vanishes at x. If α is identically zero then f is
called a totally geodesic isometric immersion.

Clearly, an isometric immersion f : Mn → M̃m is totally geodesic if and only if
f ◦ γ is a geodesic of M̃m for any geodesic γ of Mn. Equivalently, for any x ∈Mn and
any X ∈ TxM the geodesic in M̃m through f(x) tangent to f∗X coincides with the
image by f of the geodesic of Mn through x tangent to X in the domain of definition
of the latter. Therefore, if f is totally geodesic, then f(M) locally coincides with
expf(x) f∗TxM for all x ∈Mn, where exp denotes the exponential map of M̃m.
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Another elementary characterization of the totally geodesic isometric immersions
is as follows: an isometric immersion f : Mn → M̃m is totally geodesic if and only if
f∗TM is a parallel subbundle of f ∗TM̃ .

Given a Riemannian manifold M̃m and a vector subspace V ⊂ TxM̃ at x ∈ M̃m,
we say that the curvature tensor R̃ of M̃m preserves V if

R̃(X, Y )Z ∈ V for all X, Y, Z ∈ V.

It follows immediately from the Codazzi equation that R̃ preserves V if V is the
tangent space at a point x of a totally geodesic submanifold of M̃m. Moreover, from
the observation in the preceding paragraph it follows that R̃ must also preserve the
parallel translate of V along a sufficiently small piece of any geodesic through x tangent
to V . The next result shows that this condition is also sufficient for a vector subspace
V of TxM̃ to be the tangent space at x of a totally geodesic submanifold of M̃m.

Theorem 1.14. Given a Riemannian manifold M̃ and a vector subspace V ⊂ TxM̃
at a point x ∈ M̃ , there exists a totally geodesic submanifold M of M̃ such that x ∈M
and TxM = V if and only if there exists ε > 0 such that, for every unit speed geodesic
γ in M̃ with γ(0) = x and γ′(0) ∈ V , the Riemannian curvature tensor of M̃ preserves
the parallel translate of V along γ from x to γ(s) for every s ∈ (0, ε).

Theorem 1.14 has the following immediate consequence for locally symmetric
spaces.

Corollary 1.15. Let M̃m be a locally symmetric space and let V be a subspace of TxM̃
that is preserved by the Riemannian curvature tensor of M̃m. Then, for small ε > 0,
expx(V ∩Bε(0)) is a totally geodesic submanifold of M̃m.

A Riemannian manifold M̃m, m ≥ 3, is said to satisfy the axiom of r-planes, for
some fixed 2 ≤ r ≤ m−1, if for every x ∈ M̃m and every r-dimensional vector subspace
V ⊂ TxM̃ there exists a totally geodesic submanifold through x whose tangent space
at x is V .

Riemannian manifolds that satisfy the axiom of r-planes are characterized in the
next result.

Theorem 1.16. If a Riemannian manifold M̃m satisfies the axiom of r-planes for
some 2 ≤ r ≤ m − 1 then it has constant sectional curvature. Conversely, any Rie-
mannian manifold with constant sectional curvature satisfies the axiom of r-planes for
all 2 ≤ r ≤ m− 1.

The proof relies on the following lemma.

Lemma 1.17. At any point x of a Riemannian manifold M̃m of dimension m ≥ 3
the following assertions are equivalent:
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(i) There exists 2 ≤ r ≤ m − 1 such that the curvature tensor R̃ preserves every
r-dimensional subspace V ⊂ TxM̃ .

(ii) 〈R̃(X, Y )Z,X〉 = 0 for all orthonormal vectors X, Y, Z ∈ TxM̃ .

(iii) All sectional curvatures of M̃m at x are equal.

(iv) R̃ preserves every subspace V ⊂ TxM̃ .

Proof: (i) ⇒ (ii). Take orthonormal vectors X, Y, Z ∈ TxM̃ . Then there exists an
r-dimensional subspace V ⊂ TxM̃ such that X, Y ∈ V and Z ∈ V ⊥. Since R̃ preserves
V , then

〈R̃(X, Y )Z,X〉 = −〈R̃(X, Y )X,Z〉 = 0.

(ii)⇒ (iii). Given orthonormal vectors X, Y, Z ∈ TxM̃ , the vectors

X, Y ′ =
1√
2

(Y + Z), Z ′ =
1√
2

(Y − Z)

are also orthonormal, and hence

0 = 〈R̃(X, Y ′)Z ′, X〉 =
1

2
(K̃(X, Y )− K̃(X,Z)).

Thus the sectional curvatures of any two planes that intersect orthogonally are equal.
To conclude, observe that for any two planes there is always a third one that intersects
both orthogonally.

(iii)⇒ (iv). Since
R̃(X, Y )Z = c(〈Y, Z〉X − 〈X,Z〉Y )

for all X, Y, Z ∈ TxM , then R̃ preserves every subspace V ⊂ TxM̃ . �

Proof of Theorem 1.16: Suppose that the Riemannian manifold M̃m satisfies the axiom
of r-planes for some 2 ≤ r ≤ m−1. By Schur’s lemma, it is enough to show that at each
x ∈ M̃m all the sectional curvatures of M̃m are equal. By the assumption, for every
r-dimensional vector subspace V ⊂ TxM̃ there exists a totally geodesic submanifold
M r of M̃m through x such that TxM = V . Hence R̃ preserves V by the Codazzi
equation, and the conclusion follows from Lemma 1.17.

Conversely, assume that M̃m has constant sectional curvature. Given x ∈ M̃m,
2 ≤ r ≤ m − 1 and any r-dimensional vector subspace V ⊂ TxM̃ , the Riemannian
curvature tensor R̃ of M̃m preserves V by Lemma 1.17, and the conclusion follows
from Corollary 1.15. �

An explicit description of all totally geodesic submanifolds of Qm
c follows from

Proposition 1.20 below.
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1.6 The relative nullity distribution

Let f : Mn → M̃m be an isometric immersion. The relative nullity tangent
subspace ∆(x) of f at x is the kernel of its second fundamental form at x, that is,

∆(x) = {X ∈ TxM : α(X, Y ) = 0 for all Y ∈ TxM}.

Equivalently,
∆(x) = ∩ξ∈NfM(x)ker Aξ.

The dimension ν(x) of ∆(x) is called the index of relative nullity of f at x.

A smooth distribution E on a Riemannian manifold Mn is totally geodesic if
∇TS ∈ Γ(E) whenever T, S ∈ Γ(E). A totally geodesic distribution is always integrable
and its leaves are totally geodesic submanifolds of Mn (see Exercise 1.12).

Proposition 1.18. For an isometric immersion f : Mn → M̃m, the following asser-
tions hold:

(i) The index of relative nullity ν is upper semicontinuous. In particular, the subset

M0 = {x ∈Mn : ν(x) = ν0}

where ν attains its minimum value ν0 is open.

(ii) The relative nullity distribution x 7→ ∆(x) is smooth on any open subset of Mn

where ν is constant.

(iii) If M̃m has constant sectional curvature c and U ⊂Mn is an open subset where ν
is constant, then ∆ is a totally geodesic (hence integrable) distribution on U and
the restriction of f to each leaf is totally geodesic.

Proof: First notice that

∆⊥(x) = span{AξX : X ∈ TxM, ξ ∈ NfM(x)}

for any x ∈Mn. Therefore, if x0 ∈Mn is such that ν(x0) = k, then there exist vectors
X1, . . . , Xn−k ∈ Tx0M and ξ1, . . . , ξn−k ∈ NfM(x0) such that

∆⊥(x0) = span{AξjXj}1≤j≤n−k.

Take smooth extensions of X1, . . . , Xn−k and ξ1, . . . , ξn−k to a neighborhood of x0. By
continuity, the vector fields

{AξjXj, 1 ≤ j ≤ n− k}

remain linearly independent in a possibly smaller neighborhood of x0. This yields
(i) and implies that ∆⊥, and hence ∆, is a smooth distribution on any open subset
containing x0 where ν = k.
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Now we prove (iii). We have

(∇⊥Zα)(X, Y ) = ∇⊥Zα(X, Y )− α(∇ZX, Y )− α(X,∇ZY )

= 0

for all X, Y ∈ Γ(∆) and Z ∈ X(U). Using the Codazzi equation, we obtain

0 = (∇⊥Xα)(Z, Y ) = −α(Z,∇XY ).

Thus ∇XY ∈ Γ(∆). This implies that ∆ is involutive in U with totally geodesic leaves.
Finally,

∇̃Xf∗Y = f∗∇XY + α(X, Y )

= f∗∇XY ∈ f∗∆

for all X, Y ∈ Γ(∆), hence the restriction of f to each leaf of ∆ is totally geodesic. �

1.7 Umbilical submanifolds

An isometric immersion f : Mn → M̃m is said to be umbilical at x ∈Mn if there
exists η ∈ NfM(x) such that

α(X, Y ) = 〈X, Y 〉η

for all X, Y ∈ TxM . Clearly, in this case η is the mean curvature vector H(x) of f
at x. Equivalently, f is umbilical at x if

Aξ = 〈H(x), ξ〉I

for every ξ ∈ NfM(x). A submanifold is called umbilical if it is umbilical at every
point.

An isometric immersion f : Mn → M̃m is said to have parallel mean curvature
vector field if

∇⊥XH = 0

for all x ∈ Mn and X ∈ TxM . In particular, if f has parallel mean curvature vector
field, then ‖H‖ is constant along Mn. If f is umbilical and has parallel mean curvature
vector field, then it is called an extrinsic sphere.

An isometric immersion f : Mn → M̃m is said to have flat normal bundle at
x ∈ Mn if the curvature tensor of the normal bundle vanishes at x. If the latter
condition holds at any x ∈Mn, then one just says that f has flat normal bundle.

We first prove the following preliminary fact and then give a complete description
of the umbilical (in particular, totally geodesic) submanifolds of space forms.

Proposition 1.19. Let f : Mn → M̃m
c , n ≥ 2, be an umbilical isometric immersion.

Then f has parallel mean curvature vector field H and flat normal bundle. Moreover,
Mn has constant sectional curvature c+ ‖H‖2.
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Proof: We have

(∇⊥Xα)(Y, Z) = ∇⊥Xα(Y, Z)− α(∇XY, Z)− α(Y,∇XZ)

= X〈Y, Z〉H + 〈Y, Z〉∇⊥XH − 〈∇XY, Z〉H − 〈Y,∇XZ〉H
= 〈Y, Z〉∇⊥XH

for all X, Y, Z ∈ X(M). From the Codazzi equation we obtain

〈Y, Z〉∇⊥XH = 〈X,Z〉∇⊥YH.

Choosing Y = Z orthogonal to X, it follows that H is parallel. On the other hand,
the Ricci equation gives

R⊥(X, Y )ξ = α(X,AξY )− α(AξX, Y )

= 〈X,AξY 〉H − 〈AξX, Y 〉H
= 0

for all X, Y ∈ X(M) and ξ ∈ Γ(NfM). The last assertion now follows easily from the
Gauss equation. �

In the next result, we use the standard model of Qm
c̃ , c̃ 6= 0, as

Qm
c̃ = {(x0, . . . , xm) ∈ Em+1 : ε x2

0 + x2
1 + · · ·+ x2

m = 1/c̃} (x0 > 0 if c̃ < 0),

where ε = c̃/|c̃| (see Exercise 1.14). Here Em+1 stands for either Euclidean space
Rm+1 or Lorentzian space Lm+1, according to whether c̃ > 0 or c̃ < 0, respectively,
and (x0, . . . , xm) are the standard coordinates on Em+1 with respect to which the flat
metric is written as

ds2 = ε dx2
0 + dx2

1 + · · ·+ dx2
m.

A subspace W of Lm+1 is said to be degenerate if W ∩ W⊥ 6= {0} (in which
case W ∩ W⊥ is necessarily one-dimensional). Otherwise, it is called space-like or
time-like, depending on whether the induced inner product on W is positive definite
or Lorentzian, respectively. Accordingly, a vector v ∈ Lm+1 is said to be light-like
(respectively, space-like or time-like) if 〈v, v〉 is zero (respectively, 〈v, v〉 is positive or
negative).

We point out that in this book an inner product 〈 , 〉 on a real vector space V
is assumed to be a nondegenerate symmetric bilinear form (not necessarily positive-
definite). The signature of the inner product is denoted by (p, q), meaning that p
(respectively, q) is the maximal dimension of a subspace restricted to which the inner
product is positive definite (respectively, negative definite). The integer q is called the
index of the inner product. Thus, a Lorentzian inner product on a vector space of
dimension n has index 1 and signature (n− 1, 1). Given an orthogonal basis v1, . . . , vn
of V , sometimes it will be convenient to refer to the ordered n-tuple (ε1, . . . , εn), with
εi = 〈vi, vi〉 for all 1 ≤ i ≤ n, as the signature of 〈 , 〉.
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Proposition 1.20. Let x̄ ∈ Qm
c̃ and let V be a proper vector subspace of Tx̄Qm

c̃ such
that n = dimV ≥ 1. If z ∈ Tx̄Qm

c̃ is orthogonal to V , then there exists exactly one
n-dimensional complete extrinsic sphere S in Qm

c̃ with x̄ ∈ S and Tx̄S = V whose mean
curvature vector at x̄ is z. The submanifold S is isometric to Qn

c , where c = c̃+ ‖z‖2,
and is totally geodesic if and only if z = 0. If we denote

a = c̃x̄− z and W = Ra⊕ V,

then S is explicitly given as follows:

(i) If Qm
c̃ = Rm, then S is either the affine space

x̄+W, if c = 0,

or the sphere

x̄− 1

c
a+ {x ∈ W : ‖x‖2 = 1/c}, if c > 0.

(ii) If Qm
c̃ = Smc̃ , then S is the sphere

S = Smc̃ ∩ (x̄+W ) = x̄− 1

c
a+ {x ∈ W : ‖x‖2 = 1/c}.

(iii) If Qm
c̃ = Hm

c̃ , then S = Hm
c̃ ∩ (x̄+W ).

If c > 0 (that is, if a, and hence W , is space-like), then S is the sphere

S = x̄− 1

c
a+ {x ∈ W : ‖x‖2 = 1/c}.

If c < 0 (that is, if a, and hence W , is time-like), then S is the hyperbolic space

S = x̄− 1

c
a+ {x ∈ W : ‖x‖2 = 1/c, 〈a, x〉 > 0}.

If c = 0 (that is, if a, and hence W , is degenerate), then

S = x̄+ {−(1/2)‖x‖2a+ x : x ∈ V }.

In this case, the map I : V → S given by

x 7→ x̄− 1

2
‖x‖2a+ x

is an isometry of the space-like vector subspace V onto S.

Conversely, if f : Mn → Qm
c̃ , n ≥ 2, is an umbilical isometric immersion then f(M)

is an open subset of such an extrinsic sphere S.
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Proof: We leave as an exercise to the reader to show that each of the submanifolds S
in the statement is an extrinsic sphere of Qm

c̃ . We give a proof of the converse as an
application of Theorem 1.25.

Let f : Mn → Qm
c̃ be an umbilical isometric immersion. Fix x ∈ Mn, and set

x̄ = f(x), V = f∗TxM and z = H(x). We will show that f(M) is an open subset of
the extrinsic sphere S in Qm

c̃ determined by (x̄, V, z).
Since Mn has constant sectional curvature c = c̃+‖z‖2 by Proposition 1.19, there

exists an isometry ψ : U ⊂ Mn → Ū of an open simply connected neighborhood U of
x onto an open neighborhood Ū ⊂ S of x̄ such that

ψ(x) = x̄ and i∗(x̄) ◦ ψ∗(x) = f∗(x),

where i : S → Qm
c̃ denotes the inclusion map. We claim that f |U = ĩ = i ◦ ψ.

The mean curvature vector field H of f being parallel, it has constant length along
Mn, hence it is either identically zero or nowhere vanishing. We argue for the latter
case, the former being easier. Since H is parallel, so is the subbundle H⊥ of NfM .
The same holds for the subbundle H⊥

ĩ
of the normal bundle of ĩ, where Hĩ = Hi ◦ ψ

and Hi stands for the mean curvature vector field of i. Choose an orthonormal basis
of H⊥(x) = z⊥ = H⊥

ĩ
(x). Since the normal bundle of f is flat, we can extend it to

parallel orthonormal frames ξ1, . . . , ξm−n−1 and ζ1, . . . , ζm−n−1 of H⊥ and H⊥
ĩ

along U ,
respectively. Define a vector bundle isometry φ : NĩU → Nf |UU by sending Hĩ to H

and ζj to ξj, 1 ≤ j ≤ m − n − 1. Then it is immediate to verify that φ preserves the
normal connections and the second fundamental forms. It follows from Theorem 1.10
that

f |U = Φ ◦ ĩ

for some isometry Φ of Qm
c̃ , with Φ∗|NĩU = φ. Since f∗(x) coincides with ĩ∗(x), the

differential Φ∗(x̄) acts as the identity map I on V = f∗TxM . From

Φ∗(x̄)|NfM(x) = φ|NfM(x) = I

and
Φ(x̄) = Φ(̃i(x)) = f(x) = x̄,

we conclude that Φ = I, and hence f |U = ĩ = i ◦ ψ. It follows that f(U) = Ū ⊂ S.
We have shown that for each x ∈Mn there exist an open neighborhood Ux ⊂Mn

of x and an extrinsic sphere Sx of dimension n in Qm
c̃ such that f(Ux) is an open subset

of Sx. The proof is completed by applying Exercise 1.20 to the family of extrinsic
spheres S in the statement. �

A Riemannian manifold Mn, n ≥ 3, is said to satisfy the axiom of r-spheres, for
some fixed r ≥ 2, if for every x ∈ Mn and every r-dimensional subspace V ⊂ TxM
there exists an extrinsic sphere through x whose tangent space at x is V .

It follows from Proposition 1.20 that any Riemannian manifold with constant
sectional curvature satisfies the axiom of r-spheres for every r ≥ 2. The following
generalization of Theorem 1.16 states that the converse is also true.
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Theorem 1.21. If a Riemannian manifold Mn, n ≥ 3, satisfies the axiom of r-spheres
for some 2 ≤ r ≤ n− 1, then it has constant sectional curvature.

Proof: It is entirely analogous to the proof of Theorem 1.16 in view of part (ii) of
Exercise 1.30. �

1.8 Principal normals

Let f : Mn → M̃m be an isometric immersion. A vector η ∈ NfM(x) at x ∈Mn

is called a principal normal of f at x if the subspace

Eη(x) = {T ∈ TxM : α(T,X) = 〈T,X〉η for all X ∈ TxM}

is nontrivial. A normal vector field η ∈ Γ(NfM) is called a principal normal vector
field of f with multiplicity q > 0 if Eη(x) has dimension q at any point x ∈Mn.

Notice that
Eη(x) = ∩γ∈NfM(x)ker (Aγ − 〈γ, η〉I). (1.27)

In particular, if m = n+ 1 and ξ ∈ NfM(x) is a unit normal vector at x, then η = λξ
is a principal normal at x if and only if λ is a principal curvature of f at x. In this way,
principal normals are natural generalizations to submanifolds of higher codimension of
principal curvatures of hypersurfaces.

A principal normal vector field η ∈ Γ(NfM) is said to be a Dupin principal
normal vector field if η is parallel in the normal connection along Eη. Accordingly, a
principal curvature λ with constant multiplicity of a hypersurface is said to be a Dupin
principal curvature if it is constant along the corresponding eigenbundle.

A smooth distribution E on a Riemannian manifold Mn is called umbilical if
there exists a smooth section δ of E⊥, named the mean curvature vector field of E,
such that

〈∇TS,X〉 = 〈T, S〉〈δ,X〉

for all T, S ∈ Γ(E) and X ∈ Γ(E⊥).

An umbilical distribution on Mn is always integrable and its leaves are umbilical
submanifolds of Mn (see Exercise 1.12).

The umbilical distribution E is said to be spherical if also

(∇T δ)E⊥ = 0

for all T ∈ Γ(E). Then the leaves of E are extrinsic spheres in Mn (see Exercise 1.12).

Proposition 1.22. Let f : Mn → Qm
c be an isometric immersion with a principal

normal vector field η of multiplicity q. Then the following assertions hold:

(i) The distribution x 7→ Eη(x) is smooth.
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(ii) The principal normal vector field η is Dupin if and only if Eη is a spherical
distribution and f maps each leaf of Eη into an extrinsic sphere of Qm

c .

(iii) If q ≥ 2 then η is a Dupin principal normal vector field.

(iv) If η is a Dupin principal normal vector field and c = 0, then the map h : Mn → Rm

defined as

h = f +
1

‖η‖2
η

is constant along Eη.

Proof: (i) The proof is similar to that of part (ii) of Proposition 1.18 and is left to the
reader (see Exercise 1.15).

(ii) Write η = λζ, where ζ has unit length. Assume that η is parallel along Eη in the
normal connection. Then, in particular, T (λ) = 0 for any T ∈ Γ(Eη), or equivalently,
gradλ ∈ Γ(E⊥η ).

Take the S-component of the Codazzi equation for (Aζ , T,X) for all S, T ∈ Γ(Eη)
and X ∈ X(M). By this we mean taking the inner product with S of the Codazzi
equation

∇TAζX − Aζ∇TX − A∇⊥T ζX = ∇XAζT − Aζ∇XT − A∇⊥XζT.

We obtain
(Aζ − λI)∇TS = −〈T, S〉gradλ. (1.28)

Similarly, taking the S-component of the Codazzi equation for (Aξ, T,X) for any ξ ∈
Γ(NfM) with ξ orthogonal to η yields

〈Aξ∇TS,X〉 = λ〈T, S〉〈∇⊥Xξ, ζ〉 (1.29)

for all S, T ∈ Γ(Eη) and X ∈ X(M).
In view of (1.27), it follows from (1.28) and (1.29) that

∇TS ∈ Γ(Eη)

for any orthogonal pair S, T ∈ Γ(Eη). Using Exercise 1.21, we see that Eη is an
umbilical distribution with mean curvature vector field δ satisfying

(Aζ − λI)δ = −gradλ (1.30)

and
〈Aξδ,X〉 = λ〈∇⊥Xξ, ζ〉. (1.31)

Taking the δ-component of the Codazzi equation for (Aζ , T,X) gives

〈∇T (Aζ − λI)X, δ〉 = 〈(Aζ − λI)δ, [T,X]〉.
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Hence

〈∇T δ, (Aζ − λI)X〉 = T 〈(Aζ − λI)δ,X〉 − 〈δ,∇T (Aζ − λI)X〉
= T 〈(Aζ − λI)δ,X〉 − 〈(Aζ − λI)δ, [T,X]〉.

It follows using (1.30) that

〈∇T δ, (Aζ − λI)X〉 = 0. (1.32)

Taking the δ-component of the Codazzi equation for (Aξ, T,X) yields

〈δ,∇TAξX〉 = 〈A∇⊥T ξδ,X〉+ 〈Aξδ, [T,X]〉.

Therefore

〈∇T δ, AξX〉 = T 〈Aξδ,X〉 − 〈δ,∇TAξX〉
= T 〈Aξδ,X〉 − 〈A∇⊥T ξδ,X〉 − 〈Aξδ, [T,X]〉.

Using (1.31) and the Ricci equation we have

〈∇T δ, AξX〉 = λ〈R⊥(T,X)ξ, ζ〉
= λ〈[Aξ, Aζ ]T,X〉
= 0 (1.33)

for all T ∈ Γ(Eη) and X ∈ X(M). Since

E⊥η (x) = span{∪γ∈NfM(x) Im(Aγ − 〈γ, η〉I)}

for all x ∈Mn, it follows from (1.32) and (1.33) that ∇T δ ∈ Γ(Eη) for any T ∈ Γ(Eη).
Thus Eη is spherical.

Taking derivatives in the ambient space, we have

∇̃Tf∗S = f∗(∇TS)Eη + f∗(∇TS)E⊥η + α(T, S)

= f∗(∇TS)Eη + 〈T, S〉f∗δ + 〈T, S〉η
= f∗(∇TS)Eη + 〈T, S〉σ, (1.34)

where σ = f∗δ + η. Using that

∇⊥T η = 0 = α(T, δ),

we obtain

∇̃Tσ = f∗∇T δ − f∗AηT
= −‖δ‖2f∗T − ‖η‖2f∗T

= −‖σ‖2f∗T. (1.35)
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It follows from (1.34) and (1.35) that the restriction of f to each leaf of Eη is an
extrinsic sphere in Qm

c . The converse is left to the reader.

(iii) Taking the S-component of the Codazzi equation for (Aζ , T, S) with S, T ∈ Γ(Eη),
‖S‖ = 1 and 〈S, T 〉 = 0 gives T (λ) = 0, whereas the Codazzi equation for (Aξ, T, S)
with ξ orthogonal to η yields ∇⊥T ζ = 0.

(iv) Since η is parallel in the normal connection along Eη, then

T 〈η, η〉 = 2〈∇⊥T η, η〉 = 0

for all T ∈ Γ(Eη). Therefore

h∗T = f∗T +
1

‖η‖2
∇̃Tη

= f∗T −
1

‖η‖2
f∗AηT

= 0,

and this concludes the proof. �

The last result of this section shows that the existence of a principal normal
vector field with multiplicity greater than n/2 of an isometric immersion f : Mn → Rm

of a compact manifold imposes restrictions on the topology of Mn.

Theorem 1.23. Let f : Mn → Rm be an isometric immersion of a compact Rieman-
nian manifold. If there exists a principal normal vector field η of f with multiplicity
k > n/2 then Mn has the homotopy type of a CW -complex with no cells of dimension
n− k < r < k. In particular, the homology groups of Mn satisfy

Hr(M ;G) = 0, n− k < r < k,

for any coefficient group G.

Proof: By Exercise 1.27, there exists v ∈ Rm such that the function hv : Mn → R given
by

hv(x) = 〈f(x), v〉

is a Morse function. On the other hand, by Corollary 1.3 we have

Hesshv(X, Y ) = 〈α(X, Y ), v〉

for all x ∈ Mn and X, Y ∈ TxM . Moreover, a point x ∈ Mn is critical for hv if and
only if v ∈ NfM(x). For any x ∈Mn we have

Hesshv(Z,X) = 〈α(Z,X), v〉
= 〈η(x), v〉〈Z,X〉
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if Z ∈ Eη(x) and X ∈ TxM . Since hv has only nondegenerate critical points, for any
critical point x ∈Mn we have

cx = 〈η(x), v〉 6= 0,

and the index of x is at least k if cx < 0 and at most n− k if cx > 0. By a well-known
result in Morse theory (see Theorem 3.5 in [247]), Mn has the homotopy type of a
CW -complex with no cells of dimension n− k < r < k. �

1.9 Submanifolds with flat normal bundle

An important class of submanifolds consists of those which have flat normal bun-
dle. As shown below, in case the ambient space has constant sectional curvature, the
basic equations for a submanifold in this class are very similar to those of a hypersur-
face.

Flatness of the normal bundle of a submanifold in a space with constant sectional
curvature has the following useful characterization.

Proposition 1.24. An isometric immersion f : Mn → M̃m
c has flat normal bundle at

x ∈Mn if and only if the shape operators

{Aξ : ξ ∈ NfM(x)}

are simultaneously diagonalizable, or equivalently, if and only if there exists an or-
thonormal basis X1, . . . , Xn of TxM such that

α(Xi, Xj) = 0, 1 ≤ i 6= j ≤ n.

Proof: By the Ricci equation

〈R⊥(X, Y )ξ, η〉 = 〈[Aξ, Aη]X, Y 〉,

the normal curvature tensor R⊥ vanishes at x ∈ Mn if and only if all shape operators
Aξ, ξ ∈ NfM(x), commute. �

By the above result, at each x ∈ Mn where R⊥(x) = 0 the tangent space TxM
decomposes orthogonally as

TxM = E1(x)⊕ · · · ⊕ Es(x),

the decomposition having the property that for each ξ ∈ NfM(x) there exist real
numbers λi(ξ), 1 ≤ i ≤ s = s(x), such that

Aξ|Ei(x) = λi(ξ)I



Chapter 1. The basic equations of a submanifold 39

and the maps ξ 7→ λi(ξ) are pairwise distinct. Since such maps are linear, there exist
unique pairwise distinct vectors ηi(x) ∈ NfM(x), 1 ≤ i ≤ s, called the principal
normals of f at x, such that

λi(ξ) = 〈ηi(x), ξ〉, 1 ≤ i ≤ s.

Therefore

Ei(x) = Eηi(x) = {X ∈ TxM : α(X, Y ) = 〈X, Y 〉ηi(x) for all Y ∈ TxM},

and the second fundamental form of f has the simple representation

α(X, Y ) =
s∑
i=1

〈X i, Y i〉ηi(x), (1.36)

where X 7→ X i is the orthogonal projection onto Ei(x). Equivalently,

AξX =
s∑
i=1

〈ξ, ηi(x)〉X i (1.37)

for all X ∈ TxM and ξ ∈ NfM(x). The Gauss equation takes the form

R(X, Y ) =
s∑

i,j=1

(c+ 〈ηi(x), ηj(x)〉)X i ∧ Y j (1.38)

for all X, Y ∈ TxM . In particular, the sectional curvature K(X, Y ) of Mn is

K(X, Y ) = c+ 〈ηi(x), ηj(x)〉, (1.39)

along a plane spanned by X ∈ Ei(x) and Y ∈ Ej(x), 1 ≤ i 6= j ≤ s, whereas

K(X, Y ) = c+ ‖ηi(x)‖2 (1.40)

if X, Y ∈ Ei(x).
If f : Mn → M̃m

c has flat normal bundle at every point x ∈Mn, then the function

x ∈Mn 7→ s(x) ∈ {1, . . . , n}

is lower semi-continuous. Hence, if Ms denotes the interior of the subset where it
assumes the value s, then ∪ns=1Ms is open and dense in Mn. On each Ms, the maps
x 7→ ηi(x), 1 ≤ i ≤ s, define smooth normal vector fields, called the principal normal
vector fields of f , and each map x 7→ Ei(x) gives rise to a smooth distribution.

The Codazzi equation on Ms is equivalent to the following:

(i) The vector field ηi is parallel in the normal connection along Eηi if rank Eηi ≥ 2.

(ii) If Xi ∈ Γ(Eηi) and Xj, Yj ∈ Γ(Eηj), 1 ≤ i 6= j ≤ s, then

〈Xj, Yj〉∇⊥Xiηj = 〈∇XjYj, Xi〉(ηj − ηi). (1.41)

(iii) If Xi ∈ Γ(Eηi), Xj ∈ Γ(Eηj) and Xk ∈ Γ(Eηk), 1 ≤ i 6= j 6= k 6= i ≤ s, then

〈∇XjXi, Xk〉(ηi − ηk) = 〈∇XiXj, Xk〉(ηj − ηk). (1.42)
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1.10 Proof of the Fundamental theorem

In this section we give a proof of the Fundamental theorem of submanifolds 1.10.
Since we will also need a Lorentzian version of this theorem in our study of conformal
immersions, and this also leads to an easy proof of the theorem for the hyperbolic space,
at no extra effort we prove a general version for isometric immersions of Riemannian
manifolds into semi-Riemannian manifolds of constant sectional curvature.

We denote by Qm
c,µ a semi-Riemannian manifold with a metric of constant sec-

tional curvature c and index µ. If c = 0 we write simply Rm
µ , and we also use the

symbol Smc,µ when c > 0.

Theorem 1.25. Existence: Let Mn be a simply connected Riemannian manifold, let
E be a semi-Riemannian vector bundle of rank p and index µ over Mn with compat-
ible connection ∇E and curvature tensor RE, and let αE be a symmetric section of
Hom2(TM, TM ;E). For each ξ ∈ Γ(E) define AE

ξ ∈ Γ(End(TM)) by

〈AE
ξX, Y 〉 = 〈αE(X, Y ), ξ〉.

Assume that (∇E, αE, AE, RE) satisfies (1.14), (1.15) and (1.17). Then there exist an
isometric immersion f : Mn → Qn+p

c,µ and a vector bundle isometry φ : E→ NfM such
that

αf = φ ◦ αE and ∇⊥φ = φ∇E.

Uniqueness: Let f, g : Mn → Qn+p
c,µ be isometric immersions of a Riemannian manifold.

Assume that there exists a vector bundle isometry φ : NfM → NgM such that

φ ◦ αf = αg and φf∇⊥ = g∇⊥φ. (1.43)

Then there exists an isometry τ : Qn+p
c,µ → Qn+p

c,µ such that

τ ◦ f = g and τ∗|NfM = φ.

Proof: We first prove the theorem for c = 0, starting with existence.

Consider the Whitney sum Ē = TM ⊕ E endowed with the orthogonal sum of the
metrics in TM and E. Define

∇Ē
XY = ∇XY + αE(X, Y ) and ∇Ē

Xξ = −AE
ξX +∇E

Xξ

for all X, Y ∈ X(M) and ξ ∈ Γ(E), where ∇ is the Levi-Civita connection on TM . It
is easy to see that ∇Ē is a compatible connection on Ē. Moreover, using that (1.14),
(1.15) and (1.17) hold with c = 0, it is straightforward to verify that the curvature
tensor of Ē vanishes identically. Therefore, Mn being simply connected, there exists
by Corollary A.5 a vector bundle isometry φ̄ : Ē→Mn × Rn+p

µ such that

∇̄φ̄ = φ̄∇Ē,
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where ∇̄ denotes the canonical connection on the trivial bundle Mn × Rn+p
µ .

Define a one-form ω ∈ Γ(T ∗M ⊗ Rn+p
µ ) by ω = φ̄|TM . Then ω is closed, for

dω(X, Y ) = ∇̄Xω(Y )− ∇̄Y ω(X)− ω([X, Y ])

= ∇̄X φ̄Y − ∇̄Y φ̄X − φ̄[X, Y ]

= φ̄∇Ē
XY − φ̄∇Ē

YX − φ̄[X, Y ]

= φ̄(∇XY −∇YX − [X, Y ] + αE(X, Y )− αE(Y,X))

= 0.

Since Mn is simply connected, there exists a map f : Mn → Rn+p
µ such that f∗ = ω. It

follows from

〈f∗X, f∗Y 〉 = 〈ωX, ωY 〉
= 〈φ̄X, φ̄Y 〉
= 〈X, Y 〉

that f is an isometric immersion. Define φ = φ̄|E. On one hand,

φ̄∇Ē
XY = φ̄∇XY + φ̄αE(X, Y )

= f∗∇XY + φαE(X, Y ).

On the other hand, identifying f ∗TRn+p
µ with Mn × Rn+p

µ ,

φ̄∇Ē
XY = ∇̄X φ̄Y

= ∇̄Xf∗Y

= f∗∇XY + αf (X, Y ).

Hence φαE(X, Y ) = αf (X, Y ), which easily implies that AE
ξ = Afφξ. Thus

φ̄∇Ē
Xξ = φ̄(−AE

ξX) + φ̄∇E
Xξ

= −f∗AE
ξX + φ̄∇E

Xξ

= −f∗AfφξX + φ∇E
Xξ.

Then φ∇E
Xξ = ∇⊥Xφξ follows by comparing this equation with

φ̄∇Ē
Xξ = ∇̄X φ̄ξ

= ∇̄Xφξ

= −f∗AfφξX +∇⊥Xφξ.

Now we prove uniqueness. Define φ̃ : f ∗TRn+p
µ → g∗TRn+p

µ by

φ̃ ◦ f∗ = g∗ and φ̃|NfM = φ.
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We claim that φ̃ is parallel with respect to the pulled-back connections f∇̃ and g∇̃ on
f ∗TRn+p

µ and g∗TRn+p
µ , respectively, of the flat connection on Rn+p

µ . In fact, by the
first formula in (1.43) and the Gauss formulas for f and g we have

g∇̃X φ̃f∗Y = g∇̃Xg∗Y

= g∗∇XY + αg(X, Y )

= φ̃f∗∇XY + φαf (X, Y )

= φ̃(f∗∇XY + αf (X, Y ))

= φ̃f∇̃Xf∗Y

for all X, Y ∈ X(M). On the other hand, using the second formula in (1.43) and the
Weingarten formulas for f and g we obtain

g∇̃X φ̃ξ = g∇̃Xφξ

= −g∗AgφξX + g∇⊥Xφξ
= −φ̃f∗AfξX + φf∇⊥Xξ
= φ̃(−f∗AfξX + f∇⊥Xξ)
= φ̃f∇̃Xξ

for all X ∈ X(M) and ξ ∈ Γ(NfM), and the claim follows.
Therefore φ̃ defines a linear orthogonal map B on Rn+p

µ . From B◦f∗ = φ̃◦f∗ = g∗
it follows that there exists an isometry τ of Rn+p

µ such that τ ◦ f = g and τ∗ = B. In
particular,

τ∗|NfM = B|NfM = φ̃|NfM = φ.

We now consider the nonflat case c 6= 0. We use the fact that QN
c,µ, c 6= 0, admits

a canonical isometric embedding i : QN
c,µ → RN+1

µ+σ(c) (see Exercise 1.14) whose image is
the hyperquadric

QN
c,µ = {X ∈ RN+1

µ+σ(c) : 〈X,X〉 = 1/c}.

Here σ(c) = 1 if c < 0 and σ(c) = 0 if c > 0.
To prove existence, set c = ε/r2, with ε ∈ {1,−1}. Let Ẽ be the Whitney sum

of E and a line bundle Υ over Mn. Endow Ẽ with the semi-Riemannian metric that
makes the decomposition Ẽ = E⊕Υ orthogonal and has index ε on Υ.

Choose a unit section ν of Υ and define a compatible connection ∇Ẽ on Ẽ by

∇Ẽ
Xν = 0, ∇Ẽ

Xξ = ∇E
Xξ for ξ ∈ Γ(E), (1.44)

and a symmetric section αẼ of Hom2(TM, TM ; Ẽ) by

αẼ(X, Y ) = αE(X, Y )− ε

r
〈X, Y 〉ν. (1.45)

Then it is straightforward to check that (Ẽ,∇Ẽ, αẼ) satisfies the Gauss, Codazzi and
Ricci equations for an isometric immersion f̃ : Mn → Rn+p+1

µ+σ(c). By the flat case of the
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theorem already proved, there exist an isometric immersion f̃ : Mn → Rn+p+1
µ+σ(c) and a

vector bundle isometry φ̃ : Ẽ→ Nf̃M such that

αf̃ = φ̃ ◦ αẼ and ∇̃⊥φ̃ = φ̃∇Ẽ,

where αf̃ and ∇̃⊥ denote the second fundamental form and the normal connection of
f̃ , respectively.

We claim that f̃(M) ⊂ Qn+p
c,µ , after composing f̃ with a translation in Rn+p+1

µ+σ(c) if
necessary. In fact, from

∇̃X φ̃(ν) = −f̃∗Af̃φ̃(ν)
X + ∇̃⊥X φ̃(ν)

= −f̃∗AẼ
νX + φ̃

(
∇Ẽ
Xν
)

=
1

r
f̃∗X,

it follows that f̃ − rφ̃(ν) = O ∈ Rn+p+1
µ+σ(c) is a constant vector. Hence

〈f̃ −O, f̃ −O〉 = 〈rφ̃(ν), rφ̃(ν)〉 = εr2.

This completes the proof of our claim. We conclude that there exists an isometric
immersion f : Mn → Qn+p

c,µ such that f̃ = i ◦ f . Moreover, φ̃(ν) = (1/r)f̃ . Finally, it is

now easy to see that the restriction φ of φ̃ to E is a vector bundle isometry onto NfM
satisfying the conditions in the statement.

For the uniqueness, set f̃ = i◦f and g̃ = i◦g. Extend φ to an isometry φ̃ : Nf̃M → Ng̃M
by setting

φ̃(f̃) = g̃.

Using (1.43), (1.44) and (1.45), it follows that

φ̃ ◦ αf̃ = αg̃ and φ̃f̃∇
⊥

= g̃∇⊥φ̃.

By the uniqueness part of the theorem for the flat case, there is an isometry

τ : Rn+p+1
µ+σ(c) → Rn+p+1

µ+σ(c)

such that
τ ◦ f̃ = g̃ and τ∗|Nf̃M = φ̃.

Write τZ = BZ + V , with B = τ∗ orthogonal. Then

Bf̃ + V = τ f̃ = g̃ = φ̃f̃ = τ∗f̃ = Bf̃,

hence V = 0. It follows that τ leaves Qn+p
c,µ invariant. �



44 1.11. Appendix: Burstin-Mayer-Allendoerfer theory

1.11 Appendix: Burstin-Mayer-Allendoerfer theory

There is an alternative approach to the basic equations and the Fundamental
theorem of submanifolds that has proved to be very useful in several situations. In
fact, the Burstin-Mayer-Allendoerfer theory naturally extends the Frenet equations for
curves to submanifolds of arbitrary dimension and codimension, under similar regular-
ity conditions. The main result is that, for a submanifold of a space form, the tensors
determined by the generalized Frenet equations are a complete set of invariants.

The kth-normal space Nk(x) of an isometric immersion f : Mn → Qm
c at x ∈Mn

for k ≥ 1 is defined as

Nk(x) = span{αk+1(X1, . . . , Xk+1) : X1, . . . , Xk+1 ∈ TxM}.

Here α2 = αf and αs : X(M)× · · · ×X(M)→ Γ(NfM), s ≥ 3 is the symmetric tensor
called the sth-fundamental form and defined inductively by

αs(X1, . . . , Xs) =
(
∇⊥Xs · · · ∇

⊥
X3
α2(X2, X1)

)⊥
,

where ( )⊥ denotes taking the projection onto the normal subspace (N1⊕· · ·⊕Ns−2)⊥.
We assume that the immersion f is a regular isometric immersion (sometimes

called nicely curved), which means that all Nk’s have constant dimension for each k
and therefore form normal subbundles. Geometrically, this roughly means that at each
point the submanifold bends in the same number of directions. Notice that, for any
submanifold, this condition is satisfied along connected components of an open dense
subset.

The Frenet equations for a regular isometric immersion f : Mn → Qm
c are given by

∇̃Xξ = −AsξX +Ds
Xξ + SsXξ

if ξ ∈ Γ(Ns) and X ∈ X(M), s ≥ 1, in terms of the maps

As : X(M)× Γ(Ns)→ Γ(Ns−1) defined by AsξX = −πs−1(∇̃Xξ),

Ds : X(M)× Γ(Ns)→ Γ(Ns) defined by Ds
Xξ = πs(∇⊥Xξ),

Ss : X(M)× Γ(Ns)→ Γ(Ns+1) defined by SsXξ = πs+1(∇⊥Xξ),

where ∇̃ denotes the connection in the induced bundle f ∗(TQm
c ) = N0 ⊕ NfM . In

addition, πs : NfM → Ns, s ≥ 1, stands for the orthogonal projection and π0 is the
orthogonal projection onto N0 = f∗TM . Notice that A1

ξ is the standard Weingarten
operator and that Ds is a connection in Ns compatible with the metric. An impor-
tant fact is that As and Ss are tensors that are completely determined by the higher
fundamental forms, for

SsX(αs+1(X1, . . . , Xs+1)) = αs+2(X,X1, . . . , Xs+1)

and
〈AsξX, η〉 = 〈ξ, Ss−1

X η〉
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for any ξ ∈ Γ(Ns) and η ∈ Γ(Ns−1).

We briefly summarize the basic results of the theory and refer to Spivak [317] for
the many details.

Let f, f̃ : Mn → QN
c be two regular isometric immersions. If there exist vector

bundle isometries φk : N f
k → N f̃

k for all k ≥ 1, which preserve the fundamental forms
αk+1 and the induced normal connections Dk, then there exists an isometry τ of QN

c

such that f̃ = τ ◦ f and φk = τ∗|Nf
k
. Moreover, there is a set of equations, which

are given below and called the Generalized Gauss and Codazzi equations, that relate
the higher fundamental forms and the induced connections. It turns out that the set
of connections Dk in Nk is the unique one for which the higher order fundamental
forms satisfy the Codazzi equation. Furthermore, the Generalized Gauss and Codazzi
equations are the integrability conditions that assure the existence of an isometric
immersion with a set of prescribed data.

The Generalized Gauss equation.

As+1
SsY ξ

X − As+1
SsXξ

Y = Ds
XD

s
Y ξ −Ds

YD
s
Xξ − Ss−1

X AsξY + Ss−1
Y AsξX −Ds

[X,Y ]ξ

for all X, Y ∈ X(M) and ξ ∈ Γ(Ns).

The Generalized Codazzi equation.

Ds+1
X (SsY ξ)−Ds+1

Y (SsXξ) + SsXD
s
Y ξ − SsYD

s
Xξ − Ss[X,Y ]ξ = 0

for all X, Y ∈ X(M) and ξ ∈ Γ(Ns).

1.12 Notes

The classical Burstin-Janet-Cartan theorem states that an analytic Riemannian
metric always locally admits an analytical isometric embedding into R 1

2
n(n+1). The first

rigorous proof after the claim by Janet was given by Burstin. A completely different
proof using differential systems is due to Cartan, and both types of proofs are presented
in Spivak [317].

A fundamental theorem due to Nash [265] states that every Riemannian manifold
can be isometrically embedded in Euclidean space for some sufficiently large codimen-
sion. Improvements of Nash’s result were given by Gromov-Rokhlin [203] and by Gro-
mov [201]. For a thorough discussion of the subject we refer to Han-Hong [213]. On
the other hand, except for several special cases, little is known about the lowest codi-
mension which makes an isometric embedding or just an isometric immersion possible.
This fundamental basic problem is considered many times in this book.

It follows from Proposition 1.7 and Exercise 1.10 that a Riemannian manifold
Mn with positive sectional curvature that admits an isometric immersion in Euclidean
space as a hypersurface must be diffeomorphic to the round sphere Sn with the dif-
feomorphism being given by the Gauss map. The convexity Theorem 1.8 for compact
hypersurfaces goes back to Hadamard, who treated the surface case.
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Strengthening previous theorems due to Weinstein [343] and Moore [259], it was
shown by Florit-Ziller [193], with the aid of results based on the Ricci flow by Wilk-
ing [344], that a compact Riemannian manifold Mn of dimension n ≥ 3 with positive
sectional curvature that admits an isometric immersion into Rn+2 must also be dif-
feomorphic to the round sphere Sn. The case in which Mn is only assumed to have
nonnegative sectional curvature is much more subtle. In that case, improving earlier
results by Baldin-Mercuri [24], [25], it was shown by Florit-Ziller [193] that two further
possible cases may occur for a Riemannian manifold Mn with dimension n ≥ 4 that
admits an isometric immersion f : Mn → Rn+2, besides being diffeomorphic to the
round sphere Sn. Namely, either Mn is isometric to a Riemannian product Sk × Sn−k
for some 2 ≤ k ≤ n − 2, in which case f is the product embedding of two convex
Euclidean hypersurfaces, or Mn is isometric to (Sn×R)/Γ, with Sn×R endowed with
the product metric and Γ isomorphic to Z acting isometrically. In the latter case, as a
manifold, Mn is diffeomorphic to Sn×S1 if orientable, or to the nonorientable quotient
(Sn × S1)/Z2 otherwise. In particular, it suffices that the sectional curvatures of Mn

be positive at one point for Mn to be diffeomorphic to Sn. If n = 3, the manifold
M3 might yet be diffeomorphic to a lens space Lp,q, but it is still an open problem
whether an example with this diffeomorphism type exists. The use of results based on
the Ricci flow in this context was made possible by the observation in Exercise 1.11,
due to Weinstein [343], according to which if f : Mn → Rn+2 is an isometric immersion
and the sectional curvatures of Mn at a point x ∈ Mn along any plane σ ⊂ TxM are
nonnegative (respectively, positive), then Mn has nonnegative (respectively, positive)
curvature operator at x.

As for complete hypersurfaces in Euclidean space with nonnegative sectional cur-
vature, it was shown by Sacksteder [307] that they must be convex as long as there
exists a point where all sectional curvatures are positive. The case of a round sphere
as ambient space was considered by do Carmo-Warner [61]. For related results see [5],
[6], [19], [39], [60], [245] and [346].

Theorem 1.14 is basically due to Cartan; see Berndt-Console-Olmos [34] or Pawel-
Reckziegel [287] for a proof of this result, and Pawel-Reckziegel [288] for an extension
to the case of extrinsic spheres.

The characterization of Riemannian manifolds that satisfy the axiom of r-planes
given by Theorem 1.16 is due to Cartan [70]. The generalization in Theorem 1.21 was
obtained by Leung-Nomizu [235]. There are several other results of a similar nature in
the literature; for instance, see [338].

The terminology extrinsic sphere in a Riemannian manifold was introduced by
Nomizu-Yano [271], who gave an interesting characterization of such submanifolds.

After earlier work due to Thomas [328] and Fialkow [179], it was shown by Ryan
[305] that for an Einstein hypersurface in Euclidean space either the Ricci curvature ρ
is zero and the submanifold is flat or ρ > 0 and the submanifold is an open subset of a
round hypersphere; see Exercise 3.11. Moreover, if the hypersurface is complete, then
it is either a round hypersphere or a cylinder over a complete plane curve. In fact, the
global assertion in the flat case will be proved, as a particular case, in Theorem 7.15.

Cheng-Yau [85] showed that the only complete hypersurfaces in Rn+1 with con-
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stant scalar curvature and nonnegative sectional curvature are cylinders Sp × Rn−p,
0 ≤ p ≤ n. They also considered the case of nonflat ambient space forms. Ros [304]
proved that the round sphere is the only compact hypersurface with constant scalar
curvature embedded in Euclidean space. In an appendix to the same paper, Korevaar
showed that the result remains true if any of the symmetric functions of the principal
curvatures are assumed to be constant.

Principal normal vector fields were introduced by Otsuki [285], where some of
its properties in Proposition 1.22 were derived; see also Reckziegel [296]. Euclidean
submanifolds that carry a principal normal vector field and satisfy some additional
condition were considered by Dajczer-Florit-Tojeiro in [104], [105] and [106]. In Chap-
ter 9 it will be shown (see Proposition 9.5) that Euclidean submanifolds with dimension
n that carry a principal normal vector field of multiplicity q are, locally, envelopes of
(n − q)-parameter congruences of n-spheres. The topological restrictions in Theorem
1.23 for the existence of a principal normal vector field with multiplicity k > n/2 on a
compact n-dimensional submanifold of Euclidean space are due to Moore [256], where
they have been used to derive topological restrictions for the existence of an isometric
immersion of a compact conformally flat Riemannian manifold with dimension n ≥ 4
into Rn+p, p ≤ n/2− 1 (see Corollary 16.6).

A procedure to construct all local n-dimensional submanifolds with flat normal
bundle of the Euclidean space or the sphere, starting with n smooth functions on an
open simply connected subset of Rn whose Hessian operators commute, was given by
Dajczer-Florit-Tojeiro [106], generalizing a previous result by Ferapontov [169] for the
surface case.

The proof of the Fundamental theorem of submanifolds given in this book appears
in Lira-Tojeiro-Vitório [238] and was inspired by the one given by Jacobowitz [224].
For other proofs of this result, we refer to [165], [223], [315], [317] and [323]. The
article [238] also contains a version of the Fundamental theorem of submanifolds for
the case in which the ambient space is a product of space forms. The key point is
that for such product spaces, unlike the case of an arbitrary Riemannian manifold,
the Gauss, Codazzi and Ricci equations of a submanifold make sense intrinsically. It
was shown by Piccione-Tausk [291] that this is the case for any Riemannian manifold
that is “sufficiently homogeneous”, a condition that can be formulated in terms of the
notion of a G-structure on the manifold. We refer to [291] and the references therein
for versions of the Fundamental theorem of submanifolds for other ambient spaces.

The isometric immersion of a flat Klein bottle given in Exercise 1.4 below is due
to Tompkins [336]. The examples of umbilical surfaces in H3

k × R2 and H3
k1
× H3

k2
in

Exercise 1.13 have been taken from [283], where umbilical surfaces of any Riemannian
product Qn1

c1
×Qn2

c2
, with c1 + c2 6= 0, were classified, making use of previous results in

[243] for the higher dimensional case. The content of Exercises 1.36 and 1.37 can be
found in Fabricius-Bjerre [168]; see also Perepelkin [290] in regard to Exercise 1.36. The
result given in Exercise 1.42 is due to Aminov [18]. Finally, the original reference for
the Burstin-Mayer-Allendoerfer theory is the work of Allendoerfer [15], and a modern
treatment can be found in [317].



48 1.13. Exercises

1.13 Exercises

Exercise 1.1. Let f : Mn → M̃m be an isometric immersion and let ∇̃ denote the
connection on f ∗TM̃ induced by the Levi-Civita connection of M̃m. Verify that

∇XY = f−1
∗ (∇̃Xf∗Y )T

defines a compatible torsion-free connection on TM , which therefore coincides with the
Levi-Civita connection of Mn.

Exercise 1.2. Given an isometric immersion f : Mn → M̃m, show that NfM is a
Riemannian vector bundle with the metric induced from the metric of M̃m and that
∇⊥ is a compatible connection on NfM .

Exercise 1.3. Verify that the map ϕ : Sn ⊂ Rn+1 → R 1
2
n(n+1)+n+1 given by

ϕ(x0, . . . , xn) =

(
1√
2
x2

0, . . . ,
1√
2
x2
n, x0x1, x0x2, . . . , xn−1xn

)
induces an isometric immersion of the real projective space RPn into R 1

2
n(n+1)+n+1.

Exercise 1.4. Show that the map F : R2 → R4 given by

F (u, v) =
(

cos v cosu, cos v sinu, 2 sin v cos
u

2
, 2 sin v sin

u

2

)
induces an immersion of a Klein bottle into R4 with flat induced metric. Show that
the image F (R2) intersects itself along the circle

{(x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 = 1, x3 = 0 = x4}.

Hint: Verify that

F (u, v + 2π) = F (u, v) = F (u+ 2π, 2π − v).

Exercise 1.5. Let f : Mn → Sm be an isometric immersion. The cone over f is the
immersion F : Nn+1 = R+ ×Mn → Rm+1 defined by

F (t, x) = tf(x).

(i) Compute the second fundamental form of F in terms of that of f .

(ii) Show that, if TxM is regarded as a subspace of T(t,x)N in the natural way, then
the sectional curvatures of Mn and Nn+1 along a plane σ ⊂ TxM ⊂ T(t,x)N are
related by

KM(σ)− 1 = t2KN(σ).
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Exercise 1.6. Given isometric immersions j : M → N and F : N → P , set f = F ◦ j.
Show that

NfM(x) = F∗NjM(x)⊕NFN(j(x))

for any x ∈ M , and that the second fundamental forms and normal connections of j,
F and f are related by

αf (X, Y ) = F∗α
j(X, Y ) + αF (j∗X, j∗Y ),

f∇⊥XF∗ξ = F∗
j∇⊥Xξ + αF (j∗X, ξ)

and
f∇⊥Xζ = −F∗(AFζ j∗X)NjM +F∇⊥j∗Xζ

for all X, Y ∈ TxM , ξ ∈ Γ(NjM) and ζ ∈ Γ(NFN).

Exercise 1.7. Prove the following assertions:

(i) Given r1, . . . , rn > 0 with r2
1 + · · ·+ r2

n = 1, the map f : Rn → R2n defined by

f(t1, . . . , tn) =

(
r1 cos

t1
r1

, r1 sin
t1
r1

, . . . , rn cos
tn
rn
, rn sin

tn
rn

)
induces an isometric embedding of S1(r1)× · · · × S1(rn) into the unit sphere S2n−1.

(ii) Given r1, . . . , rn > 0 with −r2
1 + · · ·+ r2

n = −1, the map f : Rn → L2n defined by

f(t1, . . . , tn) =

(
r1 cosh

t1
r1

, r1 sinh
t1
r1

, r2 cos
t2
r2

, r2 sin
t2
r2

, . . . , rn cos
tn
rn
, rn sin

tn
rn

)
induces an isometric embedding of H1(r1)× S1(r2)× · · · × S1(rn) into H2n−1 ⊂ L2n.

(iii) Both isometric immersions have parallel mean curvature vector field.

Exercise 1.8. Let f : Mn → M̃m be an isometric immersion, and let γ : [0, 1] → Mn

be a smooth curve such that f ◦ γ is a geodesic in M̃m. Show that γ is a geodesic in
Mn and, for each plane σ ⊂ Tγ(t)M such that γ′(t) ∈ σ, prove the Synge inequality

K(σ) ≤ K̃(σ).

Exercise 1.9. Let f : Mn → M̃n+1
c have principal curvatures k1, . . . , kn at x ∈Mn.

(i) Show that the set of
(
n
2

)
numbers {kikj : i < j} is intrinsic, that is, does not

depend on the isometric immersion f .

(ii) Conclude that Hr is intrinsic if r is even, and that the Gauss-Kronecker curvature
is intrinsic if n is even and intrinsic up to sign if n is odd.
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Hint: Let
Λ2TxM = {X ∧ Y : X, Y ∈ TxM}

be the second exterior power of TxM and let ρ : Λ2TxM → Λ2TxM be the curvature
operator of Mn at x, given by

〈ρ(X ∧ Y ), Z ∧W 〉 = 〈R(X, Y )W,Z〉

for all X, Y, Z,W ∈ TxM . Show that the Gauss equation can be written as

ρ(X ∧ Y ) = c(X ∧ Y ) + AX ∧ AY,

where A is the shape operator of f . Conclude that

{c+ kikj : i < j}

is the set of eigenvalues of ρ.

Exercise 1.10. Prove that any of the conditions in Proposition 1.7 is equivalent to
Mn having positive sectional curvatures at any point.

Exercise 1.11. Let f : Mn → Rn+2 be an isometric immersion. Assume that at some
point x ∈Mn the sectional curvatures of Mn along any plane σ ⊂ TxM are nonnegative
(respectively, positive).

(i) Show that there exists an orthonormal basis ξ, η of NfM(x) such that the shape
operators Aξ and Aη are nonnegative definite (respectively, positive definite).

(ii) Conclude that the curvature operator ρ : Λ2TxM → Λ2TxM of Mn at x is non-
negative definite (respectively, positive definite).

Hint: Show that the second fundamental form α : TxM × TxM → NfM(x) of f at x
satisfies

〈α(X,X), α(Y, Y )〉 ≥ 0

for all X, Y ∈ TxM , with strict inequality if the sectional curvatures of Mn at x along
any plane σ ⊂ TxM are positive. Conclude that, in the intersection of the connected
subset

{α(X,X) : X ∈ TxM} ⊂ NfM(x)

with the unit circle in NfM(x), all points have distance at most π/2 to each other,
hence this intersection lies in the first quadrant with respect to some orthonormal basis
ξ, η of NfM(x), while it lies in its interior if all sectional curvatures are positive.

Exercise 1.12. Show that an umbilical distribution E on a Riemannian manifold
Mn is always integrable and that its leaves are umbilical submanifolds of Mn. If, in
addition, E is spherical, show that its leaves are extrinsic spheres in Mn.
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Exercise 1.13. Prove that the following maps define umbilical isometric immersions:

(i) F : R2 → H3
k × R2 ⊂ L4 × R2 = L6 given by

F (s, t) =

(
a1 cosh

s

c
, a1 sinh

s

c
, a2 cos

t

c
, a2 sin

t

c
, b1

s

c
, b2

t

c

)
,

where

−a2
1 + a2

2 =
1

k
and a2

1 + b2
1 = c2 = a2

2 + b2
2.

(ii) F : R2 → H3
k1
×H3

k2
⊂ L4 × L4 given by

F (s, t) =

(
a1 cosh

s

c
, a1 sinh

s

c
, a2 cos

t

c
, a2 sin

t

c
, a3 cosh

t

d
, a3 sinh

t

d
, a4 cos

s

d
a4 sin

s

d

)
,

where

−a2
1 + a2

2 =
1

k1

, −a2
3 + a2

4 =
1

k2

,
a2

1

c2
+
a2

4

d2
= 1 and

a2
2

c2
+
a2

3

d2
= 1.

Prove that the mean curvature vector field of both isometric immersions has constant
length but is not parallel.

Exercise 1.14. If µ = 0 and c > 0, or if µ ≥ 1 and c 6= 0, show that the hyperquadric

Qm
c,µ̃ = {X ∈ Rm+1

µ : 〈X,X〉 = 1/c}

is an umbilical hypersurface of Rm+1
µ that induces a semi-Riemannian metric of constant

sectional curvature c and index µ̃ = µ − σ(c), where σ(c) = 1 if c < 0 and σ(c) = 0
otherwise.

Exercise 1.15. Let f : Mn → Qm
c be an isometric immersion with a principal normal

vector field η of multiplicity q. Show that the distribution x 7→ Eη(x) is smooth.

Exercise 1.16. Let f : Mn → M̃m
c be an isometric immersion. If η ∈ NfM(x) is a

principal normal of f at x ∈Mn, show that

R⊥(T,X)ξ = 0

for all T ∈ Eη(x), X ∈ TxM and ξ ∈ NfM(x). If n = 2 conclude that R⊥(x) = 0.

Exercise 1.17. Let Φ ∈ Γ(End(TM)) be a symmetric Codazzi tensor on a Rieman-
nian manifold Mn, that is, a symmetric tensor that satisfies the Codazzi-type equation

(∇XΦ)Y = (∇Y Φ)X (1.46)

for all X, Y ∈ X(M). Let λ ∈ C∞(M) be an eigenvalue of Φ such that Eλ = ker(λI−Φ)
has constant rank r. Show that the following facts hold:
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(i) Eλ is an umbilical distribution with mean curvature normal η given by

(λI − Φ) η = (gradλ)E⊥λ .

(ii) If r ≥ 2, then λ is constant along Eλ.

(iii) If λ is constant along Eλ, then Eλ is spherical.

Hint for (i): Taking the inner product with S ∈ Γ(Eλ) of both sides of (1.46) for
Y = T ∈ Γ(Eλ) and X ∈ X(M) yields

(λI − Φ)∇TS = 〈T, S〉gradλ− T (λ)S. (1.47)

Since λI − Φ vanishes on Eλ, then

(λI − Φ)∇TS = (λI − Φ)(∇TS)E⊥λ ∈ Γ(E⊥λ ),

and the result follows from (1.47).

Hint for (ii): Since the left-hand side of (1.47) is in Γ(E⊥λ ), it follows that

〈T, S〉(gradλ)Eλ = T (λ)S.

Hint for (iii): Since (gradλ)Eλ = 0,

〈∇Tη, (λI − Φ)X〉 = T 〈(λI − Φ)η,X〉 − 〈η,∇T (λI − Φ)X〉
= TX(λ)− λ〈η,∇TX〉+ 〈∇TΦX, η〉.

Now use
∇TΦX = ∇XΦT − Φ∇XT + Φ∇TX

to obtain
〈∇TΦX, η〉 = 〈(λI − Φ)η,∇XT 〉+ 〈Φη,∇TX〉.

Conclude that

〈∇Tη, (λI − Φ)X〉 = TX(λ)− 〈(λI − Φ)η, [T,X]〉
= TX(λ)− [T,X](λ)

= 0.

Exercise 1.18. Let Mn be a Riemannian manifold of dimension n ≥ 3. Assume that
Φ ∈ Γ(End(TM)) is a symmetric tensor with only two eigenvalues λ and µ everywhere
of multiplicities n− 1 and 1, respectively. Show that Φ is a Codazzi tensor if and only
if the following conditions are satisfied:

(i) λ is constant along Eλ = ker(λI − Φ).

(ii) Eλ is an umbilical distribution with mean curvature vector field

η =
1

λ− µ
gradλ.
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(iii) The mean curvature vector field (geodesic curvature vector field) of the one-
dimensional distribution Eµ = ker(µI − Φ) is

ζ =
1

µ− λ
(gradµ)Eλ .

Exercise 1.19. Let f : Mn → Qn+1
c , n ≥ 3, be an isometric immersion of a simply

connected Riemannian manifold. Given c̃ ∈ R, assume that f has a principal curvature
λ of (constant) multiplicity either n− 1 or n satisfying

ρ = c− c̃+ λ2 ≥ 0

which is always the case if c ≥ c̃. Show that there exists an isometric immersion
f̃ : Mn → Qn+1

c̃ , which is unique up to congruence if ρ > 0.

Hint for the case in which λ has multiplicity n − 1: Let µ be the principal curvature
of multiplicity 1, and let Eλ and Eµ be the corresponding eigenbundles. If λ = 0, then
Mn has constant curvature c, hence it admits an umbilical isometric immersion into
Qn+1
c̃ if ρ = c − c̃ ≥ 0. From now on, assume that λ 6= 0. By the assumption, there

exist λ̃, µ̃ ∈ C∞(M) such that

c− c̃+ λ2 = λ̃2 and c− c̃+ λµ = λµ̃.

Moreover, the first of the preceding equations implies that λ̃ 6= 0 everywhere, and hence
λ̃ and µ̃ are unique if λ̃ is chosen to be positive. From both equations, we obtain

λ2 − λ̃2 = λµ− λ̃µ̃, λgradλ = λ̃grad λ̃

and
µgradλ+ λgradµ = µ̃grad λ̃+ λ̃grad µ̃.

It follows that
1

λ̃− µ̃
grad λ̃ =

1

λ− µ
gradλ (1.48)

and similarly, that
1

µ̃− λ̃
(grad µ̃)Eλ =

1

µ− λ
(gradµ)Eλ· (1.49)

Let Ã be the endomorphism of TM with eigenvalues λ̃, µ̃ and corresponding eigenbun-
dles Eλ and Eµ, respectively. Since

c+ λ2 = c̃+ λ̃2 and c+ λµ = c̃+ λ̃µ̃,

the Gauss equations for an isometric immersion f̃ : Mn → Qn+1
c̃ are satisfied by Ã. By

Exercise 1.18 and Eqs. (1.48) and (1.49), it also satisfies the Codazzi equation.
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Exercise 1.20. Let F be a family of n-dimensional submanifolds of a differentiable
manifold M̃m, n < m, with the property that the intersection of any two of its elements
is either empty or a submanifold of M̃m with dimension less than n. Let f : Mn → M̃m

be an immersion such that, for each x ∈ Mn, there exist a neighborhood Vx of x and
Sx ∈ F such that f(Vx) ⊂ Sx. Prove that f(M) is an open subset of some S ∈ F.

Hint: Given x, y ∈Mn, if Vx ∩ Vy 6= ∅, then Vx ∩ Vy is an open subset of Mn such that

f(Vx ∩ Vy) ⊂ Sx ∩ Sy.

If Sx 6= Sy, then Sx ∩ Sy is either empty or a submanifold of M̃m with dimension less
than n by the assumption, and we reach a contradiction with the fact that f is an
immersion. Therefore Sx = Sy whenever Vx ∩ Vy 6= ∅. Fix x0 ∈ Mn and consider the
subset

A = {x ∈Mn : Sx = Sx0}.
Clearly A is nonempty, for x0 ∈ A. If x ∈ A, then f(Vx) is an open subset of Sx = Sx0 ,
thus for any y ∈ Vx we have y ∈ Vy ∩ Vx, hence Sy = Sx = Sx0 . Therefore Vx ⊂ A, and
we conclude that A is open. On the other hand, if {xk}k∈N is a sequence of elements
of A that converges to a point x ∈ Mn, then there exists N ∈ N such that xk ∈ Vx
for all k ≥ N . Thus xN ∈ Vx ∩ VxN , which implies that Sx = SxN = Sx0 . It follows
that x ∈ A, and hence A is a closed subset of Mn. We conclude that A = Mn by the
connectedness of Mn, hence f(M) is an open subset of Sx0 .

Exercise 1.21. Let β : V ×V → W be a bilinear map, where V is a finite-dimensional
vector space endowed with a positive definite inner product. Assume that β(X, Y ) = 0
for any pair (X, Y ) ∈ V × V with 〈X, Y 〉 = 0. Show that there exists a vector η ∈ W
such that

β(X, Y ) = 〈X, Y 〉η
for all X, Y ∈ V .

Exercise 1.22. Prove that each connected component of the fixed point set of an
isometry of a Riemannian manifold is a totally geodesic submanifold.

Exercise 1.23. An isometric immersion f : Mn → Qm
c is said to be ruled if Mn admits

a codimension one foliation such that the restriction of f to each leaf (ruling) is totally
geodesic. Show that the following hypersurfaces are complete and ruled.

(i) Assume that the Frenet curvatures of the curve c : R→ Rn+1 do not vanish at any
point and let c′ = e1, e2, . . . , en+1 be the Frenet frame of c. Then let F : Rn → Rn+1 be
the hypersurface given by

F (s, t2, . . . , tn) = c(s) +
n∑
j=2

tjej+1(s).

Similarly, for a curve c : R→ Hn+1, let F : Rn → Hn+1 be defined by

F (s, t2, . . . , tn) = expc(s)

(
n∑
j=2

tjej+1(s)

)
.
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(ii) Let G : Rn → Rn+1 the graph defined by

G(x1, . . . , xn) =

(
x1, . . . , xn,

n−1∑
j=1

xjφj(xn)

)
,

where φj ∈ C∞(R), 1 ≤ j ≤ n− 1.

Exercise 1.24. The generalized Gauss map G : Mn → Gn,m of a given immersion
f : Mn → Rm assigns to each point x ∈ Mn the point f∗(TxM) in the Grassmannian
of n-planes in Rm. Show that, endowing Mn with the metric induced by f , the kernel
of G∗ at x ∈Mn is the relative nullity subspace ∆(x) ⊂ TxM .

Exercise 1.25. If f, g : Mn → Rm are immersions with the same generalized Gauss
map, show that the following assertions hold:

(i) There exists Φ ∈ Γ(End(TM)) such that

g∗ = f∗ ◦ Φ.

(ii) The tensor Φ is a Codazzi tensor on Mn with respect to the metric induced by f .

(iii) The second fundamental form of f commutes with Φ, that is,

αf (X,ΦY ) = αf (ΦX, Y )

for all X, Y ∈ X(M).

(iv) Conversely, if Mn is simply connected and Φ ∈ Γ(End(TM)) has rank n and
satisfies (ii) and (iii), then there exists an immersion g : Mn → Rm such that
g∗ = f∗ ◦ Φ.

(v) The Levi-Civita connections of the metrics induced by f and g are related by

Φ∇XY = ∇XΦY

for all X, Y ∈ X(M).

(vi) The second fundamental forms of f and g are related by

αg(X, Y ) = αf (ΦX, Y )

for all X, Y ∈ X(M).

Hint for parts (ii), (iii) and (iv): Regard ω = f∗ ◦Φ as a one-form on Mn with values
in Rm.

Exercise 1.26. Let f : Mn → Sn+1 ⊂ Rn+2 be an isometric immersion of an oriented
Riemannian manifold. Then the unit normal vector field of f induces a mapping
ν : Mn → Sn+1 called the spherical Gauss map of f .
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(i) Prove that ν is an immersion provided that the second fundamental form A of f
is everywhere nonsingular.

(ii) Compute the metric induced by ν and prove that its second fundamental form
is A−1.

Exercise 1.27. Let f : Mn → Rm be an isometric immersion and let

N1
fM = {(x,w) ∈ NfM : ‖w‖ = 1}

be its unit normal bundle. The generalized spherical Gauss map φ : N1
fM → Sm−1 is

defined by
φ(x,w) = w.

(i) Show that
φ∗(x,w)v = v

for any vertical vector v ∈ T(x,w)N
1
fM and that

φ∗(x,w)Zh = −f∗AwZ,

where Zh is the horizontal lift of Z ∈ TxM .

(ii) Show that the height function hw has a degenerate critical point if and only if w
is a critical value of φ.

(iii) Conclude that hw is a Morse function for almost all w ∈ Sm−1.

Exercise 1.28. Let f : Mn → Qn+1
ε , ε ∈ {−1, 0, 1}, be an oriented hypersurface and

let N be its unit normal vector field. If ε ∈ {−1, 1}, consider the standard model of
Qn+1
ε as an umbilical hypersurface of either Euclidean space Rn+2 or Lorentzian space

Ln+2, according to whether ε = 1 or ε = −1, respectively. For each t > 0, define
ft(x) ∈ Qn+1

ε to be the point on the geodesic starting from f(x) in the direction Nx at
geodesic distance t from f(x), that is,

ft(x) = f(x) + tNx if ε = 0,

ft(x) = cos tf(x) + sin tNx if ε = 1,

ft(x) = cosh tf(x) + sinh tNx if ε = −1.

(i) Show that a point x ∈ Mn is regular for the parallel hypersurface ft if and only
if the endomorphism Pt is nonsingular at x, where

Pt = I − tA if ε = 0,

Pt = cot tI − A if ε = 1,

Pt = coth tI − A if ε = −1.
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(ii) Verify that, at regular points, a unit normal vector field to ft is given by

Nt = N if ε = 0,

Nt = − sin tf + cos tN if ε = 1,

Nt = sinh tf + cosh tN if ε = −1.

(iii) Show that the shape operator of ft with respect to Nt is

At = (I − tA)−1A if ε = 0,

At = (cot tI − A)−1(I + cot tA) if ε = 1,

At = (coth tI − A)−1(−I + coth tA) if ε = −1.

(iv) Show that ft has constant mean curvature for each t if and only if f has constant
principal curvatures.

(v) If f : M2 → S3 has constant Gauss curvature K = 1 + r2 > 1 (respectively, con-
stant mean curvature H = r) and t = tan−1(1/r) (respectively, t = cot−1(r/2)),
show that, on the open subset of regular points, the surface ft has constant mean
curvature (1− r2)/r (respectively, constant mean curvature −r).

(vi) If f : M2 → H3 has constant Gauss curvature K = −1 + r2 > 2 (respectively,
constant mean curvature H = r > 2) and t = tanh−1(1/r) (respectively, t =
tanh−1(2/r)), show that, on the open subset of regular points, the surface ft has
constant mean curvature (1 + r2)/r (respectively, constant mean curvature −r).

Exercise 1.29. Give an example of a nontotally geodesic isometric immersion of Sn
into S2n+1.

Hint: See part (i) of Exercise 1.7.

Exercise 1.30. Show that if f : Mn → M̃m is an extrinsic sphere, then the following
facts hold:

(i) The second fundamental form α of f is parallel, that is,

(∇⊥Xα)(Y, Z) = 0

for all X, Y, Z ∈ X(M).

(ii)
R(X, Y )Z = R̃(X, Y )Z + ‖H‖2(X ∧ Y )Z

for all x ∈Mn and X, Y, Z ∈ TxM .

(iii)
R̃(X, Y )ξ = R⊥(X, Y )ξ

for all x ∈Mn, X, Y ∈ TxM and ξ ∈ NfM(x).
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Exercise 1.31. Let f : Mn → M̃m be an isometric immersion with parallel second
fundamental form. Prove that f has parallel mean curvature vector field. If, in addi-
tion, M̃m = M̃m

c , show that the following conditions hold:

(i) ∇R = 0, that is, Mn is locally symmetric.

(ii) ∇⊥R⊥ = 0.

Exercise 1.32. Let h : Mn → Rm and g : Lk → Mn, k ≥ 2, be isometric immersions.
Show that if g is umbilical and

αh(g∗X,Z) = 0

for all X ∈ X(L) and Z ∈ Γ(NgL), then g is an extrinsic sphere.

Hint: Since g is umbilical, the Codazzi equation for g yields

〈Y, T 〉∇⊥XHg − 〈X,T 〉∇⊥YHg = (R(g∗X, g∗Y )g∗T )NgL (1.50)

for all X, Y, T ∈ X(L), where R is the curvature tensor of Mn and Hg is the mean
curvature vector field of g. The Gauss equation of h and the assumption on αh give

R(g∗X, g∗Y )Z = Ahαh(g∗Y,Z)g∗X − A
h
αh(g∗X,Z)g∗Y

= 0

for all X, Y ∈ X(L) and Z ∈ Γ(NgL), and hence the right-hand side of (1.50) vanishes.
Choosing Y = T orthogonal to X implies that Hg is parallel in the normal connection.

Exercise 1.33. Let f : Mn → M̃m be an isometric immersion and let N be a normal
subbundle. Show that N is a parallel subbundle if and only if for every normal section
ξ that is parallel along a curve γ : [a, b] → Mn, and such that ξ(γ(a)) ∈ N , one has
ξ(γ(t)) ∈ N for all t ∈ [a, b].

Exercise 1.34. Let f : Mn → M̃m
c be an isometric immersion and let ξ ∈ Γ(NfM) be

a parallel normal vector field such that the shape operator Aξ has n distinct eigenvalues.
Show that f has flat normal bundle.

Exercise 1.35. Let f : Mn → M̃m
c be an isometric immersion. Assume that at some

x ∈Mn there exists a subspace W (x) ⊂ NfM(x) such that

R⊥(X, Y )ξ = 0

for all X, Y ∈ TxM and ξ ∈ W (x). Show that there exist unique pairwise distinct
vectors ηi(x) ∈ W (x), 1 ≤ i ≤ s, called the principal normals of f at x with respect to
W (x), and an orthogonal decomposition

TxM = E1(x)⊕ · · · ⊕ Es(x)

such that

AξX =
s∑
i=1

〈ξ, ηi(x)〉X i

for all ξ ∈ W (x), where X ∈ TxM 7→ X i is the orthogonal projection onto Ei(x).
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Exercise 1.36. Let f : Mn → Qm
ε , ε ∈ {−1, 0, 1}, be an isometric immersion with flat

normal bundle and let η ∈ Γ(NfM) be a parallel unit vector field. If ε ∈ {−1, 1}, con-
sider the standard model of Qm

ε as an umbilical hypersurface of either Euclidean space
Rm+1 or Lorentzian space Lm+1, according to whether ε = 1 or ε = −1, respectively.
For each t > 0, define the parallel submanifold ft(x) ∈ Qm

ε by

ft(x) = f(x) + tη(x) if ε = 0,

ft(x) = cos tf(x) + sin tη(x) if ε = 1,

ft(x) = cosh tf(x) + sinh tη(x) if ε = −1.

At regular points show that also ft has flat normal bundle.

Exercise 1.37. Let f : Mn → Rm+1 be an isometric immersion with flat normal
bundle and let η ∈ Γ(NfM) be a parallel unit vector field such that the shape operator
Aη is nonsingular at any point. Show that the map η : Mn → Sm is an immersion with
flat normal bundle.

Exercise 1.38. An isometric immersion f : Mn → Qn+p
c with flat normal bundle is

called holonomic if Mn carries global orthogonal coordinates (u1, . . . , un) such that the
coordinate vector fields are everywhere eigenvectors of all shape operators of f .

For a holonomic isometric immersion f : Mn → Qn+p
c , let ξ1, . . . , ξp be an orthonormal

frame of NfM of parallel vector fields. Set vj = ‖∂/∂uj‖ and define Vjr ∈ C∞(M) by

Aξr∂/∂uj =
Vjr
vj
∂/∂uj, 1 ≤ j ≤ n, 1 ≤ r ≤ p.

For hij as in (1.23), set h = (hij), v = (v1, . . . , vn) and V = (Vir) ∈Mn×p(R).

(i) Show that the triple (v, h, V ), called the triple associated with f with respect to
(u1, . . . , un) and ξ1, . . . , ξp, satisfies the system of partial differential equations

(i)
∂vi
∂uj

= hjivj

(ii)
∂hik
∂uj

= hijhjk

(iii)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj +
∑
r

VirVjr + cvivj = 0

(iv)
∂Vir
∂uj

= hjiVjr, 1 ≤ i 6= j 6= k 6= i ≤ n.

(1.51)

(ii) Prove that, conversely, if (v, h, V ) is a solution of (1.51) on an open simply
connected subset U ⊂ Rn such that vi 6= 0 at any point, then there exists a
holonomic immersion f : U → Qn+p

c and an orthonormal frame ξ1, . . . , ξp of NfU
of parallel normal vector fields with respect to which the triple associated with
f is (v, h, V ).
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Hint for (i): Equation (i) is merely the definition of hij, and the remaining ones follow
using (1.22) by computing the Gauss and Codazzi equations.

Hint for (ii): Endow U with the metric ds2 =
∑

i v
2
i du

2
i and set Mn = (U, ds2).

Consider the trivial vector bundle E = Mn×Rp endowed with a flat connection ∇′ and
let e1, . . . , ep be a parallel orthonormal frame of E. Define α : X(M)× X(M)→ Γ(E)
by

α(∂/∂ui, ∂/∂uj) =

p∑
r=1

δijviVirer.

Then the Gauss and Codazzi equations follow from (1.51) and the Ricci equation is sat-
isfied because∇′ is flat and α is orthogonally diagonalizable. Now use the Fundamental
theorem of submanifolds.

Exercise 1.39. (i) Let Mn be a differentiable manifold whose tangent bundle TM
splits as the Whitney sum of integrable subbundles Ej with ranks nj, 1 ≤ j ≤ k,

TM = ⊕kj=1Ej.

Write
E⊥j = ⊕ki=1,i 6=jEi, 1 ≤ j ≤ k.

Show that the following assertions are equivalent:

(a) Each point x ∈ Mn lies in an open neighborhood U ⊂ Mn where one can define
local coordinates (u1, . . . , un) such that

E1 = span{∂/∂u1, . . . , ∂/∂un1}, . . . , Ek = span{∂/∂un−nk+1, . . . , ∂/∂un}.

(b) The distribution E⊥j is integrable for all 1 ≤ j ≤ k.

(c) The distribution Ei ⊕ Ej is integrable for all 1 ≤ i 6= j ≤ k.

(ii) Let f : Mn → Qm
c be an isometric immersion with flat normal bundle carrying prin-

cipal normal vector fields η1, . . . , ηk with corresponding eigendistributions Eη1 , . . . , Eηk
of constant ranks n1, . . . , nk, respectively. Show that f is locally holonomic if and only
if E⊥ηj is an integrable distribution for all 1 ≤ j ≤ k.

Hint for (i): Assume that the distribution E⊥j is integrable for all 1 ≤ j ≤ k. By
Frobenius theorem, each point x ∈ Mn lies in an open neighborhood U ⊂ Mn where
one can define local coordinates (uj1, . . . , u

j
n) such that

E⊥j = span{∂/∂ujn−nj+1, . . . , ∂/∂
jun}.

Then f j = (uj1, . . . , u
j
nj

) : U → Rnj is a submersion with ker f j∗ = E⊥j |U . One can thus

choose U so that f = (f 1, . . . , fk) : U → Rn defines a coordinate system with

f(U) = {x ∈ Rn : |xi| ≤ ε for all 1 ≤ i ≤ k}

which has the desired property, for f j∗ (y)Xi = 0 whenever y ∈ U , Xi ∈ Ei(q) and
1 ≤ i 6= j ≤ k.
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Exercise 1.40. Let f : Mn → Qm
c be an isometric immersion with flat normal bundle

carrying principal normal vector fields η1, . . . , ηk with corresponding eigendistributions
Eη1 , . . . , Eηk of constant ranks n1, . . . , nk, respectively. Given 1 ≤ ` ≤ k, show that E⊥η`
is integrable if the vectors ηi − η` and ηj − η` are everywhere linearly independent for
any pair of indices 1 ≤ i 6= j ≤ k with i, j 6= `.

Hint: Use the Codazzi equations (1.42).

Exercise 1.41. Let f : Mn → Qm
c be an isometric immersion with flat normal bundle

carrying principal normal vector fields η1, . . . , ηk with corresponding eigendistributions
Eη1 , . . . , Eηk of constant ranks n1, . . . , nk, respectively. At x ∈Mn, define

Sf (x) = span{ηi(x)− ηj(x) : 1 ≤ i, j ≤ k}.

(i) Prove that dimSf (x) ≤ k − 1 and that

dimN1(x)− 1 ≤ dimSf (x) ≤ dimN1(x).

(ii) If dimSf (x) = dimN1(x)−1 everywhere, show that a unit vector field ζ ∈ Γ(N1)
orthogonal to Sf is an umbilical vector field (if g : Mn → M̃m is an isometric
immersion, then ζ ∈ Γ(NgM) is said to be an umbilical vector field if Agζ = λI
for some λ ∈ C∞(M), where I is the identity endomorphism).

(iii) Show that f is locally holonomic if dimSf (x) = k − 1 for every x ∈Mn.

(iv) Conclude that f is locally holonomic if dimN1(x) = n for every x ∈ Mn or if
dimN1(x) = n− 1 for every x ∈Mn and there does not exist an umbilical vector
field ζ ∈ Γ(N1).

Hint for (ii): Use (1.37).

Hint for (iii): Use Exercise 1.40 and part (ii) of Exercise 1.39.

Exercise 1.42. Let f : Mn → Qm
c be an isometric immersion with flat normal bundle

such that for any x ∈Mn and any plane σ ⊂ TxM the extrinsic curvature

Kf (σ) = KM(σ)− c

along σ is negative. Show that f admits n pairwise distinct principal normal vector
fields and that f is locally holonomic.

Hint: Using (1.40) and the assumption that the extrinsic curvatures of f are negative,
show that for any x ∈ Mn and any principal normal η of f at x the eigenspace Eη(x)
must be one-dimensional. Conclude that there must exist n distinct principal normals
η1(x), . . . , ηn(x) at any x ∈Mn. To show that

〈∇XjXi, Xk〉 = 0
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for all Xi ∈ Γ(Eηi), Xj ∈ Γ(Eηj) and Xk ∈ Γ(Eηk) with 1 ≤ i 6= j 6= k 6= i ≤ n, assume
otherwise and use (1.42) to prove that

ηi = (1− λ)ηk + ληj (1.52)

for some nowhere vanishing λ ∈ C∞(M). Show that (1.52) implies that

〈ηi, ηj〉2 − ‖ηi‖2‖ηj‖2 = 〈ηj, ηk〉(〈ηi, ηj〉 − ‖ηi‖2) + 〈ηi, ηk〉(〈ηi, ηj〉 − ‖ηj‖2). (1.53)

Use (1.39) and the assumption that the extrinsic curvatures of f are negative to show
that the right-hand side of (1.53) is positive. Obtain a contradiction by noticing that
the left-hand side of (1.53) is nonpositive by the Cauchy-Schwarz inequality.



Chapter 2

Reduction of codimension

The study of isometric immersions becomes increasingly difficult for higher values
of the codimension. Therefore, it is important to investigate whether the codimension
of an isometric immersion into a space of constant sectional curvature can be reduced.
That an isometric immersion f : Mn → Qn+p

c admits a reduction of codimension to
q < p means that there exists a totally geodesic submanifold Qn+q

c in Qn+p
c such that

f(M) ⊂ Qn+q
c . The possibility of reducing the codimension fits into the fundamental

problem of determining the least possible codimension of an isometric immersion of a
given Riemannian manifold into a space of constant sectional curvature.

The starting point for the results of this chapter is the basic fact that the codi-
mension of f : Mn → Qn+p

c can be reduced to q < p whenever its normal bundle has a
parallel subbundle of rank p− q such that the shape operators with respect to any of
its sections vanish everywhere.

The main result of the chapter provides necessary and sufficient conditions for an
isometric immersion to admit a reduction of codimension, under a certain regularity
assumption, in terms of the normal curvature tensor and the mean curvature vector
field. Sufficient conditions are also discussed in terms of the s-nullities and the type
number of the isometric immersion. Both concepts play a key role in the study of
rigidity aspects of submanifolds in Chapter 4.

As an application of the results discussed in earlier sections, at the end of the
chapter we present the classification of constant curvature submanifolds with flat nor-
mal bundle and parallel mean curvature vector field of space forms.

2.1 Basic facts

The first normal space N1(x) of an isometric immersion f : Mn → M̃m at x ∈Mn

is the subspace of its normal space NfM(x) spanned by the image of its second fun-
damental form α at x, that is,

N1(x) = span{α(X, Y ) : X, Y ∈ TxM}.

63
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Notice that the orthogonal complement of N1(x) in NfM(x) is

N⊥1 (x) = {ξ ∈ NfM(x) : Aξ = 0}.

The following is the basic result on reduction of codimension.

Proposition 2.1. Let f : Mn → Qn+p
c be an isometric immersion. Suppose that there

exists a parallel subbundle L of the normal bundle NfM with rank q < p such that
N1(x) ⊂ L(x) for all x ∈Mn. Then the codimension of f can be reduced to q.

Proof: Case c = 0. Fix an arbitrary point x0 in Mn. We show next that

f(M) ⊂ f(x0) + f∗Tx0M ⊕ L(x0).

First observe that L⊥ is a parallel subbundle of f ∗TRn+p. In fact, since L⊥(x) ⊂ N⊥1 (x)
for all x ∈Mn and L⊥ is parallel with respect to the normal connection, then

∇̃Xξ = −f∗AξX +∇⊥Xξ = ∇⊥Xξ ∈ Γ(L⊥)

for all ξ ∈ Γ(L⊥). Here ∇̃ stands for the connection on f ∗TRn+p. Thus any η ∈ L⊥(x0)
also belongs to L⊥(x) ⊂ NfM(x) for all x ∈ Mn. Given any x ∈ Mn and X ∈ TxM ,
it follows that

X〈f − f(x0), η〉 = 0.

Hence the function x 7→ 〈f(x)− f(x0), η〉 vanishes on Mn for any η ∈ L⊥(x0), and this
completes the proof in this case.

Case c > 0. Consider the isometric immersion f̃ : Mn → Rn+p+1 given by f̃ = i ◦ f ,
where i : Sn+p

c → Rn+p+1 denotes the canonical inclusion. Then

Nf̃M(x) = i∗NfM(x)⊕ span{f̃(x)}

for any x ∈Mn. The first normal spaces N1(x) and N f̃
1 (x) of f and f̃ , respectively, at

x are related by

N f̃
1 (x) ⊂ i∗N1(x)⊕ span{f̃(x)},

and hence
N f̃

1 (x) ⊂ L̃(x) = i∗L(x)⊕ span{f̃(x)}.

Note that the orthogonal complement L̃⊥(x) of L̃(x) in Nf̃M(x) is i∗L
⊥(x). Given

ξ ∈ Γ(L⊥), since L⊥ ⊂ N⊥1 we obtain

∇̃Xi∗ξ = i∗∇̄Xξ + αi(f∗X, ξ)

= i∗∇⊥Xξ ∈ Γ(i∗L
⊥) = Γ(L̃⊥)

for all X ∈ X(M). Here ∇̄ stands for the connection on f ∗TSn+p
c . Hence L̃⊥ is a

parallel subbundle of f̃ ∗TRn+p+1.
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By the previous case, for any fixed x0 ∈Mn this implies that

f̃(M) ⊂ f̃(x0) + f̃∗Tx0M ⊕ L̃(x0) = f̃∗Tx0M ⊕ i∗L(x0)⊕ span{f̃(x0)},

which is a (n+ q+1)-dimensional linear subspace of Rn+p+1 that we denote by Rn+q+1.
Thus

f̃(M) ⊂ Sn+p
c ∩ Rn+q+1 = Sn+q

c .

Case c < 0. This is analogous to the previous case, by considering the isometric
immersion f̃ : Mn → Ln+p+1 given by f̃ = i ◦ f , where i : Hn+p

c → Ln+p+1 is an
umbilical inclusion. Details are left as an exercise. �

An isometric immersion f : Mn → M̃m is said to be 1-regular if the dimension
of its first normal spaces N1(x) is constant along Mn, in which case these normal
subspaces form a subbundle of NfM (see Exercise 2.1) called the first normal bundle

of f and denoted by N1 = N f
1 .

The substantial codimension of an isometric immersion f : Mn → Qm
c is the

smallest number to which the codimension of f can be reduced. If the codimension of f
cannot be reduced, then f is said to be substantial. A particular case of Proposition 2.1
is the following result.

Corollary 2.2. Let f : Mn → Qn+p
c be a 1-regular isometric immersion such that the

first normal bundle N1 is a parallel subbundle of NfM with rank q < p. Then f has
substantial codimension q.

The assumption of 1-regularity in Corollary 2.2 is necessary as shown by the next
simple example.

Example 2.3. Let γ : R→ R3 be the smooth curve given by

γ(t) =


(t, e−1/t2 , 0) for t > 0

(0, 0, 0) for t = 0

(t, 0, e−1/t2) for t < 0.

Then γ has a parallel first normal bundle of rank one on (−∞, 0) and (0,+∞). The
restriction of γ to both intervals has substantial codimension one, but the substantial
codimension of γ is two.

2.2 The parallelism of the first normal bundle

The main result of this section provides necessary and sufficient conditions for
the parallelism of the first normal bundle of a 1-regular isometric immersion into a
space form. Sufficient conditions for the parallelism in terms of its s-nullities or its
type number are also given.
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2.2.1 The main result

First we give a simple proof of a particular case.

Proposition 2.4. Let f : Mn → Qm
c be a 1-regular isometric immersion with flat

normal bundle and parallel mean curvature vector field. Then the first normal bundle
N1 is parallel and has rank k ≤ min{n,m− n}.

Proof: At each x ∈ Mn, it follows from (1.36) that the first normal space N1(x) of f
at x is the subspace of NfM(x) spanned by the principal normals η1(x), . . . , ηs(x)(x)
of f at x. In particular, this implies that k ≤ s(x) ≤ n. To show that N1 is parallel,
it suffices to do the same for N⊥1 . For that, it is enough to prove that, on any open
subset where s = s(x) is constant, we have

〈∇⊥Xiδ, ηj〉 = 0, 1 ≤ i, j ≤ s, (2.1)

for all Xi ∈ Γ(Eηi) and δ ∈ Γ(N⊥1 ). If i 6= j, this is an immediate consequence of (1.41)
regardless of the assumption on the mean curvature vector field. On the other hand,
since the mean curvature vector field is given by

H =
1

n

s∑
i=1

diηi

where di = rank Eηi , using (2.1) for i 6= j and the fact that H is parallel yields

0 = n〈∇⊥Xiδ,H〉 = di〈∇⊥Xiδ, ηi〉. �

The above result has the following useful application.

Proposition 2.5. Let f : Mn → Qm
c be a 1-regular isometric immersion with flat

normal bundle and parallel mean curvature vector field. Let k ≤ n denote the rank of
N1. Then f(M) is contained in a totally geodesic submanifold Qn+k

c ⊂ Qm
c . Moreover,

if k = n then f(M) is contained in an umbilical submanifold Q2n−1
c̃ ⊂ Q2n

c ⊂ Qm
c .

Proof: It follows from Proposition 2.4 that N1 is parallel, thus f(M) is contained in a
totally geodesic submanifold Qn+k

c ⊂ Qm
c by Corollary 2.2. In particular, if k = n we

can regard f as an isometric immersion into Q2n
c .

It remains to show that f(M) is contained in an umbilical submanifold Q2n−1
c̃ ⊂

Q2n
c . Choose c′ < c and consider g = i ◦ f : Mn → Q2n+1

c′ , where i : Q2n
c → Q2n+1

c′

denotes an umbilical inclusion. We leave as an exercise to the reader to verify that the
isometric immersion g has also flat normal bundle and parallel mean curvature vector
field, and that N g

1 has constant rank n. Therefore, applying to g the assertion just
proved, we see that g(M) is contained in a totally geodesic Q2n

c′ ⊂ Q2n+1
c′ . Thus g(M)

is contained in the intersection Q2n
c′ ∩ i(Q2n

c ), which is the image by i of an umbilical
hypersurface Q2n−1

c̃ ⊂ Q2n
c . Hence f(M) ⊂ Q2n−1

c̃ . �

The next result shows that the first statement of Proposition 2.4 holds under
much weaker conditions, and these turn out to be also necessary ones.
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Theorem 2.6. Let f : Mn → Qm
c be a 1-regular isometric immersion. Then the first

normal bundle N1 is parallel if and only if

(i) ∇⊥R⊥|N⊥1 = 0,

(ii) ∇⊥H ∈ Γ(N1).

Proof: If N1 is parallel, then ∇⊥H ∈ Γ(N1), for H ∈ Γ(N1). To prove that part (i)
holds, first notice that the Ricci equation implies that

R⊥(X, Y )η = 0 (2.2)

for all η ∈ Γ(N⊥1 ) and X, Y ∈ X(M). Since N⊥1 is also parallel, then

R⊥(X, Y )∇⊥Zη = 0

for all X, Y, Z ∈ X(M). Thus

(∇⊥ZR⊥)(X, Y, η) = ∇⊥ZR⊥(X, Y )η −R⊥(∇ZX, Y )η −R⊥(X,∇ZY )η −R⊥(X, Y )∇⊥Zη
= 0 (2.3)

for all η ∈ Γ(N⊥1 ).
Suppose now that (i) and (ii) hold. It suffices to prove that N⊥1 is parallel. Given

η ∈ Γ(N⊥1 ), we show that ∇⊥Xη ∈ Γ(N⊥1 ) for all X ∈ X(M). As above we have (2.2).
From part (i) and (2.3) we obtain

R⊥(X, Y )∇⊥Zη = 0

for all X, Y, Z ∈ X(M). Using the Ricci equation again, it follows that[
A∇⊥Zη, A∇⊥W η

]
= 0

for all Z,W ∈ X(M). For any x ∈ Mn, this implies the existence of an orthonormal
basis Z1, . . . , Zn of TxM that simultaneously diagonalizes the family of endomorphisms{

A∇⊥Zη : Z ∈ TxM
}
.

It suffices to show that

〈α(Zi, Zj),∇⊥Zkη〉 = 0, 1 ≤ i, j, k ≤ n.

From the choice of the basis Z1, . . . , Zn, we have

〈α(Zi, Zj),∇⊥Zkη〉 = 〈A∇⊥ZkηZi, Zj〉 = 0 if i 6= j.

Suppose that i = j 6= k. Since η ∈ Γ(N⊥1 ), the Codazzi equation yields

A∇⊥Zj η
Zk = A∇⊥Zkη

Zj.
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Therefore

〈α(Zj, Zj),∇⊥Zkη〉 = 〈A∇⊥ZkηZj, Zj〉

= 〈A∇⊥Zj ηZk, Zj〉

= 0.

Finally, the assumption ∇⊥H ∈ Γ(N1) and the above imply that

〈α(Zj, Zj),∇⊥Zjη〉 = 〈nH,∇⊥Zjη〉
= nZj〈H, η〉
= 0.

This completes the proof that conditions (i) and (ii) are sufficient. �

2.2.2 The s-nullities

Let U , V and W be real vector spaces of finite dimension, and let β : V ×U → W
be a bilinear form. The nullity subspace N(β) ⊂ U of β is defined by

N(β) = {Y ∈ U : β(X, Y ) = 0 for all X ∈ V },

and its image subspace S(β) ⊂ W by

S(β) = span{β(X, Y ) : X ∈ V and Y ∈ U}.

Assume that W has a positive definite inner product and that β : V × V → W
is a symmetric bilinear form. For an s-dimensional subspace U s ⊂ W , we denote by
βUs : V × V → U s the map given by

βUs(X, Y ) = πUs ◦ β(X, Y ),

where πUs stands for the orthogonal projection πUs : W → U s. The s-nullity νs of the
bilinear form β is defined by

νs = max
Us⊂W

{dimN(βUs)}

for each integer 1 ≤ s ≤ dimW .

For an isometric immersion f : Mn → M̃m, the s-nullity νs(x) at x ∈ Mn is
defined as the s-nullity of its second fundamental form α at x.

If the subspaces U s in the definition of νs(x) are restricted to subspaces of N1(x),
then one obtains the s-nullity of f on the first normal space, which we denote by ν∗s (x).
Notice that ν∗k(x) for k = dimN1(x) is the usual index of relative nullity.

The next result provides sufficient conditions in terms of the s-nullities for the
parallelism of the first normal bundle.
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Proposition 2.7. Let f : Mn → Qm
c be a 1-regular isometric immersion such that

rank N1 = q ≤ n− 1. If ν∗s (x) < n− s for all 1 ≤ s ≤ q at any point x ∈Mn, then N1

is parallel.

Proof: Given η ∈ Γ(N⊥1 ), define φη : X(M)→ Γ(N1) by

φη(X) = π(∇⊥Xη)

where π : NfM → N1 is the orthogonal projection. The Codazzi equation yields

A∇⊥XηY = A∇⊥Y ηX

for all X, Y ∈ X(M). In particular,

〈α(ker φη(x), TxM), Im(φη(x))〉 = 0 (2.4)

at any x ∈Mn. If
r = dim Im(φη(x)) 6= 0,

then (2.4) implies that
ν∗r (x) ≥ dim ker φη ≥ n− r,

contradicting the assumption. Therefore φη is identically zero, and thus N⊥1 is parallel.
�

2.2.3 The type number

Let V be an n-dimensional real vector space, and let T1, . . . , Tr be endomorphisms
of V . The type number of {T1, . . . , Tr} is defined as the largest integer τ for which there
exist τ vectors X1, . . . , Xτ in V such that the τr vectors

{TiXj, 1 ≤ i ≤ r, 1 ≤ j ≤ τ}

are linearly independent. Observe that the type number of {T} is equal to rank T .
Let V and W be real vector spaces of finite dimension with positive definite

inner products and let β : V × V → W be a bilinear form. For any given ξ ∈ W , let
Bξ : V → V be defined by

〈BξX, Y 〉 = 〈β(X, Y ), ξ〉.
The left type number of β is defined as the type number of {Bξ1 , . . . , Bξr}, where
ξ1, . . . , ξr is any basis of W . The right type number is defined in a similar way. Notice
that the left (right) type number of β does not depend on the basis of W . Moreover,
the left and right type numbers coincide if β is symmetric.

The type number τ(x) of an isometric immersion f : Mn → M̃m at a point x ∈Mn

is the type number of its second fundamental form α at x.

Observe that, if τ(x) ≥ 1, then the first normal space N1(x) of f at x coincides
with NfM(x). As in the definition of the s-nullity, one defines the type number τ ∗(x)
of f on N1(x) by taking only a basis of N1(x) in the definition of τ(x).

As one would expect, the s-nullities and the type number of a symmetric bilinear
form are related. This is made precise in the next result.
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Proposition 2.8. Let β : V × V → W be a symmetric bilinear form. If τ ≥ r, then
νs ≤ n− rs for 1 ≤ s ≤ dimW .

Proof: Suppose that r ≥ 1, for if r = 0 the result holds trivially. Take linearly
independent vectors ξ1, . . . , ξs ∈ W , and let

U s = span{ξ1, . . . , ξs}.

Since τ ≥ r, there exist X1, . . . , Xr ∈ V such that

L = span{BξiXj, 1 ≤ i ≤ s, 1 ≤ j ≤ r}

has dimension rs. Thus dimL⊥ = n− rs, and the result follows from the fact that

N(πUs ◦ β) = {Y ∈ V : BξjY = 0, 1 ≤ j ≤ s} ⊂ L⊥. �

Proposition 2.9. If f : Mn → Qm
c is a 1-regular isometric immersion with type

number τ ∗(x) ≥ 2 for all x ∈Mn, then the first normal bundle N1 is parallel.

Proof: Immediate from Proposition 2.7 and Proposition 2.8. �

Notice that the assumption τ ∗ ≥ 2 imposes more restrictions on the dimensions
of the spaces involved than the assumption ν∗s < n− s, 1 ≤ s ≤ dimN1. For instance,
let f : Mn → Qn+p

c be an isometric immersion and let N1(x) = NfM(x) at x ∈Mn. If
τ(x) ≥ 2, then n ≥ 2p, whereas νs(x) < n− s, 1 ≤ s ≤ p, only requires n ≥ p+ 1.

2.3 An application

As an application of the results on reduction of codimension, as well as of the
basic facts on submanifolds with flat normal bundle in Section 1.9, we present next
the classification of isometric immersions with flat normal bundle and parallel mean
curvature vector field of space forms into space forms.

Theorem 2.10. Let f : Mn
c → Qm

c̃ be an isometric immersion with flat normal bundle
and parallel mean curvature vector field. Then one of the following possibilities holds:

(i) The immersion f is umbilical.

(ii) c̃ = 0 = c and there exists 0 ≤ r ≤ n − 1 such that n = s + r, m = 2s + r and
f(M) is an open subset of

S1(r1)× · · · × S1(rs)× Rr ⊂ Rm.

(iii) c̃ > c = 0, m = 2n− 1 and f(M) is an open subset of

S1(r1)× · · · × S1(rn) ⊂ S2n−1
c̃ ⊂ R2n

where r2
1 + · · ·+ r2

n = 1/c̃.
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(iv) c̃ < c = 0, m = 2n− 1 and f(M) is an open subset of

H1(r1)× S1(r2)× · · · × S1(rn) ⊂ H2n−1
c̃ ⊂ L2n

where −r2
1 + r2

2 + · · ·+ r2
n = 1/c̃.

(v) f = i ◦ f̃ , where f̃ is as in (ii), (iii) or (iv) and i is an umbilical inclusion.

Proof: Assume first that c̃ = c. Let r = ν0 be the minimum value of the index of
relative nullity ν of f on Mn and let V be a maximal connected open subset of Mn

where ν = r. Clearly, if r = n then f is totally geodesic; hence we may assume that
0 ≤ r ≤ n − 1. If r ≥ 1 (respectively, r = 0), let η0, . . . , ηs (respectively, η1, . . . , ηs)
be the distinct principal normal vector fields of f on V , with η0 = 0. Thus Eη0 is the
relative nullity distribution ∆ of f .

It follows from the Gauss equation (1.38) that η1, . . . , ηs have multiplicity one
and that

〈ηi, ηj〉 = 0, 1 ≤ i 6= j ≤ s.

Therefore s = n− r, and we can write

ηi = λiξi, 1 ≤ i ≤ s,

where λ1, . . . , λs are smooth positive functions and ξ1, . . . , ξs is a smooth orthonormal
frame of the first normal bundle N1 on V . Let X1, . . . , Xs be an orthonormal frame of
∆⊥ such that

α(Xi, Xi) = ηi, 1 ≤ i ≤ s.

The Codazzi equations (1.41) and (1.42) yield

〈∇XiXk, Xj〉 = λiδijXk(1/λi), 0 ≤ k ≤ s, 1 ≤ i, j ≤ s, i, j 6= k, (2.5)

∇⊥Xiξj = λiXi(1/λj)ξi, 1 ≤ i 6= j ≤ s, (2.6)

and
〈∇X0Xi, Xk〉 = 0 = ∇⊥X0

ξi, 1 ≤ i, k ≤ s, (2.7)

for any X0 ∈ Γ(∆). The mean curvature vector field is given by

nH =
s∑
i=1

λiξi.

Using (2.7) we obtain

X0(λi) = nX0〈H, ξi〉
= n〈H,∇⊥X0

ξi〉
= 0 (2.8)
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whereas (2.6) gives

0 = n〈∇⊥XiH, ξj〉 =

(
1 +

λ2
i

λ2
j

)
Xi(λj), i 6= j, (2.9)

and

0 = n〈∇⊥XiH, ξi〉 = Xi(λi)−
∑
j 6=i

λi
λj
Xi(λj). (2.10)

It follows from (2.8), (2.9) and (2.10) that λ1, . . . , λs are constant on V . If V was a
proper subset of Mn, then λ1, . . . , λs would assume the same values on the boundary of
V , and hence remain positive on an open connected neighborhood of V , contradicting
the fact that V is a maximal connected open subset where ν = r. We conclude that
V = Mn. In particular, this implies that f is 1-regular. From Proposition 2.5 we see
that f(M) is contained in a totally geodesic Q2s+r

c ⊂ Qm
c , and from now on we regard

f as an isometric immersion into Q2s+r
c .

In view of (2.8), equation (2.5) for k = 0 says that ∇XiX0 ∈ Γ(∆) for any
X0 ∈ Γ(∆). Together with the fact that ∆ is totally geodesic, this implies that ∆ is in
fact a parallel subbundle of TM . On the other hand, since λi is constant for 1 ≤ i ≤ s,
we also see from (2.5) that the distributions Li on Mn of rank one spanned by Xi,
1 ≤ i ≤ s, are parallel. Thus c = 0 and there exists locally an isometry

ψ : U = V ×W ⊂ Rn →Mn

where V ⊂ Rr is an open subset and W = Πs
j=1Ij is a product of open intervals Ij ⊂ R

for 1 ≤ j ≤ s, such that ψ∗Rr = ∆ and ψ∗∂/∂uj = Xj.
That ∆ is parallel implies that f∗∆ is a parallel subbundle of f ∗TR2s+r, for

∇̃Xf∗X0 = f∗∇XX0 + αf (X,X0)

= f∗∇XX0 ∈ Γ(f∗∆)

for all X0 ∈ Γ(∆) and X ∈ X(M). Therefore f∗∆ defines a constant subspace Rr of
R2s+r. Consider the orthogonal decomposition R2s+r = Rr×R2s and denote by π1 and
π2 the orthogonal projections onto Rr and R2s, respectively. The fact that f∗∆ = Rr

is constant implies that π1f∗T = f∗T , and hence π2f∗T = 0, for any T ∈ Γ(∆). This
means that f ◦ ψ|V×W splits as

f ◦ ψ = j × g

where j : V → Rr is the inclusion and g : W → R2s is an isometric immersion.
We now show that

g(W ) ⊂ S1(r1)× · · · × S1(rs) ⊂ R2s

for some positive real numbers r1, . . . , rs. Since X1, . . . , Xs are parallel and

αf (Xi, Xj) = 0 for 1 ≤ i 6= j ≤ s,
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we have

∂2g

∂xi∂xj
= ∇̃∂/∂xig∗∂/∂xj

= ∇̃Xif∗Xj

= f∗∇XiXj + αf (Xi, Xj)

= 0.

Hence
g(x1, . . . , xs) = g1(x1) + · · ·+ gs(xs)

for some smooth functions gj : Ij → R2s, 1 ≤ j ≤ s. From

〈g∗∂/∂xi, g∗∂/∂xj〉 = δij, 1 ≤ i, j ≤ s,

it follows that gi is a unit-speed curve for all 1 ≤ i ≤ s, and that the subspaces

Wi = span{gi′(xi) = g∗∂/∂xi}

are pairwise orthogonal. Since dimWi ≥ 2 for 1 ≤ i ≤ s, for otherwise Xi would belong
to ∆, we must have dimWi = 2 for 1 ≤ i ≤ s, because

∑s
i=1 dimWi = 2s. Therefore

the subspaces W1, . . . ,Ws determine an orthogonal decomposition R2s = R2× · · ·×R2

into s copies of R2, with respect to which g splits as

g = g1 × · · · × gs

where each gi : R → R2, 1 ≤ i ≤ s, is a unit-speed curve. Notice that the mean
curvature vector field of g is

Hg(x1, . . . , xs) =
1

s

s∑
j=1

g′′j (xj).

Since f , and hence g, has parallel mean curvature vector field, then

g′′′j (xj) = µj(xj)g
′
j(xj)

for all xj ∈ Ij and some functions µj ∈ C∞(Ij), 1 ≤ j ≤ s. Thus gj is a circle for
1 ≤ j ≤ s (see Exercise 2.7).

We have shown that for each x ∈Mn there exists an open neighborhood Vx ⊂Mn

of x such that f(Vx) is contained in a product

S1(r1)× · · · × S1(rs)× Rr ⊂ Rm,

with respect to some orthogonal decomposition Rm = R2 × · · · × R2 × Rr. Since the
family of all such products clearly satisfies the conditions in Exercise 1.20, it follows
that f(M) is an open subset of an element of that family.
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Suppose now that c̃ > c, and consider the composition F = k ◦ f of f with an
umbilical inclusion k : Qm

c̃ → Qm+1
c . Then F also has flat normal bundle. If η1, . . . , ηs

are the distinct principal normals of f at some point x ∈Mn, then

η̃i = k∗ηi +
√
c̃− c ζ, 1 ≤ i ≤ s,

are the principal normals of F at x, where ζ is one of the unit normal vectors to k at
f(x). In particular, η̃i 6= 0 for all 1 ≤ i ≤ s.

By the case c = c̃ just considered, we see that c = 0 and s = n everywhere, and
that F (M) is contained in a totally geodesic R2n ⊂ Rm+1, and hence in a umbilical
S2n−1
c̃ ⊂ R2n. Moreover, regarding F as an isometric immersion into R2n, we see that
F (M) is an open subset of

S1(r1)× · · · × S1(rn) ⊂ R2n.

From F (M) ⊂ S2n−1
c̃ ⊂ R2n it follows that

r2
1 + · · ·+ r2

n = 1/c̃.

Finally, assume that c̃ < c and consider the composition F = k ◦ f of f with an
umbilical inclusion k : Qm

c̃ → Qm+1
c,1 into a Lorentzian space form of constant sectional

curvature c. As in the previous case, the principal normals η̃1, . . . , η̃s of F at any
x ∈Mn are related to the principal normals η1, . . . , ηs of f at x by

η̃i = k∗ηi +
√
c− c̃ ζ, 1 ≤ i ≤ s,

where ζ is one of the unit normal vector to k at f(x). As before, the Gauss equation
yields

〈η̃i, η̃j〉 = 0, 1 ≤ i 6= j ≤ s.

There are now two distinct cases to consider, according to whether the first normal
space NF

1 (x) of F at x, that is, the subspace of NFM(x) spanned by η̃1, . . . , η̃s, is
degenerate or not. Since the principal normals of F are pairwise orthogonal, the first
possibility happens precisely when exactly one of them, say, η̃s, is light-like, that is,
when 〈η̃s, η̃s〉 = 0.

Assume first that there exists some x ∈ Mn such that NF
1 (x) is nondegenerate,

that is,
〈ηi, ηi〉 6= 0, 1 ≤ i ≤ s.

Let V be a maximal connected open neighborhood of x where NF
1 remains nondegen-

erate. The Gauss equation (1.38) implies that s = n, that all principal normal vector
fields η̃1, . . . , η̃n have multiplicity one, and that

〈η̃i, η̃j〉 = 0, 1 ≤ i 6= j ≤ n,

everywhere on V . Write η̃i = λiξi, 1 ≤ i ≤ n, where λ1, . . . , λn are smooth positive
functions and ξ1, . . . , ξn is a smooth orthonormal frame of NF

1 on V . Setting

εi = 〈ξi, ξi〉, 1 ≤ i ≤ n,
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we may assume that ε1 = −1 and εi = 1 for 2 ≤ i ≤ n. Let X1, . . . , Xn be an
orthonormal tangent frame such that

αF (Xi, Xi) = η̃i, 1 ≤ i ≤ n.

Equations (2.9) and (2.10) now read as

0 = n〈∇⊥XiH, ξj〉 = (−εjλ2
j − εiλ2

i )Xi(1/λj), i 6= j, (2.11)

and

0 = n〈∇⊥XiH, ξi〉 = εiXi(λi)− εi
∑
j 6=i

λi
λj
Xi(λj). (2.12)

On the other hand, from
αF (Xi, Xj) = δijλiξi

it follows that the normal vector field

δ =
n∑
j=1

1

λj
ξj

satisfies AFδ = I, and that any umbilical normal vector field must be a multiple of δ.
From

AFζ = −
√
c− c̃ I

we obtain
ζ = −

√
c− c̃ δ.

Hence
1

λ2
1

−
n∑
j=2

1

λ2
j

=
1

c− c̃
·

In particular, λj 6= λ1 for all 2 < j ≤ n, and we conclude from (2.11) and (2.12) that
λj is constant for all 1 ≤ j ≤ n. Therefore, if V was a proper subset of Mn, then
λ1, . . . , λn would assume the same values on the boundary of V , and hence remain
positive on an open connected neighborhood of V , contradicting the fact that V is a
maximal connected open subset where NF

1 is nondegenerate. It follows that V = Mn.
Arguing as in the case c̃ > c, we conclude that c = 0, and that F (M) is contained

in a totally geodesic L2n ⊂ Lm+1, and hence in a umbilical

H2n−1
c̃ = L2n ∩Hm

c̃ ⊂ L2n.

Moreover, regarding F as an isometric immersion into L2n, we see that F (M) is an
open subset of

H1(r1)× S1(r2)× · · · × S1(rn) ⊂ L2n,

and the fact that F (M) ⊂ H2n−1
c̃ ⊂ L2n implies that

−r2
1 + r2

2 + · · ·+ r2
n = 1/c̃.
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It remains to consider the case in which NF
1 is everywhere degenerate. Let V

be a maximal connected open subset where s assumes its maximum value. We may
assume that 〈η̃s, η̃s〉 = 0 everywhere. In particular, this implies that ‖ηs‖2 = c− c̃. On
the other hand, from

0 = 〈η̃s, η̃i〉 = 〈ηs, ηi〉 − c+ c̃, 1 ≤ i ≤ s− 1,

we obtain

Afηs |Eηi = 〈ηs, ηi〉I
= (c− c̃) I.

Therefore, writing ηs =
√
c− c̃ δ, where δ has unit length, we have

Afδ =
√
c− c̃ I.

It also follows from the Gauss equation that ηi has multiplicity one for 1 ≤ i ≤ s − 1
and, writing ζi = ηi − ηs for 1 ≤ i ≤ s− 1, we have

〈ζi, ζj〉 = 〈ηi − ηs, ηj − ηs〉
= 〈ηi, ηj〉 − 〈ηi, ηs〉 − 〈ηs, ηj〉+ ‖ηs‖2

= 0

because ‖ηs‖2 = c− c̃ and all the remaining terms on the right-hand side are also equal
to c− c̃ by the Gauss equation. Moreover,

〈ζi, ηs〉 = 〈ηi, ηs〉 − ‖ηs‖2 = 0, 1 ≤ i ≤ s− 1.

Write ζi = µiξi, 1 ≤ i ≤ s− 1. Then

ηi = ηs − (ηs − ηi) = ηs + µiξi, 1 ≤ i ≤ s− 1.

Therefore

H =
√
c− c̃ δ +

1

n

s−1∑
i=1

µiξi.

The Codazzi equation for δ yields

A∇⊥Y δZ = A∇⊥Z δY (2.13)

for all Y, Z ∈ X(M). If X1, . . . , Xs−1 is an orthonormal frame of E⊥ηs along V such that

αf (Xi, Xi) = ηi, 1 ≤ i ≤ s− 1,

applying (2.13) to Y = Xi and Z = Xj, 1 ≤ i 6= j ≤ s− 1, we obtain

〈∇⊥Xiδ, ξj〉 = 0.
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On the other hand, for Y ∈ Γ(Eηs) and Z = Xj it yields

〈∇⊥Y δ, ξj〉 = 0, 1 ≤ j ≤ s− 1.

Now, using that the mean curvature vector field of f is parallel in the normal connec-
tion, we have

0 = 〈∇⊥XiH, δ〉
= Xi〈H, δ〉 − 〈H,∇⊥Xiδ〉

= −µi
n
〈∇⊥Xiδ, ξi〉.

Hence
〈∇⊥Xiδ, ξi〉 = 0, 1 ≤ i ≤ s− 1.

It follows that δ is parallel in the normal connection, and hence f(V ) is contained in
an umbilical hypersurface Qm−1

c of Qm
c̃ by Exercise 2.9. In other words, f = i ◦ g,

where g : Mn
c → Qm−1

c is an isometric immersion and i : Qm−1
c → Qm

c̃ is an umbilical
inclusion. Applying to g|V the conclusion in the case c = c̃ already considered, we see
that c = 0 and that

g|V = j ◦ h,

where h : V → R2(s−1)+r and j : R2(s−1)+r → Rm−1 are isometric immersions such that
n = r + s− 1, j is totally geodesic and h(V ) is an open subset of

S1(r1)× · · · × S1(rs−1)× Rr ⊂ R2(s−1)+r

for some positive real numbers r1, . . . , rs−1. In particular, the lengths of the principal
normal vector fields of g are constant on V . If V was a proper subset of Mn, then they
would have the same values on the boundary of V , and hence the number of distinct
principal normals would still be s on an open connected neighborhood of V . This
contradicts the maximality of V with respect to this property and shows that V = Mn.
�

Corollary 2.11. Let f : Mn
c → Qm

c̃ be a minimal isometric immersion with flat normal
bundle. Then one of the following possibilities holds:

(i) c̃ = c and the immersion f is totally geodesic.

(ii) c = 0 < c̃ and f = i ◦ f̃ , where f̃(M) is an open subset of a Clifford torus

S1(r)× · · · × S1(r) ⊂ S2n−1
c̃ ⊂ R2n,

with r = 1/
√
nc̃, and i : S2n−1

c̃ → Smc̃ is a totally geodesic inclusion.
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2.4 Notes

Proposition 2.1 is frequently referred to as Erbacher’s theorem, although this
elementary fact has been used since long before; for instance, see Allendoerfer [16]. A
version of this result for submanifolds of a symmetric space was proved by Di Scala-
Vittone [162]. See also [244] for the case of submanifolds of a product of two space
forms, and [243] for the special case of submanifolds of Qn

c × R.
Theorem 2.6 on reduction of codimension, as well as the more general result

given in Exercise 2.5, are due to Dajczer [92]. Exercise 2.17 was also taken from
[92]. Under the stronger assumption that the normal bundle is flat, Theorem 2.6 was
known to Lagrange [232]. Versions of Theorem 2.6 for submanifolds of Qn

c × R and,
more generally, for submanifolds of any product of two space forms, were proved by
Mendonça-Tojeiro [243], [244].

The notions of type number and s-nullity were introduced by Allendoerfer [16] and
do Carmo-Dajczer [59], respectively. Proposition 2.7 was proved by Dajczer-Rodŕıguez
[127] and Proposition 2.9 by Allendoerfer [16]. Theorem 2.10 was obtained by Dajczer-
Tojeiro [134]. Its Corollary 2.11 for minimal immersions and n = 2m−1 was previously
proved by Moore [253]. An extension of Theorem 2.10 to the case of Einstein subman-
ifolds was obtained by Onti [280].

The structure of submanifolds that carry a nonparallel first normal bundle of low
rank is discussed in Chapter 12. For other results on the subject of this chapter, we
refer to Dajczer [92], Dajczer-Rodŕıguez [127] and Dajczer-Tojeiro [148].

2.5 Exercises

Exercise 2.1. Let f : Mn → M̃m be a 1-regular isometric immersion. Show that N1

and N⊥1 are vector subbundles of NfM .

Exercise 2.2. Let f : Mn → Rm be a 1-regular isometric immersion of a Riemannian
manifold without flat points. If rank N1 = 1, show that f has substantial codimension
one.

Exercise 2.3. Let γ : R → R3 be a smooth curve whose curvature and torsion are
nowhere vanishing. Determine the dimension of the first normal spaces of the immer-
sion f : Sn1 ⊂ Rn+1 → Rn+3 given by

f(t0, t1, . . . , tn) = (γ(t0), t1, . . . , tn).

Exercise 2.4. Let f : Mn → Qm
c be an isometric immersion with parallel second

fundamental form. Prove that f is 1-regular and admits a reduction of codimension to
k = rank N1.

Exercise 2.5. Let f : Mn → Qm
c be a regular isometric immersion. Prove that the

kth-normal subbundle Nk, k ≥ 1, is parallel if and only if
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(i) (∇⊥)kR⊥|N⊥k = 0,

(ii) (∇⊥)kH ⊂ Nk.

Exercise 2.6. Provide a direct proof of Proposition 2.9.

Exercise 2.7. Let γ : I → Rm be a unit-speed curve. Assume that γ′′(t) 6= 0 and
γ′′′(t) = λ(t)γ′(t) for any t ∈ I and some λ ∈ C∞(I). Show that γ(I) is a circle in
some two-dimensional affine subspace of Rm.

Exercise 2.8. Let γ : I → Rm be a unit-speed curve. Assume that there exists a
parallel normal subbundle L of NγI of rank s such that γ′′′(t) ∈ L(t)⊥ but γ′′(t) 6∈ L(t)⊥

for any t ∈ I. Prove that γ(I) is contained in a hypersphere Sm−s of an affine subspace
H of Rm of dimension m− s + 1, and that L(t) is spanned by the normal space Rs−1

of H and the position vector of γ with respect to the center of Sm−s.
Hint: Since γ′′(t) 6∈ L(t)⊥ for any t ∈ I, the orthogonal projection (γ′′(t))L(t) of γ′′(t)
onto L(t) is nowhere vanishing. Let ζ(t) be a unit vector field along γ in the direction
of (γ′′(t))L(t). For any section ξ of the orthogonal complement {ζ}⊥ of {ζ} in L, using
that γ′′′(t) ∈ L(t)⊥ for any t ∈ I and that L is parallel in the normal connection of γ
gives

〈ξ′, ζ〉 = 〈ξ′, γ′′〉 = −〈γ′′′, ξ〉 = 0.

It follows that {ζ}⊥ is also parallel in the normal connection of γ, and hence {ζ}⊥ is a
constant subspace Rs−1 of Rm. Thus γ(I) is contained in an affine subspace H normal
to Rs−1 in Rm. Moreover, we have ζ ′ = λγ′, with λ = 〈ζ ′, γ′〉 = −〈ζ, γ′′〉. Now,

〈ζ, γ′′〉′ = 〈ζ ′, γ′′〉+ 〈ζ, γ′′′〉 = 0,

hence λ is a nonzero constant 1/r ∈ R. Thus γ − rζ is a constant vector of H.

Exercise 2.9. Let f : Mn → Qm
c be an isometric immersion and let η ∈ Γ(NfM) be

an umbilical unit vector field, that is, Aη = λI for some λ ∈ C∞(M). If η is parallel
in the normal connection, show that λ is constant and that f(M) is contained in an
umbilical hypersurface Qm−1

c̃ of Qm
c with constant curvature c̃ = c+ λ2.

Exercise 2.10. Let f : Mn → Qm
c be an isometric immersion with flat normal bundle.

Assume that f has exactly two principal normal vector fields η1 and η2 that are ev-
erywhere linearly independent and parallel along the corresponding eigenbundles, that
is,

∇⊥Xiηi = 0 for all Xi ∈ Γ(Eηi), 1 ≤ i ≤ 2.

Prove that f = i ◦ g, where the submanifold g : Mn → Qn+1
c̃ , c̃ > c, is a cyclide of

Dupin and i : Qn+1
c̃ → Qm

c is an umbilical inclusion. (A hypersurface g : Mn → Qn+1
c is

called a cyclide of Dupin if it has exactly two distinct principal curvatures everywhere,
both of which are constant along the corresponding eigenbundles.)

Hint: First use the Codazzi equations (1.41) and the assumptions on the principal
normal vector fields η1 and η2 to show that N1 is a parallel subbundle of rank two.
Then prove that a unit vector field ζ ∈ Γ(N1) orthogonal to η1−η2 is a parallel umbilical
vector field and use the preceding exercise.
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Exercise 2.11. Let f : Mn → Qm
c be a 1-regular k-Dupin submanifold, that is, f is

an isometric immersion with flat normal bundle that has exactly k distinct principal
normal vector fields η1, . . . , ηk, with ηi parallel in the normal connection along Eηi for
all 1 ≤ i ≤ k. If the subspaces

Sf (x) = span{ηi(x)− ηj(x) : 1 ≤ i, j ≤ k}

have constant dimension s on Mn, prove that f(M) is contained in an umbilical sub-
manifold Qn+s

c̃ of Qm
c .

Hint: First use the Codazzi equations (1.41) and the assumptions on the principal
normal vector fields to show that N1 is parallel. Then notice that N1 has rank either s
or s+ 1 by part (i) of Exercise 1.41. In the first case, conclude that f(M) is contained
in a totally geodesic submanifold Qn+s

c of Qm
c . In the latter, prove that a unit vector

field ζ ∈ Γ(N1) orthogonal to Sf is parallel in the normal connection and use part (ii)
of Exercise 1.41 and Exercise 2.9 to conclude that f(M) is contained in a umbilical
submanifold Qn+s

c̃ of Qm
c .

Exercise 2.12. Let f : Mn → Qm
c be an isometric immersion with flat normal bundle.

If f has parallel mean curvature vector field and dimN1(x) = n for all x ∈ Mn, show
that there exists a parallel umbilical normal vector field along f , and use Exercise 2.9
to give another proof of the last assertion in Proposition 2.5.

Hint: Let η1, . . . , ηn be the principal normal vector fields of f . Use part (i) of Exer-
cise 1.41 to conclude that Sf (x) has dimension n − 1 at every x ∈ Mn. Let ζ be a
unit vector field spanning the orthogonal complement of Sf in N1. Use part (ii) of
Exercise 1.41 to show that ζ is an umbilical vector field. Prove that ζ is parallel in the
normal connection by first deriving from the Codazzi equations (1.41) that

〈ζ,∇⊥Xiηj〉 = 0, 1 ≤ i 6= j ≤ n,

and then using that the mean curvature vector field H = 1
n

∑
i=1 diηi, di = rank Eηi ,

is parallel in the normal connection to show that also

〈ζ,∇⊥Xiηi〉 = 0, 1 ≤ i ≤ n.

Conclude that ∇⊥Xiδ is orthogonal to Sf for any Xi ∈ Γ(Eηi), 1 ≤ i ≤ n, and hence
must vanish.

Exercise 2.13. Let f : Mn → Qn+p
c , p ≤ n − 1, be an isometric immersion and

let η ∈ Γ(NfM) be a unit umbilical vector field. Assume that νs < n − s for all
1 ≤ s ≤ p− 1. Show that η is parallel in the normal connection.

Hint: At x ∈Mn consider the linear map φ : TxM → NfM(x) defined by

φ(X) = ∇⊥Xη.

Then dim Imφ = r ≤ p− 1, and dim ker φ = n− r. If Aη = λI, λ 6= 0, use the Codazzi
equation to show that Y (λ) = 0 for all Y ∈ ker φ. Now take X ∈ ker φ⊥, define

δ = φ(X)−X(log λ)η
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and use the Codazzi equation again to verify that AδY = 0 for all Y ∈ ker φ. Conclude
that r = 0.

Exercise 2.14. Let f : Mn → Qn+p
c be an isometric immersion, and let L be a parallel

subbundle of NfM with rank k. Suppose that L is an umbilical subbundle of NfM ,
that is, that there exists ξ ∈ Γ(L) such that

Aη = 〈η, ξ〉I

for all η ∈ Γ(L). Show that f(M) is contained in an (n+ p− k)-dimensional umbilical
submanifold of Qn+p

c having L as its normal bundle along f .

Exercise 2.15. Let f : Mn → Rm be an isometric immersion, and let η ∈ Γ(NfM)
be a parallel vector field such that the shape operator Aη is nowhere singular. Assume
that the support function

x ∈Mn 7→ 〈f(x), η(x)〉
is constant. Prove that f(M) is contained in a hypersphere of Rm centered at the
origin.

Exercise 2.16. Given an isometric immersion f : Mn → Qm
c , at each point x ∈ Mn

consider the normal subspace

U1(x) = {ξ ∈ NfM(x) : Aξ = λ(ξ)I}.

Assume that the subspaces U1(x) have constant dimension, and thus form a smooth
umbilical subbundle U1 of the normal bundle. Show that U1 is parallel in the normal
connection if and only if

(i) ∇⊥R⊥|U1 = 0,

(ii) ∇⊥H ∈ Γ(U⊥1 ).

Exercise 2.17. Given an isometric immersion f : Mn → Qm
c , consider the normal

subspace at x ∈Mn given by

T (x) = {ξ ∈ NfM(x) : R⊥(X, Y )ξ = 0 for all X, Y ∈ TxM}⊥.

Show that if dimT (x) > 1
2
n(n− 1) + 1, then either

(i) N1(x) = T (x) or

(ii) N1(x) = T (x)⊕ span{η}, where η is an umbilical direction.

Moreover, prove the following assertions:

(iii) If dimT (x) = 1
2
n(n+ 1) then (ii) holds.

(iv) If H(x) = 0 and dimN1(x) > 1
2
n(n− 1) then (i) holds.
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Minimal submanifolds

The theory of minimal submanifolds is one of the most beautiful and developed
subjects of differential geometry. The aim of this chapter is to introduce a few of its
general aspects.

The equation that defines minimal submanifolds turns out to be the Euler-
Lagrange equation for the volume functional; hence such submanifolds have a natural
variational characterization as critical points of that functional. This is a consequence
of the first variational formula, which is discussed at the beginning of this chapter.

Minimal submanifolds of Euclidean space are characterized by having harmonic
coordinate functions. We illustrate the strong implications of this fact. Minimal sub-
manifolds of the sphere, in turn, are characterized by having eigenfunctions of the
Laplace operator as coordinate functions. We briefly discuss how this can be used to
construct nice examples of minimal isometric immersions of spheres into spheres.

The Ricci tensor of a submanifold of a space form is computed in terms of its
second fundamental form, and this is used to derive an obstruction to the existence of
minimal isometric immersions into a space of constant sectional curvature. We then
present a strong rigidity result for minimal hypersurfaces of space forms within the
class of minimal isometric immersions.

The Ricci condition gives necessary and sufficient conditions for some neighbor-
hood of a point with nonpositive Gauss curvature of a two-dimensional Riemannian
manifold to admit a minimal isometric immersion in R3. The chapter ends with a gen-
eralization of the Ricci condition for hypersurfaces with arbitrary dimension of space
forms, which characterizes the Riemannian metrics that arise as the induced metrics
of minimal immersions with codimension one into space forms.

3.1 The first variational formula

In order to obtain a variational characterization of the minimal submanifolds we
start with the following result.

Proposition 3.1. Let F : I × Mn → M̃m be a smooth variation of an isometric
immersion f : Mn → M̃m and let T = f∗Z + η be the decomposition of the variational

82
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vector field into its tangent and normal components. Then

d

dt
|t=0 dVt = (−n〈H, η〉+ div Z)dV0,

where dVt is the volume element of the metric induced by ft and the divergence of Z is

div Z = tr(X 7→ ∇XZ).

Proof: For a fixed x ∈Mn, let X1, . . . , Xn be an orthonormal basis of TxM and set

gij(t) = 〈ft∗Xi, ft∗Xj〉, 1 ≤ i, j ≤ n.

Then
dVt =

√
g(t) dV0

where g(t) = det(gij(t)). By formula (1.4),

g′ii(0) = −2〈α(Xi, Xi), η〉+ 2〈∇XiZ,Xi〉, 1 ≤ i ≤ n.

Hence

d

dt
|t=0dVt =

d

dt
|t=0

√
g(t)dV0

=
1

2
g′(0)dV0

=
1

2
tr(g′ij(0))dV0

= (−n〈H, η〉+ div Z)dV0. �

The volume of an immersion f : Mn → M̃m of a compact oriented manifold is
defined as

V (f) =

∫
M

dV

where dV is the volume element of the induced metric.

Corollary 3.2. Let f : Mn → M̃m be an immersion of a compact oriented manifold,
possibly with boundary, and let F : I×Mn → M̃m be a smooth variation of f such that
ft|∂M = f |∂M for all t ∈ I. Let T = f∗Z + η be the variational vector field of F . Then

d

dt
|t=0V (ft) = −

∫
M

n〈H, η〉dV0. (3.1)

Proof: Proposition 3.1 and the divergence theorem yield

d

dt
|t=0V (ft) =

d

dt
|t=0

∫
M

dVt

=

∫
M

d

dt
|t=0dVt

= −
∫
M

n〈H, η〉dV0 +

∫
M

(div Z)dV0

= −
∫
M

n〈H, η〉dV0. �
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Remarks 3.3. (i) Let Mn be a compact manifold and let F(M, M̃) denote the space of
immersions of Mn into M̃m. Then F(M, M̃) has the structure of an infinite-dimensional
smooth manifold. Given f ∈ F(M, M̃), a smooth curve ft in F(M, M̃) with f0 = f
corresponds to a smooth variation of f , and the tangent vector

T =
dft
dt
|t=0

naturally corresponds to the variational vector field. In this way, the tangent space of
F(M, M̃) at f can be identified with the space of sections of f ∗TM̃ . Integrating the
inner product of the variational vector fields over Mn gives an inner product in this tan-
gent space. Consider the functional V on F(M, M̃) that assigns to each f ∈ F(M, M̃)
its volume V (f). Then (3.1) says that the gradient gradV of V at f is −nH. In
particular, deforming f along H decreases its volume most rapidly.

(ii) For normal variations, formula (3.1) remains valid without the condition on the
boundary.

(iii) If Mn is noncompact or nonorientable, then (3.1) can be used for compactly sup-
ported variations and local volume functionals. A smooth variation F : I ×Mn → M̃m

of f is said to be compactly supported if there exists a relatively compact subset U ⊂Mn

such that
ft(M \ U) = f(M \ U)

for all t ∈ I.

Corollary 3.2 yields a variational characterization of minimal immersions.

Corollary 3.4. An isometric immersion f : Mn → M̃m is minimal if and only if

d

dt
|t=0V (ft) = 0

for every compactly supported smooth variation of f .

3.2 Euclidean minimal submanifolds

If Mn is a Riemannian manifold, the Laplacian ∆h of h ∈ C∞(M) at x ∈Mn is
defined as

∆h(x) = tr Hessh(x) = div gradh(x).

For an isometric immersion f : Mn → Rm and x ∈Mn, by ∆f(x) we mean the vector

(∆f1(x), . . . ,∆fm(x))

where f = (f1, . . . , fm). Taking traces in (1.7) gives the following result.
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Proposition 3.5. If f : Mn → Rm is an isometric immersion, then

∆f(x) = nH(x)

where H(x) is the mean curvature vector of f at x.

If Mn is a Riemannian manifold, then h ∈ C∞(M) is called harmonic if ∆h = 0.
By Proposition 3.5, an isometric immersion f : Mn → Rm is minimal if and only if any
height function is harmonic on Mn. This fact has strong consequences, as illustrated
below.

Recall that the convex hull C(X) of a subset X ⊂ Rm is the smallest closed
convex set containing X. If we denote by Hv,w, for each pair of vectors v, w ∈ Rm, the
half-space given by

Hv,w = {v + y ∈ Rm : 〈y, w〉 ≤ 0},

then
C(X) = ∩{Hv,w ⊂ Rm : X ⊂ Hv,w}.

The proof of the next result relies on the well-known maximum principle due
to Hopf, which implies that a harmonic function on a Riemannian manifold Mn with
boundary ∂M that attains a local maximum at a point in M \ ∂M must be constant.

Proposition 3.6. Let f : Mn → Rm be a minimal immersion of a compact manifold
Mn with boundary ∂M . Then f(M) ⊂ C(f(∂M)). Moreover, if f(M) lies in no proper
affine subspace, then f(M \ ∂M) is contained in the interior C(f(∂M))o of C(f(∂M)).

Proof: For any pair of vectors v, w ∈ Rm, define hv,w ∈ C∞(Rm) by

hv,w(y) = 〈y − v, w〉.

Then y ∈ Hv,w if and only if hv,w(y) ≤ 0. Therefore, for any X ⊂ Rm we have

y ∈ C(X) if and only if hv,w(y) ≤ 0 whenever hv,w ≤ 0 on X,

whereas

y ∈ C(X)o if and only if hv,w(y) < 0 whenever hv,w ≤ 0 on X.

The statements then follow from the fact that, by Hopf’s maximum principle,
hv,w ◦ f ≤ 0 on ∂M implies hv,w ◦ f ≤ 0 on Mn, whereas hv,w ◦ f ≤ 0 on ∂M implies
hv,w ◦ f < 0 on M \ ∂M , unless hv,w is identically zero. �

The following result is also an immediate consequence of Corollary 1.6.

Corollary 3.7. There exists no minimal isometric immersion f : Mn → Rm of a
compact Riemannian manifold without boundary.
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3.3 Minimal submanifolds of the sphere

The following result shows that the minimal immersions of an n-dimensional
differentiable manifold into the Euclidean unit sphere Sm are precisely those whose
coordinate functions in Rm+1 are eigenfunctions with eigenvalue −n of the Laplace
operator in the induced metric.

Proposition 3.8. Let f : Mn → Smc be an isometric immersion. Set F = i ◦ f , where
i : Smc → Rm+1 is the inclusion map. Then f is minimal if and only if ∆F = −ncF .

Proof: The second fundamental forms of f and F are related by

αF (X, Y ) = i∗α
f (X, Y )− c 〈X, Y 〉F

for all x ∈Mn and all X, Y ∈ TxM . Taking traces and using Proposition 3.5 yield

∆F = i∗nH
f − ncF,

and the conclusion follows. �

The next result states that any isometric immersion of a Riemannian manifold
Mn into Euclidean space Rm+1 whose coordinate functions are eigenfunctions of the
Laplace operator with the same nonzero eigenvalue arises as in the previous result for
a minimal isometric immersion of Mn into some sphere Smc ⊂ Rm+1.

Theorem 3.9. Let F : Mn → Rm+1 be an isometric immersion such that ∆F = −ncF
for some constant c 6= 0. Then c > 0 and there exists a minimal isometric immersion
f : Mn → Smc such that F = i ◦ f .

Proof: Since ∆F = nHF by Proposition 3.5, the assumption implies that the position
vector field F is normal to F . Hence

X〈F, F 〉 = 2〈F∗X,F 〉 = 0

for any X ∈ TM , and thus 〈F, F 〉 = r2 for some constant r. From

0 =
1

2
∆‖F‖2 = 〈F,∆F 〉+ n

= n(1− cr2)

(see Exercise 3.6) we obtain c = 1/r2. It follows that there exists an isometric im-
mersion f : Mn → Smc such that F = i ◦ f , and minimality of f is a consequence of
Proposition 3.8. �
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3.3.1 Standard minimal immersions of spheres into spheres

Theorem 3.9 can be used to construct nice examples of minimal isometric immer-
sions of spheres into spheres, as described next.

Denote by H(d) the vector space of harmonic homogeneous polynomials of degree
d on Rm+1. It can be shown (see Corollaire C.I.3 in [33]) that its dimension is n + 1,
where

n = n(d) = (2d+m− 1)
(d+m− 2)!

d !(m− 1)!
− 1.

Let ∆Sm denote the Laplacian on Sm. It follows from Exercise 3.7 that

W d = {ϕ|Sm : ϕ ∈ H(d)}

is contained in the eigenspace of −∆Sm associated with the eigenvalue

λ(d) = d(m+ d− 1).

In fact, W d coincides with such eigenspace (see Proposition C.I.1 in [33]).
Introduce on W d the inner product

〈ϕ, ψ〉 =

∫
Sm
ϕψ dV,

where dV is the volume element of Sm. Let f0, . . . , fn be an orthonormal basis of W d

with respect to 〈 , 〉 and define F : Sm → Rn+1 by

F = (f0, . . . , fn).

We prove next that F is an immersion and that the metric on Sm induced by F is a
constant multiple of the standard metric.

By the change of variables formula, the inner product 〈 , 〉 on W d is invariant by
the action of G = O(m+ 1) on W d given by

(gϕ)(x) = ϕ(g(x))

for all g ∈ G, ϕ ∈ W d and x ∈ Sm. Therefore f0 ◦ g, . . . , fn ◦ g is also an orthonormal
basis of W d for any g ∈ G; hence there exists g̃ ∈ O(n+ 1) such that

F ◦ g = g̃ ◦ F.

Let 〈 , 〉∼ = F ∗〈 , 〉Rn+1 denote the pull-back of the Euclidean metric, that is,

〈X, Y 〉∼x = 〈F∗(x)X,F∗(x)Y 〉Rn+1

for all x ∈ Sm and X, Y ∈ TxSm. Then

g∗〈 , 〉∼ = g∗F ∗〈 , 〉Rn+1 = (F ◦ g)∗〈 , 〉Rn+1 = (g̃ ◦ F )∗〈 , 〉Rn+1 = F ∗g̃∗〈 , 〉Rn+1

= F ∗〈 , 〉Rn+1 = 〈 , 〉∼. (3.2)
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Now, for any fixed x ∈ Sm, the isotropy subgroup Gx of the G-action on Sm
(that is, the subgroup of G of all elements that fix x) is isomorphic to SO(m) and acts
irreducibly on TxSm (that is, no proper subspace of TxSm is invariant by Gx). Moreover,
it follows from (3.2) that 〈 , 〉∼x is invariant by Gx = SO(m) for all x ∈ Sm. But if a
symmetric bilinear form on a Euclidean space Rm is invariant by a subgroup of O(m)
that acts irreducibly on Rm, then it must be a multiple of the standard inner product
on Rm (see Theorem 1 of Appendix 5 in [230], vol. I). Thus there exists c̃(x) ∈ R such
that

〈 , 〉∼x = c̃(x)〈 , 〉x,

where 〈 , 〉x stands for the standard inner product on TxSm. Given x, y ∈ Sm, let g ∈ G
be such that y = g(x). Then, for all X, Y ∈ TxSm, the invariance of 〈 , 〉∼ with respect
to the action of G on Sm gives

c̃(y)〈X, Y 〉x = c̃(y)〈g∗X, g∗Y 〉y
= 〈g∗X, g∗Y 〉∼y
= 〈X, Y 〉∼x
= c̃(x)〈X, Y 〉x,

hence c̃(y) = c̃(x) = c̃ ∈ R. Therefore F induces an isometric immersion of Sm1/c̃ into

Rn+1, and

∆̃F = −λ(d)

c̃
F

with respect to the Laplacian ∆̃ = (1/c̃)∆Sm of Sm1/c̃. By Theorem 3.9, there exists a
minimal isometric immersion

f : Sm1/c̃ → Sn(d)
c , c = λ(d)/mc̃,

such that F = i ◦ f , where i : Sn(d)
c → Rn(d)+1 is the standard inclusion.

Equivalently, an orthonormal basis of W d gives rise to a minimal isometric im-
mersion

f : Smk(d) → Sn(d) with k(d) =
m

d(m+ d− 1)
·

For instance, for m = 2 = d we have k(d) = 1/3 and n(d) = 4, hence f : S2
1/3 → S4,

given by

f(x, y, z) =

(
1√
3
xy,

1√
3
xz,

1√
3
yz,

1

2
√

3

(
x2 − y2

)
,
1

6

(
x2 + y2 − 2z2

))
, (3.3)

provides a minimal isometric immersion of S2
1/3 into S4, called the Veronese surface. It

induces a minimal isometric embedding of the real projective plane of constant sectional
curvature 1/3 into S4.
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3.4 The Ricci tensor of a submanifold

Given an isometric immersion f : Mn → Qm
c , we compute the Ricci tensor of

Mn, defined by
Ric (X, Y ) = trZ 7→ R(Z,X)Y,

in terms of the second fundamental form of f . Choosing an orthonormal tangent frame
X1, . . . , Xn, the Gauss equation of f yields

Ric (X, Y ) =
n∑
i=1

〈R(Xi, X)Y,Xi〉

= (n− 1)c 〈X, Y 〉+
n∑
i=1

(〈α(Xi, Xi), α(X, Y )〉 − 〈α(X,Xi), α(Y,Xi)〉)

= (n− 1)c 〈X, Y 〉+ n〈α(X, Y ),H〉 − III(X, Y ), (3.4)

where

III(X, Y ) =
n∑
i=1

〈α(X,Xi), α(Y,Xi)〉

is known as the third fundamental form of f . Note that

III(X,X) =
n∑
i=1

‖α(X,Xi)‖2 ≥ 0

for any X ∈ X(M), and that III(X,X) = 0 at x ∈ Mn if and only if X(x) belongs to
the relative nullity subspace ∆(x) of f at x.

If T, S ∈ Γ(End(TM)) denote the symmetric tensors given by

Ric (X, Y ) = 〈TX, Y 〉 and III(X, Y ) = 〈SX, Y 〉, (3.5)

then (3.4) can be written as

T = (n− 1)cI + nAH − S. (3.6)

In terms of an orthonormal normal frame ξ1, . . . , ξm−n we have

III(X, Y ) =
n∑
i=1

m−n∑
r=1

〈α(X,Xi), ξr〉〈α(Y,Xi), ξr〉

=
n∑
i=1

m−n∑
r=1

〈AξrX,Xi〉〈AξrY,Xi〉

=
m−n∑
r=1

〈A2
ξrX, Y 〉,
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hence

S =
m−n∑
r=1

A2
ξr .

In particular, if m = n+ 1 and we write H = Hξ for a unit normal vector field ξ, then
(3.6) reduces to

T = (n− 1)cI + nHA− A2 (3.7)

where we write A = Aξ.
By (3.4), the Ricci curvature in the direction of a unit vector X ∈ TM , defined

as

Ric (X) =
1

n− 1
Ric (X,X),

is given by

Ric (X) = c+
n

n− 1
〈AHX,X〉 −

1

n− 1
III(X,X). (3.8)

Taking traces in (3.8) yields

s = c+
n

n− 1
‖H‖2 − 1

n(n− 1)
‖α‖2, (3.9)

where s is the scalar curvature defined as

s =
1

n

n∑
i=1

Ric (Xi)

and ‖α‖ denotes the norm of the second fundamental form, given by

‖α‖2 =
n∑

i,j=1

‖α(Xi, Xj)‖2.

Formula (3.8) yields the following obstruction for the existence of a minimal
isometric immersion into any manifold of constant sectional curvature.

Proposition 3.10. If an isometric immersion f : Mn → M̃m
c is minimal at x ∈ Mn

then Ric (X) ≤ c for every unit vector X ∈ TxM . Moreover, equality holds for every
X ∈ TxM if and only if f is totally geodesic at x.

3.5 Rigidity of minimal hypersurfaces

This section presents a strong rigidity property of minimal hypersurfaces within
the class of minimal isometric immersions.

For a Riemannian manifold Mn we denote by µc(x) the dimension of the c-nullity
subspace at x ∈Mn, given by

Γc(x) = {X ∈ TxM : R(X, Y ) = c (X ∧ Y ) for all Y ∈ TxM}. (3.10)

If c = 0 we write simply Γ(x) instead of Γ0(x), and refer to µ(x) = µ0(x) as the nullity
of Mn at x.
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Theorem 3.11. Let f : Mn → Qn+1
c , n ≥ 3, be a minimal hypersurface. If there exists

a point x0 ∈ Mn such that µc(x0) ≤ n − 3, then any minimal isometric immersion
g : Mn → Qn+p

c is congruent to i ◦ f , where i : Qn+1
c → Qn+p

c is a totally geodesic
inclusion.

The proof relies on the following algebraic lemma.

Lemma 3.12. Let γ : V ×V → R and α : V ×V → W be traceless symmetric bilinear
forms, where V and W are vector spaces of dimensions n ≥ 3 and p, respectively,
endowed with positive definite inner products. Assume that

span{α(X, Y ) : X, Y ∈ V } = W

and that dimN(γ) ≤ n− 3, where

N(γ) = {Y ∈ V : γ(X, Y ) = 0 for all X ∈ V }.

If
γ(X,X)γ(Y, Y )− γ2(X, Y ) = 〈α(X,X), α(Y, Y )〉 − ‖α(X, Y )‖2 (3.11)

for all X, Y ∈ V , then p = 1 and α = ±γ.

Proof: Let Y1, . . . , Yn be an orthonormal basis of V . By assumption,

n∑
j=1

γ(Yj, Yj) = 0 =
n∑
j=1

α(Yj, Yj).

It follows using (3.11) that

n∑
j=1

γ2(X, Yj) =
n∑
j=1

‖α(X, Yj)‖2. (3.12)

In particular, this implies that N(γ) = N(α). Let X1, . . . , Xm be an orthonormal basis
of N(γ)⊥ which diagonalizes γ, and set

λi = γ(Xi, Xi), 1 ≤ i ≤ m.

Then (3.12) yields

λ2
i =

m∑
j=1

‖αij‖2, 1 ≤ i ≤ m,

where
αij = α(Xi, Xj), 1 ≤ i, j ≤ m.

On the other hand, from (3.11) it follows that

λiλj = 〈αii, αjj〉 − ‖αij‖2. (3.13)
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The two preceding equations and the Cauchy-Schwarz inequality yield

(〈αii, αjj〉 − ‖αij‖2)2 = λ2
iλ

2
j (3.14)

=
m∑
k=1

‖αik‖2

m∑
`=1

‖αj`‖2

≥ (‖αii‖2 + ‖αij‖2)(‖αjj‖2 + ‖αij‖2)

≥ (〈αii, αjj〉+ ‖αij‖2)2. (3.15)

If αij 6= 0 for some 1 ≤ i 6= j ≤ m, it follows that 〈αii, αjj〉 ≤ 0, hence

λiλj ≤ −‖αij‖2 < 0

by (3.13). Since m ≥ 3 by assumption, the products λiλj, 1 ≤ i 6= j ≤ m, cannot
be all negative, hence there must exist indices 1 ≤ i 6= j ≤ m for which αij = 0. For
such a pair of indices, we must have equality in the first inequality in (3.14) by the
Cauchy-Schwarz inequality, which implies that αii and αjj are linearly dependent and

αik = αjk = 0, 1 ≤ k ≤ m, k 6= i, j.

Applying the same conclusion for each such pair (i, k), it follows that

αij = 0, 1 ≤ i 6= j ≤ m,

and that all the vectors αii, 1 ≤ i ≤ m, are linearly dependent. Hence p = 1, and since
n ≥ 3, α = ±γ by (3.13). �

Proof of Theorem 3.11: Since f is minimal, by Exercise 3.8 the nullity subspace Γc(x0)
coincides with the relative nullity subspace of f at x0. Therefore, it follows from
Lemma 3.12 and the assumption µc(x0) ≤ n − 3 that dimN g

1 (x0) = 1 and that the
second fundamental forms of f and g coincide at x0, after choosing the appropriate
orientations.

Since µc(x) ≤ n − 3 also in an open simply connected neighborhood U of x0,
the first normal space N g

1 (x) has dimension 1 for all x ∈ U . If ζ ∈ Γ(NgU) is a
unit normal vector field spanning N g

1 along U , we can then assume that the shape
operator A of f with respect to a unit normal vector field N coincides with Agζ . It

follows from Proposition 2.7 that ζ is parallel in the normal connection. Then ζ⊥ is a
parallel subbundle of NgU , which is also flat, for ζ⊥ = N g

1
⊥. The same holds for the

subbundle N̄⊥ of the normal bundle of i ◦ f , where N̄ = i∗N . Choose orthonormal
frames ξ1, . . . , ξp−1 and η1, . . . , ηp−1 of N̄⊥ and ζ⊥, respectively, along U . Define a vector
bundle isometry φ between Ni◦fU and NgU by φ(N̄) = ζ and φ(ξj) = ηj, 1 ≤ j ≤ p−1.
Then it is clear that φ preserves the normal connections and the second fundamental
forms. We conclude from Theorem 1.25 that

g|U = Φ ◦ i ◦ f |U

for some isometry Φ of Qn+p
c . Since minimal immersions are real analytic, we must

have g = Φ ◦ i ◦ f . �
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Remark 3.13. Theorem 3.11 does not hold if µc(x) ≥ n− 2 at any point of Mn. In
fact, if f : Mn → Qn+1

c is a minimal isometric immersion of a simply connected man-
ifold whose second fundamental form A has exactly two nonzero principal curvatures
everywhere, then there exists a one-parameter family fθ : Mn → Qn+1

c , θ ∈ [0, π), of
noncongruent minimal isometric immersions. See Exercise 3.9.

3.6 The Ricci condition

Let M2 be a Riemannian manifold and let x ∈ M2 be a point where the Gauss
curvature K is negative. The Ricci condition states that a necessary and sufficient
condition for some neighborhood of x to admit a minimal isometric immersion in R3

is that the metric 〈〈 , 〉〉 =
√
−K〈 , 〉 be flat. This condition is equivalent to the metric

−K〈 , 〉 having constant Gauss curvature equal to one. In this section we give a proof
of an extension of the latter version of the Ricci condition to hypersurfaces in space
forms.

Let f : Mn → Qn+1
c be a minimal isometric immersion with shape operator A.

By (3.4) we have
Ric (X, Y ) = (n− 1)c 〈X, Y 〉 − 〈AX,AY 〉

for all X, Y ∈ X(M). Therefore

〈〈 , 〉〉 = −Ric ( , ) + (n− 1)c 〈 , 〉

defines a new Riemannian metric on Mn if A is everywhere invertible. The Levi-Civita
connection ∇̂ of 〈〈 , 〉〉 satisfies

2〈〈∇̂XY, Z〉〉 = X〈〈Y, Z〉〉+ Y 〈〈X,Z〉〉 − Z〈〈X, Y 〉〉+ 〈〈[Z, Y ], X〉〉+ 〈〈[X, Y ], Z〉〉
+ 〈〈[Z,X], Y 〉〉

= X〈AY,AZ〉+ Y 〈AX,AZ〉 − Z〈AX,AY 〉+ 〈A[Z, Y ], AX〉
+ 〈A[X, Y ], AZ〉+ 〈A[Z,X], AY 〉

= 〈∇XAY,AZ〉+ 〈AY,∇XAZ〉+ 〈∇YAX,AZ〉+ 〈AX,∇YAZ〉
− 〈∇ZAX,AY 〉 − 〈AX,∇ZAY 〉+ 〈A[Z, Y ], AX〉+ 〈A[X, Y ], AZ〉
+ 〈A[Z,X], AY 〉

= 2〈∇XAY,AZ〉 − 〈(∇XA)Y − (∇YA)X,AZ〉
+ 〈(∇XA)Z − (∇ZA)X,AY 〉+ 〈(∇YA)Z − (∇ZA)Y,AX〉.

Hence the Codazzi equation implies that

〈〈∇̂XY, Z〉〉 = 〈∇XAY,AZ〉 (3.16)

for all X, Y, Z ∈ X(M).
We now compute

〈〈R̂(X, Y )Y,X〉〉 = 〈〈∇̂X∇̂Y Y,X〉〉 − 〈〈∇̂Y ∇̂XY,X〉〉 − 〈〈∇̂[X,Y ]Y,X〉〉.
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Using (3.16) and
〈〈X, Y 〉〉 = 〈AX,AY 〉 (3.17)

we obtain

〈〈∇̂X∇̂Y Y,X〉〉 = X〈∇YAY,AX〉 − 〈∇YAY,∇XAX〉
= 〈∇X∇YAY,AX〉

〈〈∇̂Y ∇̂XY,X〉〉 = 〈∇Y∇XAY,AX〉
〈〈∇̂[X,Y ]Y,X〉〉 = 〈∇[X,Y ]AY,AX〉.

Hence
〈〈R̂(X, Y )Y,X〉〉 = 〈R(X, Y )AY,AX〉.

Then the Gauss equation

〈R(X, Y )AY,AX〉 = c 〈(AX ∧ AY )Y,X〉+ ‖AX ∧ AY ‖2

implies that the sectional curvature of the new metric satisfies

K̂(X, Y ) = 1 + c
〈(AX ∧ AY )Y,X〉
‖AX ∧ AY ‖2

(3.18)

for all X, Y ∈ X(M).

The next result shows that the preceding conditions are also sufficient for a simply
connected Riemannian manifold to admit a minimal isometric immersion into Qn+1

c .

Theorem 3.14. Let Mn be a simply connected Riemannian manifold such that

Ric ( , )− (n− 1)c 〈 , 〉

is everywhere negative definite, so that

〈〈 , 〉〉 = −Ric ( , ) + (n− 1)c 〈 , 〉

defines a new Riemannian metric on Mn. Assume that B ∈ Γ(End(TM)), defined by

〈〈X, Y 〉〉 = 〈BX, Y 〉,

admits a smooth symmetric square root A, that is, (3.17) holds. Assume also that the
Levi-Civita connection and sectional curvature of the new metric satisfy (3.16) and
(3.18), respectively. Then Mn admits a minimal isometric immersion into Qn+1

c .

Proof: The proof consists in showing that A satisfies the Gauss and Codazzi equations
for an isometric immersion into Qn+1

c . Notice that it is not required to be traceless,
which is a consequence of the remaining assumptions.

Using (3.16), (3.17) and the fact that A is invertible, the equation

〈〈∇̂XY, Z〉〉 − 〈〈∇̂YX,Z〉〉 − 〈〈[X, Y ], Z〉〉 = 0
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reduces to the Codazzi equation for A.
As shown before the statement of Theorem 3.14, Eqs. (3.16) and (3.17) also yield

〈〈R̂(X, Y )Y,X〉〉 = 〈R(X, Y )AY,AX〉.

Then (3.18) reads as

〈R(X, Y )AY,AX〉 = c 〈(AX ∧ AY )Y,X〉+ ‖AX ∧ AY ‖2,

which is equivalent to the Gauss equation.
By Theorem 1.11, there exist an isometric immersion f : Mn → Qn+1

c and a unit
normal vector field ξ such that A coincides with the shape operator Aξ of f with respect
to ξ. It now follows from (3.4) applied to f that

Ric (X, Y )− (n− 1)c 〈X, Y 〉 = nH〈AX, Y 〉 − 〈AX,AY 〉,

and hence H = 0. �

Corollary 3.15. Let M2 be a Riemannian manifold, let c be a real number and
let x ∈ M2 be a point where the Gauss curvature satisfies K < c. A necessary and
sufficient condition for a neighborhood of x to be isometrically and minimally immersed
in Q3

c is that the Gauss curvature K̂ of the metric (−K + c)〈 , 〉 satisfies

K̂ = 1 +
c

K − c
·

After the immersion given by Theorem 3.14 has been obtained, condition (3.18)
becomes

K̂(X, Y ) = 1 + c (K(X, Y )− c) ‖X ∧ Y ‖
2

‖AX ∧ AY ‖2
· (3.19)

The following example shows that condition (3.18) cannot be replaced by (3.19).

Example 3.16. A Riemannian manifold Mn is an Einstein manifold if the Ricci
tensor satisfies

Ric (X, Y ) = ρ 〈X, Y 〉

for all X, Y ∈ X(M) and some constant ρ ∈ R. If Mn, n = 2m + 1, is an Einstein
manifold with

Ric ( , ) = (n− 2)c 〈 , 〉, (3.20)

where c is a positive number, then Ric ( , )− (n− 1)c 〈 , 〉 is negative definite and

〈〈X, Y 〉〉 = c 〈X, Y 〉.

Thus Mn cannot be isometrically and minimally immersed in Qn+1
c , since the odd

dimensional identity matrix has no traceless square root.
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3.7 Notes

It was shown in Section 3.1 that a minimal immersion f : Mn → M̃m represents
a critical point for the area function on the space of all immersions of Mn into M̃m. It
is therefore natural to ask whether f is actually a local minimum for the area function,
which requires the computation of its second derivative. This leads to the second
variation formula, which relates the second derivative of the area function to geometric
invariants of the immersion. We refer the reader to the books of Lawson [234] and
Xin [352] for a discussion of this topic, as well as for many other results on minimal
submanifolds.

Theorem 3.9 is due to Takahashi [320]. He also observed that if Mn is an isotropy-
irreducible Riemannian homogeneous space, that is, if the isotropy group of a point
acts irreducibly on the tangent space, then an orthonormal basis of each eigenspace
of the Laplacian operator on Mn gives rise to a minimal isometric immersion into a
round sphere. These are called the standard minimal immersions.

In particular, if Mn = Sn one obtains the sequence of minimal isometric immer-
sions described in Section 3.3.1, one for each nonzero eigenvalue λ = d(n + d − 1) of
the Laplacian, which corresponds to harmonic homogeneous polynomials of degree d.
For odd g, the standard minimal isometric immersion is an embedding. For even g, all
components of the immersion are invariant under the antipodal map. In fact, in this
case it gives rise to a minimal isometric embedding of the real projective space.

Calabi [49] proved that every minimal isometric immersion of a two-dimensional
round sphere into Sm is congruent to one of these standard immersions. For m ≥ 3, do
Carmo-Wallach [62] showed that if f : Smk → Sn is a minimal isometric immersion then
k = k(d) for some d, and if f is substantial then n ≤ n(d), where k(d) and n(d) are as
in Section 3.3.1. They also showed that if d ≤ 3 and f is substantial, then f must be
congruent to the standard minimal isometric immersion of Smk(d) into Sn(d). Moreover, if
m ≥ 3 and d ≥ 4, they proved that the set of substantial minimal isometric immersions
of Smk(d) into Sn (up to congruence of the ambient space) is parametrized by a compact
convex body in a finite dimensional vector space. The problem of finding the exact di-
mension of this convex body was studied by Toth [337]. The immersions corresponding
to interior points of the convex body are all embedded spheres or embedded real pro-
jective spaces. The question of which spherical space forms admit minimal isometric
immersions or embeddings into spheres was addressed by De Turck-Ziller [160], who
proved this to be the case for every homogeneous spherical space form.

Theorem 3.11 on the rigidity of minimal isometric immersions was obtained by
Barbosa-Dajczer-Jorge [26].

The Ricci condition for minimal surfaces in R3 was given by Ricci [301] and
extended to surfaces in S3 by Lawson [233]. The extension to hypersurfaces of the
Ricci condition given by Theorem 3.14 is due to do Carmo-Dajczer [54]. The case
of Euclidean hypersurfaces was also considered by Chern-Osserman [87]. A necessary
condition for the existence of minimal isometric immersions into Euclidean space in
codimension one was given by Barbosa-do Carmo [30]. For arbitrary codimension,
Chen [79] has shown that a necessary condition for a Riemannian manifold Mn to
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admit a minimal isometric immersion into Rn+p is for the sectional curvature of Mn to
satisfy K(σ) ≥ (n(n− 1)/2)s(x) for all x ∈Mn and any plane σ ∈ TxM , where s(x) is
the scalar curvature of Mn at x. Other necessary conditions for the case in which the
codimension is arbitrary were found by Chen [82], [83] and Vlachos [339]. For the case
in which the ambient space is the sphere see also Hasanis-Vlachos [212].

Chen’s condition above was derived as a consequence of a general inequality that
holds for any isometric immersion f : Mn → Qn+p

c . Namely, let δM denote the intrinsic
quantity defined by

δM(x) = n(n− 1)s(x)− 2inf {K(σ) : σ ⊂ TxM}.

It was shown by Chen [79], [80] that the inequality

δM ≤
n− 2

2(n− 1)

(
n2‖H‖2 + (n2 − 1)c

)
holds at any point of Mn. Notice that the equality holds at x in the above inequality
if c = 0 = H(x) and ν(x) = n − 2. It was shown by Dajczer-Florit [95] that any
nonminimal isometric immersion f : Mn → Rn+p, n ≥ 4, for which the equality is
attained at every point of Mn is a rotation hypersurface over a surface h : L2 → R2+p

satisfying some conditions.
Ruled minimal submanifolds in space forms were shown to be generalized helicoids

by Barbosa-Dajczer-Jorge [27]. In particular, in Euclidean space the examples in part
(ii) of Exercise 3.1 comprise all possible ones. The case of ruled submanifolds with
mean curvature vector field of constant length was treated by Barbosa-Delgado [29].

Minimal isometric immersions with codimension two of Einstein manifolds into
space forms were classified by Matsuyama [242]. By formula 3.4, any such isometric
immersion into Euclidean space has the property that its third fundamental form is
a constant multiple of the metric. Isometric immersions with codimension two into
Euclidean space with this property were classified by Freitas [194].

The result on minimal hypersurfaces contained in Exercise 3.4 is due to Pinl-
Ziller [295]. Extensions to higher codimension, as well as other results concerning
the existence of asymptotic directions of minimal submanifolds, have been given by
Dajczer-Rodŕıguez [125].

The result in Exercise 3.9 was observed in Dajczer-Gromoll [109] and analyzed in
Dajczer-Vlachos [153]. The classification of Einstein hypersurfaces in Euclidean space
given in part (iii) of Exercise 3.11 was obtained by Fialkow [179]; see also Ryan [305].
For a generalization of the Einstein condition for compact Euclidean hypersurfaces see
Vlachos [341]. Exercise 3.12 on the local holonomicity of isometric immersions with
flat normal bundle of Einstein submanifolds into space forms was taken from Dajczer-
Onti-Vlachos [123]. The result in Exercise 3.18 is due to Costa [90].

3.8 Exercises

Exercise 3.1. Show that the following maps are minimal immersions.
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(i) The Clifford torus f : S1 × · · · × S1 → S2n−1 ⊂ R2n of dimension n given by

f(t1, . . . , tn) =
1√
n

(cos
√
n t1, sin

√
n t1, . . . , cos

√
n tn, sin

√
n tn).

(ii) The generalized helicoid f : Rn+1 → Rn+k+1, n ≥ k, defined by

f(s, t1, . . . , tn) = sbv0 +
k∑
i=1

tiei(s) +
n−k∑
i=1

tk+iv2k+i,

where v0, . . . , vn+k is the canonical basis of Rn+k+1,

ei(s) = cos(ais)v2i−1 + sin(ais)v2i

and b 6= 0 6= ai ∈ R, i = 1, . . . , k.

(iii) The spherical ruled minimal surfaces fα : R2 → S3, α > 0, given by

fα(x, y) = (cosαx cos y, sinαx cos y, cosx sin y, sinx sin y).

Exercise 3.2.

(i) Let f1 : Mn1
1 → Sm1 ⊂ Rm1+1, . . . , fk+1 : M

nk+1

k+1 → Smk+1 ⊂ Rmk+1+1 be minimal
isometric immersions. Set Mn = Mn1

1 × · · · ×M
nk+1

k+1 . Define f : Mn → Rm+k+1,

m =
∑k+1

j=1 mj, by

f(x1, . . . , xk+1) = (
√
n1/n f1(x1), . . . ,

√
nk+1/n fk+1(xk+1))

for all (x1, . . . , xk+1) ∈Mn. Show that f induces an immersion into Sm+k, which
is a minimal isometric immersion if Mn is endowed with the induced metric.

(ii) Conclude that if Mn = Sn1 × · · · × Snk+1 and f : Mn → Rn+k+1 is defined by

f(x1, . . . , xk+1) = (
√
n1/n i1(x1), . . . ,

√
nk+1/n ik+1(xk+1)),

where ij : Snj → Rnj+1, 1 ≤ j ≤ k+1, are inclusions, then f induces an immersion
into Sn+k, which is a minimal isometric immersion if Mn is endowed with the
induced metric, called a generalized Clifford torus .

Exercise 3.3. Prove directly that the map f given by (3.3) induces a minimal iso-
metric embedding of the real projective plane of constant sectional curvature 1/3 into
S4. Show that its normal curvature tensor satisfies

〈R⊥(X, Y )ξ, η〉 = 2/3

where X, Y and ξ, η are positively oriented orthonormal tangent and normal frames,
respectively.
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Exercise 3.4. A nonzero vector X ∈ TxM is called asymptotic for an isometric
immersion f : Mn → M̃n+1 if its second fundamental form satisfies α(X,X) = 0. Show
that f is minimal at x ∈Mn if and only if there are n orthogonal asymptotic tangent
vectors at x.

Hint: Use induction on the dimension n.

Exercise 3.5. Let Mn be a Riemannian manifold and let h ∈ C∞(M).

(i) Prove the identity
1

2
∆h2 = h∆h+ ‖gradh‖2.

(ii) Use the identity in part (i) and the divergence theorem to prove Hopf’s theorem,
namely, if Mn is compact and ∆h ≥ 0, then h is constant.

Exercise 3.6. Let f : Mn → Rm be an isometric immersion. Show that

1

2
∆‖f‖2 = 〈f,∆f〉+ n. (3.21)

Use (3.21) and Hopf’s theorem in part (ii) of Exercise 3.5 to give another proof of
Corollary 3.7.

Exercise 3.7. Let ∆ and ∆Sm denote the Laplacians on Rm+1 and Sm, respectively.
For ϕ ∈ C∞(Rm+1) show that

∆ϕ|Sm = ∆Sm(ϕ|Sm) +
∂2ϕ

∂r2

∣∣∣
Sm

+m
∂ϕ

∂r

∣∣∣
Sm

where ∂/∂r denotes radial derivative.

Exercise 3.8. Let f : Mn → M̃m
c be a minimal isometric immersion. Prove that

Γc(x) = ∆(x)

at any x ∈Mn.

Exercise 3.9. Let f : Mn → Qm
c be a minimal simply connected submanifold with

constant index of relative nullity ν = n − 2. For any constant θ ∈ [0, π) consider
the tensor field R(θ) ∈ Γ(End(TM)) which is the identity along the relative nullity
distribution ∆ and a rotation through θ on ∆⊥. Prove that the traceless bilinear form
αθ : X(M)× X(M)→ Γ(NfM) defined by

αθ(X, Y ) = α(R(θ)X, Y )

satisfies the Gauss, Codazzi and Ricci equation with respect to the normal connection
of f . Conclude from the Fundamental theorem of submanifolds that there exists a one
parameter associated family fθ : Mn → Qm

c , θ ∈ [0, π), of minimal isometric immersions
with f0 = f .
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Exercise 3.10. Let f : Mn → M̃n+1
c be an isometric immersion. Given x ∈Mn, show

that the following conditions are equivalent:

(i) The sectional curvature K(σ) along any two-plane σ ⊂ TxM satisfies the inequal-
ity K(σ) > c (respectively, K(σ) ≥ c).

(ii) Ric (X) > c (respectively, Ric (X) ≥ c) for any unit vector X ∈ TxM .

Hint: Use equation (3.8).

Exercise 3.11.

(i) Show that any three-dimensional Einstein manifold has constant sectional curva-
ture.

(ii) Show that the Riemannian product Mp
c1
×Mn−p

c2
is an Einstein manifold if and

only if
(p− 1)c1 = (n− p− 1)c2.

(iii) If f : Mn → Rn+1, n ≥ 3, is an isometric immersion of an Einstein manifold,
show that either Mn is flat or f is umbilical (and hence f(M) is an open subset
of Snc ⊂ Rn+1 for some c > 0).

Hint for (iii): Let T ∈ Γ(End(TM)) be given by (3.5). Then T = ρI for some ρ ∈ R.
Use (3.7) to show that the principal curvatures λ1, . . . , λn of f satisfy

λ2
j − rλj + ρ = 0, 1 ≤ j ≤ n

where r = nH. If ρ = 0, conclude that at most one principal curvature does not
vanish. If ρ > 0, show that all principal curvatures coincide. Assuming ρ < 0, reach a
contradiction as follows. Write

λ1 = · · · = λp = ν and λp+1 = · · · = λn = µ

for some 1 ≤ p ≤ n, with µ 6= ν everywhere. Prove that

(p− 1)ν2 + (n− p− 1)ρ = 0,

which implies that p > 1 and

ν2 = −n− p− 1

p− 1
ρ.

Conclude that ν, µ and p are all constant on Mn, and then use the Codazzi equation
to show that both Eν and Eµ are parallel distributions on Mn. Obtain a contradiction
by showing that this implies that the sectional curvature K(X, Y ) of Mn along a plane
spanned by unit vectors X ∈ Eν and Y ∈ Eµ vanishes, whereas the Gauss equation
gives

K(X, Y ) = νµ = ρ < 0.
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Exercise 3.12. If Mn is an Einstein manifold, show that any isometric immersion
f : Mn → Qm

c with flat normal bundle and a constant number of pairwise distinct
principal normals η1, . . . ηs at any point is locally holonomic.

Hint: By assumption, the endomorphism T ∈ Γ(End(TM)) associated with the Ricci
tensor of Mn satisfies T = λI for some λ ∈ R. Show that the vector fields

η̂i = ηi −
n

2
H, 1 ≤ i ≤ s,

satisfy

‖η̂i‖2 =
n2

4
‖H‖2 + c(n− 1)− λ. (3.22)

Assume that there exist i 6= j 6= ` 6= i and µ ∈ C∞(M) such that

ηi − ηj = µ(ηi − η`).

Derive from this equation that

(1− µ)η̂i = η̂j − µη̂`

and hence

‖η̂i‖2 − 2µ‖η̂i‖2 + µ2‖η̂i‖2 = ‖η̂j‖2 − 2µ〈η̂j, η̂`〉+ µ2‖η̂`‖2.

Now use the preceding equation and the fact that all the vectors η̂j have the same
length by (3.22) to obtain

〈η̂j, η̂`〉 = ‖η̂j‖‖η̂`‖,

and hence η̂j = η̂`, a contradiction. Conclude that the vector fields ηi − ηj and ηi − η`
are linearly independent for all i 6= j 6= ` 6= i, and then use part (ii) of Exercise 1.39
and Exercise 1.40.

Exercise 3.13. Show that, in Theorem 3.11, neither the assumption on the codimen-
sion of f nor that on µc can be weakened.

Exercise 3.14. Let g : L` → Mn and f : Mn → M̃m
c be isometric immersions such

that f ◦ g is totally geodesic. Show that Ric (g∗X) ≤ c for all X ∈ TL, with equality
if and only if g∗X belongs to the relative nullity subspace of f .

Exercise 3.15. Give a proof of Corollary 3.15.

Exercise 3.16. Give an example of an Einstein manifold Mn, n = 2m, that satisfies
condition (3.20) and admits a minimal isometric immersion into Sn+1

c .
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Exercise 3.17. Let f : M3 → M̃3+p
c be an isometric immersion. Given x ∈ M3,

suppose that H(x) = 0 and R⊥(x) = 0. Show that there exists an orthonormal basis
Y1, Y2, Y3 of TxM such that the sectional curvature of M3 satisfies

K(Yi, Yj) ≤ c, 1 ≤ i, j ≤ 3.

Hint: If X1, X2, X3 is an orthonormal basis that diagonalizes the second fundamental
form, take Y1 to be the asymptotic vector

Y1 =
1√
3

(X1 +X2 +X3).

Exercise 3.18. Let f : Mn → M̃n+2
c , n ≥ 3, be an isometric immersion of an Einstein

manifold with Ric = ρ〈 , 〉, ρ ≥ (n − 1)c. Prove that f has flat normal bundle at a
point x ∈Mn unless ρ = (n− 1)c and all sectional curvatures at x are equal to c.

Hint: Let x ∈Mn. Use (3.6) to show that H(x) 6= 0 unless ρ = (n−1)c and f is totally
geodesic at x. Since in the latter case f has trivially flat normal bundle at x, one can
assume that H(x) 6= 0 if ρ = (n− 1)c. Set H = ‖H(x)‖ and let ξ1 = (1/H)H, ξ2 be an
orthonormal basis of NfM(x). Show that

A2
1 − nHA1 + A2

2 = αI (3.23)

where Aj = Aξj , j = 1, 2, and α = (n− 1)c− ρ ≤ 0. Write the preceding equation as

(A1 − (nH/2)I)2 + A2
2 = ((nH/2)2 + α)I.

Use (3.23) to show that all eigenvalues of A1 are positive if ρ > (n−1)c, and nonnegative
if ρ = (n − 1)c. Deduce from this that A1 − (nH/2)I does not admit any pair of
eigenvalues of the form ±µ with µ 6= 0 if ρ > (n − 1)c, and conclude in this case
that [A1, A2] = 0 from the following elementary fact observed in [90]: If V is a vector
space of dimension n ≥ 3 endowed with an inner product and A,B are symmetric
endomorphisms of V such that

A2 +B2 = rI, r ≥ 0,

and A does not admit any pair of eigenvalues of the form ±µ with µ 6= 0, then
[A,B] = 0.

Suppose now that ρ = (n−1)c and that [A1, A2] 6= 0. Deduce from the preceding
fact that A1 − (nH/2)I admits a pair of eigenvalues of the form ±µ with µ 6= 0, and
hence that A1 admits two eigenvalues λ1, λ2 such that λ1 + λ2 = nH. Using this and
(3.23) with α = 0, show that if e1 and e2 are eigenvectors of A1 correspondent to λ1

and λ2, respectively, then {e1, e2}⊥ belongs to the relative nullity subspace of f at x.
Finally, conclude from this that all sectional curvatures of Mn at x are equal to c.



Chapter 4

Local rigidity of submanifolds

One of the basic problems in submanifold theory addressed in this book concerns
the uniqueness of isometric immersions f : Mn → Qm

c of Riemannian manifolds into
space forms. Clearly, since g = τ ◦ f is also an isometric immersion for any isometry
τ : Qm

c → Qm
c , uniqueness should be understood to be up to congruences by isometries

of the ambient space.
The usual terminology for uniqueness of an isometric immersion in the above

sense is isometric rigidity. Therefore, an isometric immersion f : Mn → Qm
c is said to

be isometrically rigid, or simply rigid, if any other isometric immersion g : Mn → Qm
c

is congruent to it by an isometry of the ambient space Qm
c . Otherwise, the isometric

immersion f is said to be isometrically deformable, or simply deformable.

Since an isometric immersion f : Mn → Qm
c is given in local coordinates by a

solution of the nonlinear system of partial differential equations (1.2), and this system
is overdetermined if m < (1/2)n(n + 1), it is natural to expect f to be rigid under
“generic” conditions if m is small when compared with the bound in the preceding
inequality.

The main results of this chapter, namely, Allendoerfer and do Carmo-Dajczer
theorems, provide sufficient algebraic conditions on the second fundamental form of
an isometric immersion f : Mn → Qm

c in order to assure that f is isometrically rigid.
Both results are of local nature and in large part consequences of the Gauss equation.
Roughly speaking, they say that an isometric immersion in very low codimension is
rigid unless its second fundamental form is “degenerate” enough.

Let f, f̃ : Mn → Qm
c be isometric immersions with second fundamental forms α

and α̃, respectively. According to the Fundamental theorem of submanifolds, to show
that f and f̃ are congruent by an isometry of the ambient space, it suffices to prove
the assertions in the following three steps:
(i) There is a linear isometry T : NfM(x)→ Nf̃M(x) at each x ∈Mn satisfying

α̃(x) = T ◦ α(x).

(ii) These isometries form a smooth vector bundle isometry T : NfM → Nf̃M .
(iii) The vector bundle isometry T is parallel, that is, it preserves the normal connec-
tions.

103
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A linear isometry that satisfies the condition in (i) is unique whenever the first
normal space N1(x) of f at x coincides with NfM(x). If this condition is satisfied
at every point x ∈ Mn, then one obtains condition (ii) almost for free. Moreover,
condition (iii) is also automatically satisfied under this assumption.

Allendoerfer’s theorem uses the type number of α, whereas the algebraic condi-
tions on α in do Carmo-Dajczer’s theorem are given in terms of its s-nullities. Both
results are proved using the theory of flat bilinear forms, which play a central role in
this book. In particular, the main tool in the proof of do Carmo-Dajczer’s theorem
is a lemma on symmetric flat bilinear forms whose most general version is stated and
proved in the appendix to this chapter. A counterexample showing that it cannot be
improved with respect to the dimension of the target vector space is given.

4.1 Flat bilinear forms

Let W p,q be a real vector space of dimension p+q endowed with an inner product
〈 , 〉 of signature (p, q). Let V and U be finite dimensional vector spaces. A bilinear
form β : V × U → W p,q is said to be flat if

〈β(X, Y ), β(Z, T )〉 − 〈β(X,T ), β(Z, Y )〉 = 0

for all X,Z ∈ V and Y, T ∈ U . It is called null if

〈β(X, Y ), β(Z, T )〉 = 0

for all X,Z ∈ V and Y, T ∈ U . Thus a null bilinear form is necessarily flat.
To see how the above concepts are related to the rigidity problem for submanifolds

of space forms, consider a pair f, f̃ : Mn → Qn+p
c of isometric immersions with second

fundamental forms α and α̃, respectively. For each x ∈Mn, set

W (x) = NfM(x)⊕Nf̃M(x)

and endow W (x) with the inner product of signature (p, p) given by

〈〈(ξ, ξ̃), (η, η̃)〉〉W (x) = 〈ξ, η〉NfM(x) − 〈ξ̃, η̃〉Nf̃M(x).

Define a bilinear form β(x) : TxM × TxM → W (x)s by

β(x) = α(x)⊕ α̃(x). (4.1)

Then the next basic result leads to an approach to carry out step (i) in the introduction
of this chapter. It also shows that, once it has been overcome, then one automatically
obtains step (ii) provided that the first normal space N1(x) of f at x coincides with
NfM(x) for any x ∈Mn.

Proposition 4.1. The following assertions hold:
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(i) The bilinear form β(x) is flat.

(ii) There exists a linear isometry T : NfM(x)→ Nf̃M(x) such that α̃(x) = T ◦α(x)
if and only if β(x) is null. Moreover, such a T is unique if N1(x) = NfM(x).

(iii) If β(x) is null and N1(x) = NfM(x) for all x ∈ Mn, then there exists a smooth
vector bundle isometry T : NfM → Nf̃M such that α̃ = T ◦ α.

Proof: The assertion in (i) follows immediately from the Gauss equations for f and f̃ .
As for the first assertion in (ii), that β(x) is null is equivalent to

〈α(X, Y ), α(Z, V )〉 = 〈α̃(X, Y ), α̃(Z, V )〉

for all X, Y, Z, V ∈ TxM . Clearly, this is satisfied if and only if there is a linear isometry
T : N1(x)→ Ñ1(x) such that α̃(x) = T ◦α(x). It now suffices to define T on N⊥1 (x) as
any linear isometry onto Ñ⊥1 (x). The last assertion in (ii) is clear.

To prove assertion (iii), for each x ∈ Mn let T : NfM(x) → Nf̃M(x) be the
unique linear isometry given by (ii) such that α̃(x) = T ◦α(x). To show that these linear
isometries fit together to yield a smooth vector bundle isometry T : NfM → Nf̃M such
that α̃ = T ◦ α, at any x ∈ Mn take Xi, Yi ∈ TxM , 1 ≤ i ≤ p, such that the vectors
α(Xi, Yi) form a basis of NfM(x), and extend them to smooth vector fields Xi, Yi in a
small neighborhood of x where they still span the normal space at every point. Then
the vector fields

Tα(Xi, Yi) = α̃(Xi, Yi), 1 ≤ i ≤ p,

are also smooth, thus showing smoothness of T . �

The theory developed in this section will provide, in particular, conditions under
which a flat bilinear form is null.

4.1.1 Indefinite inner products

It is a standard fact that any vector space W p,q admits an orthonormal basis
Y1, . . . , Yp+q, that is, a basis such that

〈Yk, Yl〉 = ±δkl, 1 ≤ k, l ≤ p+ q,

and q is the number of indices k ∈ {1, . . . , p+ q} with 〈Yk, Yk〉 = −1.

Lesser known is the fact, implied by Proposition 4.2 below, that W p,q also admits
a pseudo-orthonormal basis

X1, . . . , Xr, X̄1, . . . , X̄r, Y1, . . . , Yp+q−2r, (4.2)

for which we have:

(i) 〈Xi, Xj〉 = 〈X̄i, X̄j〉 = 〈Xi, Yk〉 = 〈X̄i, Yk〉 = 0,
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(ii) 〈Xi, X̄j〉 = δij,

(iii) 〈Yk, Yl〉 = ±δkl,

for all 1 ≤ i, j ≤ r, 1 ≤ k, l ≤ p+ q − 2r.

A vector subspace U ⊂ W p,q is said to be degenerate if the restriction of the inner
product of W p,q to U is degenerate, that is, if the subspace E = U ∩ U⊥ is nontrivial.
Otherwise, the subspace U is called nondegenerate. We denote by rank U the rank of
the induced inner product on U , defined as

rank U = dimU − dimE.

If rank U = 0, that is, U = E, then U is called isotropic. The same terminology is used
for a vector X ∈ W p,q such that 〈X,X〉 = 0. Thus, if q = 1, then isotropic vectors are
the same as light-like vectors, and we shall continue to use the latter terminology in
this case.

We also recall that if U is any subspace of W p,q, then

dimU + dimU⊥ = p+ q and U⊥⊥ = U.

Proposition 4.2. Let U ⊂ W p,q be a subspace, and set E = U ∩ U⊥. Let R ⊂ U be
a subspace such that U is the direct sum U = E ⊕ R. Let X1, . . . , Xr be a basis of E.
Then there exist isotropic pairwise orthogonal vectors X̄1, . . . , X̄r in R⊥ such that

〈Xi, X̄j〉 = δij, 1 ≤ i, j ≤ r.

Consequently, X1, . . . , Xr can be extended to a pseudo-orthonormal basis of W p,q as in
(4.2). In particular, r ≤ min{p, q}.

Proof: If r = 0, the result is trivially true. By induction, suppose that it holds for
r − 1. Define

U0 = span{X1, . . . , Xr−1} ⊕R.

Notice that Xr /∈ U0 and that Xr ∈ U⊥0 . Also,

E0 = U0 ∩ U⊥0 = span{X1, . . . , Xr−1}.

Since Xr /∈ U0 = U⊥⊥0 , there exists Y ∈ U⊥0 such that 〈Xr, Y 〉 6= 0. It follows easily
that there exists X̄r ∈ P = span{Xr, Y } such that 〈X̄r, X̄r〉 = 0 and 〈Xr, X̄r〉 = 1. In
particular, the plane P is Lorentzian.

Since P ⊂ U⊥0 , we have P⊥ ⊃ U⊥⊥0 = U0. Therefore, by applying the induction
hypothesis to U0 ⊂ P⊥, we obtain vectors X̄1, . . . , X̄r−1 in P⊥ orthogonal to R such
that

〈X̄i, X̄j〉 = 0 and 〈Xi, X̄j〉 = δij, 1 ≤ i, j ≤ r − 1.

It is clear that X̄1, . . . , X̄r have the desired properties. Moreover, setting

E = span{X1, . . . , Xr}, Ê = span{X̄1, . . . , X̄r},
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Z+
i =

1√
2

(Xi + X̄i) and Z−i =
1√
2

(Xi − X̄i),

then Z+
1 , . . . , Z

+
r , Z

−
1 , . . . , Z

−
r is an orthonormal basis of E ⊕ Ê, the induced inner

product being positive definite on V + = span{Z+
1 , . . . , Z

+
r } and negative definite on

V − = span{Z−1 , . . . , Z−r }. This implies the last statement and shows that the subspace

E⊕ Ê is nondegenerate. To conclude the proof, take Y1, . . . , Yp+q−2r as an orthonormal

basis of (E⊕ Ê)⊥. �

Corollary 4.3. Let U ⊂ W p,q be a degenerate subspace, and set E = U ∩ U⊥ 6= {0}.
Then there exists a direct sum decomposition

W p,q = E⊕ Ê⊕ V (4.3)

such that U ⊂ E⊕V, the subspace Ê is isotropic and V is nondegenerate with V⊥ = E⊕Ê.

4.1.2 Basic properties of flat bilinear forms

For a bilinear form β : V ×U → W between finite dimensional real vector spaces,
denote

ρ = max{dimBZ(U) : Z ∈ V },

where BZ = β(Z, ) : U → W . We call X ∈ V a (left) regular element of β if

dimBX(U) = ρ,

and denote by RE(β) the subset of V of regular elements of β.

Proposition 4.4. The subset RE(β) is open and dense in V .

Proof: Take X ∈ RE(β) and choose Z1, . . . , Zρ ∈ U such that

BX(U) = span{β(X,Zj) : 1 ≤ j ≤ ρ}.

Then RE(β) is open, for the vectors

β(X + Y, Zj), 1 ≤ j ≤ ρ,

are also linearly independent for any Y in a neighborhood of 0 ∈ V .
We now prove that RE(β) is dense. Given any Y ∈ V and t ∈ R,

β(Y + tX, Zj) = β(Y, Zj) + tβ(X,Zj).

Since the vectors β(Y + tX, Zj) are linearly independent except for a finite number of
values of t, there exists a sequence {tk} converging to 0 so that Y + tkX ∈ RE(β). �

Proposition 4.5. Let β : V × U → W p,q be a flat bilinear form. If BX(U) is an
isotropic subspace of W p,q for any X in a dense subset of V , then β is null.
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Proof: Under the assumption, by continuity we have

〈β(X, Y ), β(X,Z)〉 = 0

for all X ∈ V and Y, Z ∈ U . Using this and flatness of β we obtain

0 = 〈β(X + T, Y ), β(X + T, Z)〉 = 2〈β(X, Y ), β(T, Z)〉

for all X,T ∈ V and Y, Z ∈ U . �

The following is a basic property of flat bilinear forms that will be extensively
used.

Proposition 4.6. Let β : V × U → W p,q be a bilinear form. If X ∈ RE(β), then

S(β|V×kerBX ) ⊂ BX(U). (4.4)

Moreover, if β is flat then

S(β|V×kerBX ) ⊂ BX(U) ∩BX(U)⊥. (4.5)

Proof: Given Y ∈ V , there exists ε > 0 such that

dim β(X + tY, U) = ρ = dimBX(U)

if |t| < ε. Now, if n ∈ ker BX , then

β(X + tY, n) = tβ(Y, n).

Thus
β(Y, n) ∈ β(X + tY, U) for t 6= 0.

Since the vector subspaces β(X + tY, U) vary continuously with t ∈ R, this also holds
for t = 0, that is, β(Y, n) ∈ BX(U). Hence β(V, n) ⊂ BX(U).

Assume further that β is flat. Then

〈β(Y, n), β(X,Z)〉 = 〈β(Y, Z), β(X,n)〉 = 0

for all Y ∈ V and Z ∈ U . Thus β(V, n) ⊂ BX(U)⊥. �

Corollary 4.7. Let β : V × U → W p,q be a bilinear form and let X ∈ RE(β). Then

S(β) = S(β|V×S)

if S ⊂ U is a subspace such that U = kerBX ⊕ S.

We conclude this section with the following fact, which will be used in the proof
of the main result of Chapter 12.
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Proposition 4.8. Let β : V × Un → W p,q be a bilinear form. Then

1 ≤ ρ ≤ dim S(β)− k + 1 and dimN(β|Lk×U) ≥ n− k(ρ− 1)− 1,

where Lk ⊂ V is a subspace of minimal dimension k such that

S(β|Lk×U) = S(β).

Proof: Suppose first that Lk is spanned by X1, . . . , Xk ∈ RE(β). Then

S(β) = S(β|Lk×U) = BX1(U) + · · ·+BXk(U),

and the assumption on Lk implies that

BXj(U) 6⊂ BX1(U) + · · ·+BXj−1
(U)

for any 1 ≤ j ≤ k. This already implies the first inequality. For the second, notice
that

N(β|Lk×U) = kerBX1 ∩ · · · ∩ kerBXk

and that
BXi(kerBXj) ⊂ BXj(U), 1 ≤ i 6= j ≤ k,

by (4.4). Moreover, again by the assumption on Lk we must have

dimBXi(kerBXj) ≤ dimBXj(U)− 1

= ρ− 1.

Therefore

dimN(β|Lk×U) ≥ n− ρ− (k − 1)(ρ− 1)

= n− k(ρ− 1)− 1.

To obtain the proof for an arbitrary Lk as in the statement, observe that there exists
a sequence Lkj → Lk such that each Lkj still satisfies the assumption and is spanned by
vectors in RE(β). �

4.1.3 The Chern-Kuiper inequalities

Let f : Mn → M̃m be an isometric immersion. Given x ∈Mn, the subspace

Γ(x) = {X ∈ TxM : 〈R(X, Y )Z,W 〉 = 〈R̃(f∗X, f∗Y )f∗Z, f∗W 〉 for all Y, Z,W ∈ TxM}

is called the nullity subspace, and its dimension µ(x) the index of nullity of f at x. If
M̃m = M̃m

c , then Γ(x) coincides with the intrinsic subspace Γc(x) defined in (3.10).

The first application of the theory of flat bilinear forms is to establish the following
inequalities relating µ(x) and the index of relative nullity ν(x).
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Theorem 4.9. If f : Mn → M̃n+p is an isometric immersion and x ∈Mn, then

ν(x) ≤ µ(x) ≤ ν(x) + p. (4.6)

Proof: The first inequality is obvious, for ∆(x) ⊂ Γ(x) by the Gauss equation. In order
to prove the second, let L denote the orthogonal complement of ∆(x) in Γ(x). Given
X ∈ L, since X 6∈ ∆(x) there exists Y ∈ TxM such that α(X, Y ) 6= 0. Using that
X ∈ Γ(x), the Gauss equation yields

〈α(X,X), α(Y, Y )〉 = ‖α(X, Y )‖2,

hence α(X,X) 6= 0. Thus β = α|L×L satisfies N(β) = 0. Then the lemma below for
not necessarily symmetric bilinear forms and target vector spaces with positive definite
inner products gives

p ≥ dimL = dim Γ(x)− dim ∆(x)

as we wished. �

Lemma 4.10. Let β : V × V → W be a flat bilinear form with respect to a positive
definite inner product. Then

dimN(β) ≥ dimV − dimW.

Proof: Take any X ∈ RE(β). We assert that N(β) = kerBX . Clearly, N(β) ⊂ kerBX .
On the other hand, if n ∈ kerBX , then for any Y ∈ V we see from (4.5) that

β(Y, n) ∈ BX(V ) ∩BX(V )⊥ = {0},

since the inner product on W is positive definite. Thus n ∈ N(β), that is, kerBX ⊂
N(β). Therefore

dimN(β) = dim kerBX

= dimV − dimBX(V )

≥ dimV − dimW

as we wished. �

Proposition 4.11. Let Mn be a compact Riemannian manifold such that µ(x) ≥ `
for some integer ` ≥ 1 and any x ∈Mn. If f : Mn → Rn+p is an isometric immersion,
then p ≥ `.

Proof: Since Mn is compact, by Corollary 1.6 there exists a point x0 ∈ Mn such that
ν(x0) = 0. Then the second inequality in (4.6) gives p ≥ µ(x0) ≥ `. �

Corollary 4.12. Let Mn be a compact flat Riemannian manifold. If f : Mn → Rn+p

is an isometric immersion, then p ≥ n.
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4.1.4 The Beez-Killing theorem

The next application of the theory of flat bilinear forms is a proof of the following
rigidity result for hypersurfaces of dimension n ≥ 3.

Theorem 4.13. A hypersurface f : Mn → Qn+1
c with type number τ ≥ 3 at any point

is rigid.

Proof: Let f̃ : Mn → Qn+1
c be another isometric immersion. Denote by α and α̃ the

second fundamental forms of f and f̃ , respectively. Defining

β(x) = α(x)⊕ α̃(x)

at x ∈Mn as in 4.1, the assumption that τ(x) ≥ 3 for all x ∈Mn yields

dimN(β(x)) ≤ n− 3

for all x ∈ Mn. Hence the version below of Lemma 4.10 for the case of symmetric
flat bilinear forms into Lorentzian target vector spaces implies that β(x) is null for all
x ∈Mn. Then Proposition 4.1 implies that α̃ = φ ◦α for one of the two vector bundle
isometries φ : NfM → Nf̃M , and the proof is completed by Theorem 1.11. �

Lemma 4.14. Let β : V n × V n → W p,1, 1 ≤ p ≤ n − 2, be a flat symmetric bilinear
form such that S(β) = W p,1. Then

dimN(β) ≥ dimV − dimW.

Proof: If there exists X ∈ RE(β) such that the subspace BX(V ) is nondegenerate,
then, as in the proof of Lemma 4.10, Proposition 4.6 implies that N(β) = kerBX , and
the conclusion follows.

Therefore we can assume that BX(V ) is degenerate for all X ∈ RE(β). Given
X ∈ RE(β), denote

U(X) = BX(V ) ∩BX(V )⊥.

Since W is Lorentzian, then U(X) is a one-dimensional isotropic subspace of W , and
from (4.5) we have β(V, n) ⊂ U(X) for all n ∈ kerBX . By the assumption that
S(β) = W p,1, there exist Z, T ∈ V such that β(Z, T ) 6∈ U(X)⊥. Set

L = kerBX ∩ kerBZ .

Since the linear map BZ from kerBX to W is U(X)-valued,

dimL ≥ dim kerBX − 1.

If n ∈ L, it follows from the flatness of β that

〈β(Y, n), β(Z, T )〉 = 〈β(Y, T ), β(Z, n)〉 = 0
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for all Y ∈ V . This, together with the fact that β(Y, n) ∈ U(X), gives β(Y, n) = 0.
Hence L = N(β), and

dimN(β) ≥ dim kerBX − 1

= dimV − dimBX(V )− 1.

Finally, observe that dimBX(V ) + 1 ≤ dimW , for BX(V ) is degenerate. �

The following consequence of the proof of Theorem 4.13 will be the starting point
in the Sbrana-Cartan classification of isometrically deformable hypersurfaces of space
forms in Chapter 11.

Corollary 4.15. Let f, f̃ : Mn → Qn+1
c be nowhere congruent isometric immersions

of a Riemannian manifold with no points of constant sectional curvature c. Then f
and f̃ carry a common relative nullity distribution of rank n− 2.

Proof: Since f and f̃ are nowhere congruent, the proof of Theorem 4.13 shows that the
bilinear form β therein cannot be null on any open subset of Mn. On the other hand,
β must be null on any open subset where dimN(β) ≤ n− 3 by Lemma 4.14. Therefore
dimN(β) ≥ n− 2 on Mn. Since N(β) is contained in the relative nullity subspaces of
both f and f̃ , and these cannot have dimension greater than n− 2 by the assumption
that Mn has no points with constant sectional curvature c, the conclusion follows. �

4.2 Uniqueness of the normal connection

As discussed in the introduction to this chapter, to prove that two isometric
immersions f, f̃ : Mn → Qm

c are congruent by means of the Fundamental theorem
of submanifolds, one must first construct a vector bundle isometry T : NfM → Nf̃M
satisfying α̃ = T ◦α, and then prove that T also preserves the normal connections. The
following useful result states that this last condition is automatically satisfied whenever
the first normal spaces of f coincide everywhere with its normal spaces.

Lemma 4.16. Let f, f̃ : Mn → Qm
c be isometric immersions and let φ : NfM → Nf̃M

be a vector bundle isomorphism that preserves the metrics and the second fundamental
forms. If N1(x) = NfM(x) for every x ∈Mn, then φ preserves the normal connections.

Proof: Define
∇̂Xξ = φ−1(∇̃⊥X(φξ))

for X ∈ X(M) and ξ ∈ Γ(NfM), where ∇̃⊥ is the normal connection of f̃ . It is easy

to see that ∇̂ defines a compatible connection on NfM . Moreover,

(∇̂Xα)(Y, Z) = φ−1((∇̃⊥X α̃)(Y, Z))

= φ−1((∇̃⊥Y α̃)(X,Z))

= (∇̂Y α)(X,Z).

Then Proposition 4.17 below implies that ∇̂ = ∇⊥, and hence ∇̃⊥X(φξ) = φ(∇⊥Xξ). �
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Proposition 4.17. Let f : Mn → Qm
c be an isometric immersion. Suppose that

N1(x) = NfM(x) for every x ∈ Mn. Then the normal connection ∇⊥ is the only
connection in NfM that is compatible with the metric and satisfies the Codazzi equation.

Proof: Let ∇̂ be a connection on NfM that is compatible with the metric and satisfies
the Codazzi equation, that is,

(∇̂Xα)(Y, Z) = (∇̂Y α)(X,Z).

For each X ∈ X(M), define a map K(X) : Γ(NfM)→ Γ(NfM) by

K(X)ξ = ∇⊥Xξ − ∇̂Xξ.

Clearly, K(X) is linear over C∞(M). Also, K(X) is skew-symmetric, because

〈K(X)ξ, η〉 = 〈∇⊥Xξ − ∇̂Xξ, η〉
= X〈ξ, η〉 − 〈ξ,∇⊥Xη〉 −X〈ξ, η〉+ 〈ξ, ∇̂Xη〉
= −〈ξ,K(X)η〉.

Since both ∇⊥ and ∇̂ satisfy the Codazzi equation, we obtain

K(X)α(Y, Z) = K(Y )α(X,Z).

Denote
〈K(X1)α(X2, X3), α(X4, X5)〉 = (X1, X2, X3, X4, X5).

Then

(X1, X2, X3, X4, X5) = −(X1, X4, X5, X2, X3) = −(X5, X4, X1, X2, X3)

= (X5, X2, X3, X4, X1) = (X3, X2, X5, X4, X1)

= −(X3, X4, X1, X2, X5) = −(X4, X3, X1, X2, X5)

= (X4, X2, X5, X3, X1) = (X2, X4, X5, X3, X1)

= −(X2, X3, X1, X4, X5) = −(X1, X2, X3, X4, X5),

hence (X1, X2, X3, X4, X5) = 0. Since N1 = NfM , this means that K(X) = 0 for all

X ∈ X(M), that is, ∇⊥ = ∇̂. �

4.3 The Allendoerfer rigidity result

The Allendoerfer rigidity theorem given in this section is a natural extension to
arbitrary codimension of the Beez-Killing result for hypersurfaces.

Let α, α̃ : V n × V n → Up be bilinear forms between finite dimensional vector
spaces with positive definite inner products. Endow W = Up ⊕ Up with the inner
product of signature (p, p) given by

〈〈(ξ, ξ̃), (η, η̃)〉〉 = 〈ξ, η〉 − 〈ξ̃, η̃〉
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and define a bilinear form β : V n × V n → W p,p by

β = α⊕ α̃.

Proposition 4.18. Assume that the left (or right) type number τ of α satisfies τ ≥ 3.
If β is flat, then there exists a linear isometry T : Up → Up such that α̃ = T ◦ α.

Proof: By Proposition 4.1, it suffices to show that β is null. For any X ∈ V , denote

U(X) = BX(V ) ∩BX(V )⊥.

Set
k = min{dimU(X) : X ∈ RE(β)}

and define
REo(β) = {X ∈ RE(β) : dimU(X) = k}.

We claim that REo(β) is dense in V . First observe that Y0 ∈ REo(β) if and
only if Y0 ∈ RE(β) and there exist Z1, . . . , Zρ−k, with ρ = dimBY0(V ), such that
det(cij) 6= 0, where

cij = 〈〈β(Y0, Zi), β(Y0, Zj)〉〉, 1 ≤ i, j ≤ ρ− k.

Let X ∈ RE(β) be arbitrary and take Y0 ∈ REo(β). Now choose ε > 0 such that

Xt = X + tY0 ∈ RE(β) for |t| < ε

and set
bij(t) = 〈〈β(Xt, Zi), β(Xt, Zj)〉〉.

Then

bij(t) = bij(0) + t(〈〈β(X,Zi), β(Y0, Zj)〉〉+ 〈〈β(Y0, Zi), β(X,Zj)〉〉) + t2cij.

Thus det(bij(t)) is a polynomial in t of degree 2(ρ − k) having det(cij) as its leading
coefficient. Hence it has only a finite number of zeros. Consequently, there exists
0 < ε′ ≤ ε such that

det(bij(t)) 6= 0 for 0 < |t| < ε′,

thus showing that REo(β) is dense in RE(β), and the claim follows.
To conclude that β is null, it suffices to show that k = p. For, if this is the case,

then from U(X) ⊂ BX(V ), U(X) ⊂ BX(V )⊥ and

dimBX(V ) + dimBX(V )⊥ = dimW p,p = 2p

we obtain BX(V ) = BX(V )⊥. Since REo(β) is dense in V , the assertion then follows
from Proposition 4.5.

Suppose k ≤ p− 1. Let ξ1, . . . , ξp be a basis of Up and set

〈AξjX, Y 〉 = 〈α(X, Y ), ξj〉.
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Since τ ≥ 3, there exist vectors X1, X2, X3 ∈ V such that

dim span{AξjXi, 1 ≤ i ≤ 3, 1 ≤ j ≤ p} = 3p.

Furthermore, we may assume that X1, X2, X3 ∈ REo(β). The subspace

S = {Z ∈ V : α(Xi, Z) = 0, 1 ≤ i ≤ 3}

satisfies
S = (span{AξjXi, 1 ≤ i ≤ 3, 1 ≤ j ≤ p})⊥.

Therefore
dimS = n− 3p. (4.7)

From
dimBX1(V ) ≤ 2p− dimU(X1)

we obtain
dim kerBX1 ≥ n− 2p+ k.

By Proposition 4.6,
BX2(kerBX1) ⊂ U(X1).

Therefore the linear transformation

B̄X2 = BX2|kerBX1
: kerBX1 → U(X1)

satisfies
ker B̄X2 = kerBX1 ∩ kerBX2

and

dim ker B̄X2 ≥ dim kerBX1 − dimU(X1)

≥ n− 2p.

Similarly, the linear transformation

B̄X3 = BX3|ker B̄X2
: ker B̄X2 → U(X1) ∩ U(X2)

satisfies
ker B̄X3 = ∩3

j=1 kerBXj

and

dim ker B̄X3 ≥ dim ker B̄X2 − k
≥ n− 2p− k
≥ n− 3p+ 1,

which contradicts (4.7), since ∩3
j=1 kerBXj ⊂ S. �
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Theorem 4.19. An isometric immersion f : Mn → Qn+p
c with type number τ ≥ 3 at

any point is rigid.

Proof: Given an isometric immersion f̃ : Mn → Qn+p
c , define β(x) : TxM×TxM → W p,p

at x ∈ Mn as in (4.1). By Proposition 4.18, β(x) is null. That τ ≥ 3 implies that
N1(x) = NfM(x) for any x ∈Mn. Hence, by part (iii) of Proposition 4.1, there exists
a smooth vector bundle isometry T : NfM → Nf̃M such that

α̃ = T ◦ α.

Moreover, by Lemma 4.16 it preserves the normal connections. This completes the
necessary steps to conclude that f and f̃ are congruent by means of Theorem 1.10. �

4.4 Rigidity in low codimension

In this section we prove a rigidity result for submanifolds with low codimension
that is also an extension of the Beez-Killing theorem for hypersurfaces.

4.4.1 The Main Lemma

The proof of Theorem 4.23 below relies on the next lemma, which is the most
important result on flat symmetric bilinear forms. It has Lemma 4.14 as a special case.

Lemma 4.20. (Main Lemma) Let β : V n× V n → W p,q be a symmetric flat bilinear
form such that S(β) = W p,q. If p ≤ 5 and p+ q < n, then

dimN(β) ≥ dimV − dimW.

It is shown at the end of this section that the above result is not true if p, q ≥ 6.
See also Exercise 4.4 for a version of the lemma for not necessarily symmetric flat
bilinear forms with 1 ≤ p = q ≤ 2.

When applying the Main Lemma, the following fact is often useful.

Lemma 4.21. Let β : V n× V n → W p,q be a nonzero flat bilinear form such that S(β)
is degenerate, and let

W p,q = E⊕ Ê⊕ V

be a direct sum decomposition as in (4.3) with

E = S(β) ∩ S(β)⊥ 6= 0 and S(β) ⊂ E⊕ V.

Decompose accordingly
β = β1 + β2

with S(β1) = E and S(β2) ⊂ V. Then β2 is flat and S(β2) is nondegenerate.
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Proof: That β2 = β − β1 is flat follows from the fact that β1 is null. Now let

η =
∑
j

β2(Xj, Yj) ∈ S(β2) ∩ S(β2)⊥.

From
〈β2(Z, T ), η〉 = 0

for all Z, T ∈ V , we obtain

0 =
∑
j

〈β2(Z, T ), β2(Xj, Yj)〉 =
∑
j

〈β(Z, T ), β(Xj, Yj)〉,

which implies that ∑
j

β(Xj, Yj) ∈ E.

Therefore η = 0, and hence S(β2) is nondegenerate. �

In view of the last result, the Main Lemma 4.20 for p, q ≥ 1 can also be stated
as follows.

Lemma 4.22. (Main Lemma bis) Let β : V n × V n → W p,q, with 1 ≤ p ≤ 5 and
p + q < n, be a symmetric flat bilinear form. If dimN(β) ≤ n− p− q − 1, then there
is an orthogonal decomposition

W p,q = W `,`
1 ⊕W

p−`,q−`
2 , 1 ≤ ` ≤ p,

such that the Wj-components βj of β satisfy:

(i) β1 is nonzero and null.

(ii) β2 is flat and dimN(β2) ≥ dimV − dimW2.

The proof of the Main Lemma is increasingly difficult for increasing values of
min{p, q}. We leave its proof in full generality for appendix (Sect. 4.5).

4.4.2 The do Carmo-Dajczer rigidity result

We are now in a position to state and prove the following rigidity theorem.

Theorem 4.23. An isometric immersion f : Mn → Qn+p
c , p ≤ 5, whose s-nullities

satisfy νs ≤ n− 2s− 1 for all 1 ≤ s ≤ p at any point is rigid.

Proof: Given another isometric immersion f̃ : Mn → Qn+p
c , define W p,p(x) and β(x) at

x ∈Mn as in (4.1). To prove that β(x) is null, let L ⊂ W p,p(x) be the vector subspace

L = S(β(x)) ∩ S(β(x))⊥.
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It suffices to show that L has dimension p. Assume otherwise that s = p− dimL ≥ 1.
The orthogonal projections P1 : W p,p(x)→ NfM(x) and P2 : W p,p(x)→ Nf̃M(x) map
L isomorphically onto P1(L) and P2(L), respectively. Hence we have the orthogonal
splittings

NfM(x) = U ⊕ U⊥ and Nf̃M(x) = Ũ ⊕ Ũ⊥

where U⊥ = P1(L) and Ũ⊥ = P2(L). By Lemma 4.21, the component β̂(x) of β(x)
in U ⊕ Ũ is flat and nondegenerate. Since N(β̂(x)) ⊂ N(πU ◦ α(x)), the Main Lemma
4.20 gives

dimN(πU ◦ α(x)) ≥ dimN(β̂(x))

≥ n− dimU ⊕ Ũ
> n− (2s+ 1).

This is a contradiction with the hypothesis on νs and proves that β(x) is null.
The assumption that ν1 ≤ n − 3 everywhere implies that N1(x) = NfM(x) for

any point x ∈Mn. Now the proof is completed in exactly the same way as in the proof
of Theorem 4.19. �

Notice that the assumption on νs for 2 ≤ p ≤ 5 is much weaker than the assump-
tion on τ in Theorem 4.19, because τ ≥ 3 implies that νs ≤ n − 3s. Moreover, the
assumption for s = p implies that n ≥ 2p + 1, whereas that in Theorem 4.19 forces
n ≥ 3p.

4.4.3 A counterexample

The following counterexample shows that the Main Lemma is false for target
vector spaces W p,p with p ≥ 6. Hence the proof of Theorem 4.23 does not extend to
isometric immersions f : Mn → Qn+p

c with codimension p ≥ 6.

Proposition 4.24. For a given r ∈ N with r ≥ 3, set 2p = r(r+ 1). Then there exists
a flat symmetric bilinear form β : V n × V n → W p,p such that S(β) = W p,p and

dimN(β) ≥ n− 2p−
(
r

3

)
.

Proof: Denote

L = {1, 2, . . . , r}, I = (L× L)/S(2) and J = (L× L× L)/S(3),

where S(n) is the group of permutations of n elements. Then

#I = p and #J = m =

(
r + 2

3

)
.

For a ∈ L, k = [(i, j)] ∈ I and s = [(u, v, w)] ∈ J , we say that a ∈ s if a ∈ {u, v, w},
and define ∗ : L× I → J by

a ∗ k = [(a, i, j)].
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Then either a 6∈ s or there is a unique k ∈ I such that a ∗ k = s.
Let V n = Rr ⊕ Rm, and take bases Y1, . . . , Yr and {Zs : s ∈ J} of Rr and Rm,

respectively. Let
B1 = {er : r ∈ I} and B2 = {êr : r ∈ I}

be two bases of Rp, and consider on W p,p = R2p the inner product of signature (p, p)
given by

〈er, es〉 = 〈êr, ês〉 = 0 and 〈er, ês〉 = δrs for all r, s ∈ I.

Thus the ordered union of the bases B1 and B2 is a pseudo-orthonormal basis of W p,p.
Define a symmetric bilinear map β as follows:

β(Zs, Zr) = 0, r, s ∈ J,
β(Yi, Yj) = ê[(i,j)], i, j ∈ L,
β(Yi, Zs) = 0, if i 6∈ s,
β(Yi, Zs) = ek, if i ∈ s and i ∗ k = s.

To verify that N(β) = 0, take X ∈ N(β) given by

X =
r∑
j=1

ajYj +
∑
s∈J

bsZs.

Then
ai = 〈β(X, Yi), e[(i,i)])〉 = 0 and bs = 〈β(X, Yu), ê[(v,w)]〉 = 0

for s = [(u, v, w)]. To see that β is flat, just observe that

〈β(Yi, Yj), β(Yt, Zs)〉 = δs[(i,j,t)]

is symmetric in i, j, t ∈ L. �

4.5 Appendix 1: Proof of the Main Lemma

In this appendix we prove the following slightly stronger version of the Main
Lemma that will be needed in Chapter 12.

Lemma 4.25. Let β : V n × V n → W p,q be a flat symmetric bilinear form. If p ≤ 5
and S(β) is nondegenerate, then

dimN(β) ≥ n− dim ImBY − dim S(β|kerBY ×V )

for any Y ∈ RE(β).

Proof: First we observe that the subset of non-asymptotic regular elements

RE∗(β) = {X ∈ RE(β) : β(X,X) 6= 0}
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is open and dense in V . Given X ∈ RE∗(β) and X = X1, . . . , Xr ∈ V such that

BX(V ) = span{BX(Xj), 1 ≤ j ≤ r},

where r = dimBX(V ), by Proposition 4.6 and the symmetry of β we have

S(β) = span{β(Xi, Xj), 1 ≤ i ≤ j ≤ r}. (4.8)

We may assume that

U(X) = BX(V ) ∩BX(V )⊥ 6= 0

for any X ∈ RE(β). If otherwise, then N = kerBX satisfies N ⊂ N(β) by Proposi-
tion 4.6. Since N(β) ⊂ N , we conclude that

dimN(β) = dimN ≥ n− p− q,

as we wished.
Set τ = min{dim U(X) : X ∈ RE(β)}. We claim that the subset

R(β) = {X ∈ RE(β) : dim U(X) = τ}

is open and dense in V . In fact, if Y ∈ R(β) then there exist Z1, . . . , Zr−τ such that
r = dimBY (V ) and det(cij) 6= 0, where

cij = 〈β(Y, Zi), β(Y, Zj)〉.

Thus
det(〈β(X,Zi), β(X,Zj)〉) 6= 0

for X in a neighborhood of Y in RE(β). Since τ is the minimum, then R(β) is open.
Let X ∈ RE(β) be arbitrary and let Y ∈ R(β). Take ε > 0 such that

Xt = X + tY ∈ RE(β) for |t| < ε.

Set
bij(t) = 〈β(Xt, Zi), β(Xt, Zj)〉.

Then det(bij(t)) is a polynomial in t of degree 2(r − τ) having det(cij) as its leading
coefficient. Thus it has a finite number of zeros. Hence there exists 0 < ε′ ≤ ε such
that

det(bij(t)) 6= 0 for 0 < |t| < ε′,

showing that R(β) is dense.
We fix X ∈ R(β) for the remainder of the proof. Setting U = U(X), there is an

isotropic subspace Û with dimU = dim Û and a decomposition

W p,q = U⊕ Û⊕ V (4.9)
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where BX(V ) ⊂ U⊕ V and V⊥ = U⊕ Û. Let

β̂ : V n × V n → Û

be the Û-component of β according to the decomposition (4.9). Set B̂X = β̂(X, ) and

κ = dim B̂Y (V ) for Y ∈ RE(β̂). Since S(β) is nondegenerate, for any vector ξ ∈ U

there are vectors Y, Z ∈ V such that

0 6= 〈ξ, β(Y, Z)〉 = 〈ξ, β̂(Y, Z)〉.

It follows that
S(β̂) = Û. (4.10)

Fact: Given Y ∈ R(β) ∩RE(β̂), let ρ ≥ 0 be defined by

2ρ = rank (BY (V ) ∩ U)⊕ B̂Y (V ).

Then ρ ≤ p− τ and dimBY (N) ≤ p− κ.

Let us prove the fact. Set
V n = L⊕ L̃,

where L̃ = ker B̂Y . Then BY (L̃) ⊂ U⊕ V and

BY (L) ∩ (U⊕ V) = 0.

Hence dimBY (L) = κ. The matrix of inner products of the elements of a basis of
BY (V ) associated with the decomposition

BY (V ) = B0
Y ⊕BY (L)⊕B1

Y , (4.11)

where
B0
Y = BY (L̃) ∩ U = BY (V ) ∩ U

and BY (L̃) = B0
Y ⊕B1

Y , has the form 0 A 0
At B C
0 Ct D

 .
Since rank A = ρ, we obtain

rank BY (V ) ≥ 2ρ+ rank B1
Y .

From B1
Y ⊂ U⊕ V and B1

Y ∩ U = 0 it follows that

rank B1
Y ≥ dimB1

Y − p+ τ.

Therefore
dimBY (V )− τ = rank BY (V ) ≥ 2ρ+ dimB1

Y − p+ τ.
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From (4.11) we obtain

2ρ ≤ dimBY (V ) ∩ U + κ+ p− 2τ. (4.12)

Clearly, ρ ≥ dimBY (V ) ∩ U + κ− τ . It follows using (4.12) that

dimBY (V ) ∩ U ≤ p− κ. (4.13)

Therefore the first statement follows from (4.12) and (4.13), whereas the second one
follows from Proposition 4.6 and (4.13).

Fix Y1 ∈ R(β) ∩RE∗(β̂). Then (4.8) and (4.10) yield

κ(κ+ 1) ≥ 2τ (4.14)

and
Û = span{β̂(Yi, Yj) : 1 ≤ i ≤ j ≤ κ}, (4.15)

where
B̂Y1(V ) = span{B̂Y1(Yj) : 1 ≤ j ≤ κ}.

Given any n ∈ N , we see from (4.5) that β(n, Z) ∈ U for all Z ∈ V . It follows from
(4.15) that

β(n, Z) = 0 if and only if 〈β(n, Z), β̂(Yi, Yj)〉 = 0, 1 ≤ i, j ≤ κ. (4.16)

We conclude the proof arguing for the most difficult case p = 5, the cases p ≤ 4
being similar. First suppose that 4 ≤ τ ≤ 5, and assume that κ = 3, which from (4.14)
is its lowest possible value. Thus there exist vectors Y1, Y2, Y3 ∈ R(β) ∩ RE∗(β̂) such
that

Û = span{β̂(Yi, Yj) : 1 ≤ i ≤ j ≤ 3}. (4.17)

Using (4.8) again, we choose Y2 so that in (4.17) we may drop the element corresponding
to (i, j) = (3, 3) when τ = 5, and when τ = 4 the ones for which (i, j) = (2, 3), (3, 3).
Hence

Û = B̂Y1(V ) + B̂Y2(V ).

Consider the linear map B1 = BY1 |N : N → BY1(N). From the above fact, we have
dimBYi(N) ≤ 3. Hence N1 = ker B1 satisfies

dimN1 ≥ dimN − 3. (4.18)

Flatness gives 〈β(N1, V ), B̂Y1(V )〉 = 0. In particular,

rank BY2(N1)⊕ B̂Y1(V ) = 0.

Now we use the fact again. If τ = 5, then ρ = 0 and

rank BY2(N1)⊕ Û = 0. (4.19)
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If τ = 4, then ρ ≤ 1. Thus
rank BY2(N1)⊕ Û ≤ 2. (4.20)

We see from (4.19) and (4.20) that dimBY2(N1) ≤ 1 for 4 ≤ τ ≤ 5. Set

B2 = BY2|N1 : N1 → BY2(N1).

It follows using (4.18) and dimN ≥ n− q − 5 + τ that N2 = ker B2 satisfies

dimN2 ≥ dimN1 − dimBY2(N1)

≥ dimN − 4

≥ n− q − 5.

It follows from (4.16) that N2 ⊂ N(β). In particular, dimN(β) ≥ n − q − 5 as we
wished. Finally, one can easily check that the estimate for dimN2 is even larger if
κ > 3, and this concludes the proof for 4 ≤ τ ≤ 5.

The argument for the remaining cases is similar and easier unless τ = 3, and
Y1, Y2 ∈ R(β) ∩RE∗(β̂) are such that

Û = span{β̂(Yi, Yj) : 1 ≤ i, j ≤ 2}

and BY1(N) = U, since in this case our estimate would fail. But this case cannot occur.
In fact, in this situation it is not difficult to see that we would have U(Y1) ⊂ BX(V )
and dim U ∩ U(Y1) = 1. It is now easy to see that U + U(Y1) + U(Y2) would be an
isotropic space of dimension 6, which, of course, is not possible unless p ≥ 6. �

4.6 Notes

Flat bilinear forms were introduced by Moore [255] as an outgrowth of Cartan’s
theory of exteriorly orthogonal quadratic forms, which correspond to symmetric flat
bilinear forms with respect to positive definite inner products. In particular, the sym-
metric version of Lemma 4.10 is due to Cartan [67]. The version for flat bilinear forms
with respect to Lorentzian inner products in Lemma 4.14 was proved in [255]. Its
general form in Lemma 4.20 is due to do Carmo-Dajczer [59]. The slightly stronger
version in the appendix was taken from Dajczer-Florit [99]. The counterexample in
Section 4.4.3 was obtained by Dajczer-Florit [101].

The relation between the intrinsic index of nullity and the extrinsic index of rel-
ative nullity given by Theorem 4.9 is due to Chern-Kuiper [86], where they introduced
these fundamental concepts in the theory of submanifolds. In fact, it was Otsuki [284]
who first gave a proof of the Chern-Kuiper inequality for all dimensions.

The classical rigidity result for Euclidean hypersurfaces, namely, Theorem 4.13,
was first stated by Beez [31] but correctly proved by Killing [227] several years later.
The case of nonflat ambient spaces is due to Eisenhart [165].

Allendoerfer’s rigidity result was given in [16]. Theorem 4.23 is due to do Carmo-
Dajczer [59], where the theory of flat bilinear forms was first applied to the rigidity
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problem and the Main Lemma was proved. It is not known whether the statement of
Theorem 4.23 is still true for codimension p ≥ 6. For another related result see Silva
[316].

Allendoerfer [16] has shown that for type number τ ≥ 4 the Codazzi and Ricci
equations of a submanifold are a consequence of the Gauss equation, thus reducing the
existence problem to a purely algebraic one. More precisely, he showed that in order
to have a (necessarily unique) isometric immersion of a simply connected Riemannian
manifold Mn into Qn+p

c , p ≤ n/4, it is sufficient to construct a “second fundamental
form” with type number τ ≥ 4 satisfying the Gauss equation. An alternative proof
of this result was given by Chern-Osserman [87]. The case of hypersurfaces was done
much earlier by Thomas [329].

The argument in the proof of Proposition 4.17 that asserts uniqueness of the
normal connection was taken from Nomizu [270]. It has been seen in appendix of
Chap. 1 that this result is a special case of the uniqueness of the connections Dk in
the kth-normal spaces in the classical Burstin-Mayer-Allendoerfer theory.

Berger-Bryant-Griffiths [32] made use of the theory of exterior systems combined
with methods of algebraic geometry to obtain rigidity results for local isometric em-
beddings f : Mn → Rn+p with low codimension p. In particular, they proved that if
f : Mn → Rn+p is an isometric embedding of an open neighborhood of a point at which
the second fundamental form belongs to a certain dense Zariski open subset of the set
of all such forms, then f

(i) depends only on constants if p ≤ 1
2
(n− 1)(n− 2),

(ii) depends formally on functions of at most s variables if p = 1
2
(n− 1)(n− 2) + s,

(iii) is unique up to rigid motions if the conditions p ≤ n, n ≥ 8, or
p ≤ 3, if n = 4

p ≤ 4, if n = 5, 6

p ≤ 6, if n = 7, 8

are satisfied.
Gromov [202] observed that “counting parameters” tells us that an isometric

immersion f : Mn → Rm with m < (1/2)n(n + 1) should be rigid, locally or globally,
“unless there is some miraculous identity between high derivatives of the (extrinsic)
curvatures of Mn.”

Exercises 4.3, 4.4 and 4.9 were taken from do Carmo-Dajczer [55], Dajczer [93],
and Barbosa-Dajczer-Jorge [26], respectively.

4.7 Exercises

Exercise 4.1. Let f : Mn → M̃n+1 be a hypersurface with type number τ ≥ 2
at x ∈ Mn. Prove that the relative nullity subspace ∆(x) coincides with the nullity
subspace Γ(x).
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Exercise 4.2. Let f : Mn → Qn+1
c be an isometric immersion with type number

τ ≥ 3 at any point of Mn. Show that for every isometry φ of Mn there is an isometry
T of Qn+1

c such that f ◦ φ = T ◦ f .

Exercise 4.3. Assume that a Riemannian manifold Mn of dimension n ≥ 4 admits
isometric immersions f : Mn → Qn+1

c and g : Mn → Qn+p
c̃ with c̃ > c and p ≤ n − 3.

Show that at any point x ∈Mn there exist a principal curvature λ of f with multiplicity
greater than or equal to n− p and a principal normal η ∈ NgM(x) such that Eη = Eλ.

Hint: Let G : Mn → Qn+p+1
c be given by G = i ◦ g, where i : Qn+p

c̃ → Qn+p+1
c is an

umbilical inclusion. Note that the second fundamental form of G is

αG(X, Y ) = i∗αg(X, Y ) +
√
c̃− c〈X, Y 〉 ζ

for all X, Y ∈ TxM , where ζ is one of the unit vectors normal to i. For x ∈Mn, define

W = NfM(x)⊕NGM(x)

and endow W with the Lorentzian inner product 〈〈 , 〉〉 defined by

〈〈ξ + ν, ξ̃ + ν̃〉〉 = −〈ξ, ξ̃〉+ 〈ν, ν̃〉

for all ξ, ξ̃ ∈ NfM(x) and ν, ν̃ ∈ NGM(x). Now define β : TxM × TxM → W by

β(X, Y ) = αf (X, Y ) + αG(X, Y ).

Show that β is flat and that N(β) = {0}. Then conclude from Lemmas 4.10 and
4.14 that S(β) must be degenerate, that is, there must exist a nonzero light-like vector
e ∈ S(β) ∩ S(β)⊥. Thus one can write S(β) = V ⊕ span{e}, with V space-like, and if
ē ∈ V ⊥ is a light-like vector such that 〈ē, e〉 = 1, then the bilinear form

β̃ = β − 〈β, ē〉e

takes values in V and is also flat. Conclude from Lemma 4.10 that

dimN(β̃) ≥ n− dimV = n− p.

Now decompose e as
e = N + cosϕζ + sinϕi∗δ,

where N ∈ NfM(x) and δ ∈ NgM(x) are unit vectors. Show that

λ =

√
c̃− c

cosϕ

is a principal curvature of f and that

η =
√
c̃− c tanϕ δ

is a principal normal of g at x such that Eλ = N(β̃) = Eη.
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Exercise 4.4. Let β : V × V → W p,p be a (not necessarily symmetric) flat bilinear
form such that S(β) = W p,p, where dimV > p and 1 ≤ p ≤ 2. Prove that

dimN(β) ≥ dimV − dimW. (4.21)

Hint: If for some X ∈ RE(β) the subspace BX(V ) is nondegenerate, then

U(X) = BX(V ) ∩BX(V )⊥ = {0}.

Conclude that N(β) = ker(BX), and hence that (4.21) holds. If BX(V ) is degenerate
for all X ∈ RE(β), assuming that they are all null subspaces, then

〈β(X, Y ), β(X,Z)〉 = 0

for all Y, Z ∈ V and X ∈ RE(β). Show that this implies that β is null and obtain a
contradiction with the assumption S(β) = W p,p.

The only remaining case is that in which p = 2 and there exists X ∈ RE(β) such that
BX(V ) is not null. Prove that dimU(X) = 1 in the following way: if dimU(X) = 2,
obtain a contradiction from the fact that

dimBX(V ) + dimBX(V )⊥ = 4.

Therefore 2 ≤ dimBX(V ) ≤ 3, which implies dim kerBX ≥ dimV−3. Since S(β) = W ,
there exist vectors u, v ∈ V such that 〈β(u, v), ξ〉 6= 0, where ξ spans U(X). Now define
B : kerBX → U(X) by Bu(n) = β(u, n). Using that β is flat, show that kerB ⊂ N(β)
and conclude that

dimN(β) ≥ dim kerB

≥ dim kerBX − dimU(X)

≥ dimV − 4

= dimV − dimW.

Exercise 4.5. Let f : Mn → Qm
c be a 1-regular isometric immersion. Then the

Riemannian connection induced on the first normal bundleN1 by the normal connection
is unique, in the sense that any other connection on NfM compatible with the metric
and that satisfies the Codazzi equation induces on N1 the same Riemannian connection.

Exercise 4.6. Let f : Mn → Qm
c be a 1-regular isometric immersion. Endow N1

with the induced metric and normal connection still denoted by ∇⊥. Then ∇⊥ is the
only connection on N1 that is compatible with the metric and satisfies

πN1 [(∇⊥Xα)(Y, Z)] = πN1 [(∇⊥Y α)(X,Z)]

where πN1 : NfM → N1 denotes the orthogonal projection.
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Exercise 4.7. Let f : Mn → Qn+p
c be an isometric immersion whose type number

satisfies τ(x) ≥ 2 at any x ∈Mn. If g : Mn → Qn+q
c is any other isometric immersion,

show that dimN g
1 (x) ≥ p for any x ∈ Mn. Conclude that there exists no isometric

immersion of Mn into Qn+q
c if q < p.

Hint: Use an argument similar to that in the proof of Theorem 4.19.

Exercise 4.8. Let f : Mn → Rn+p be a minimal isometric immersion. Assume that
there exists x0 ∈Mn such that

νs(x0) ≤ n− q − 2s− 1

for all 1 ≤ s ≤ p ≤ 5. Prove that any minimal isometric immersion g : Mn → Rn+p+q

is congruent to i ◦ f , where i : Rn+p → Rn+p+q is the inclusion.

Hint: Let U ⊂Mn be an open connected neighborhood of x0 where νs ≤ n− q−2s−1
for 1 ≤ s ≤ p. By Lemma 4.22, αg decomposes as αg = αf + γ on U . Moreover, since
γ is flat and traceless then γ = 0. It follows that g reduces codimension to p. Thus g|U
is congruent to i ◦ f |U , and the statement follows using that minimal submanifolds of
Euclidean space are real analytic.

Exercise 4.9. Let f : Mn → Qn+p
c , 2 ≤ p ≤ n− 2, be a minimal substantial isometric

immersion. Assume that there is a point x ∈ Mn such that µc(x) ≤ n − p − 2. Show
that Mn cannot be isometrically immersed in Qn+1

c .

Hint: Assume that there exists an isometric immersion g : Mn → Qn+1
c . Making use of

Exercise 3.8 and Lemma 4.14, prove that g has to be minimal. Now use Theorem 3.11
to obtain a contradiction.

Exercise 4.10. Let f : Mn → Qn+2
c be a minimal isometric immersion. Assume

that there is a point x ∈ Mn such that ν1(x) ≤ n − 3 and ν(x) ≤ n − p − 3, where
2 ≤ p ≤ min{n− 3, 5}. Show that any minimal isometric immersion g : Mn → Qn+p

c is
congruent to i ◦ f , where i : Qn+2

c → Qn+p
c is a totally geodesic inclusion.

Hint: Use Lemmas 3.12 and 4.22.
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Constant curvature submanifolds

The theory of flat bilinear forms has been developed in the previous chapter
aiming at its applications to rigidity aspects of submanifolds in space forms. However,
the initial motivation of Cartan’s theory of exteriorly orthogonal quadratic forms, which
are equivalent to symmetric flat bilinear forms with respect to positive definite inner
products, was to study isometric immersions f : Mn

c → Qn+p
c . Indeed, the second

fundamental form of such an isometric immersion at any point x ∈ Mn
c provides the

basic example of a symmetric bilinear form which is flat with respect to the positive
definite inner product on NfM(x). In fact, Cartan also used his theory to study
isometric immersions f : Mn

c → Qn+p
c̃ with c < c̃, just by looking at the composition

f̃ = i ◦ f of f with an umbilical inclusion of Qn+p
c̃ into Qn+p+1

c .
Flat bilinear forms with respect to inner products that are not necessarily positive

definite were introduced by J. D. Moore. Although his primary interest was to study
the dual case of isometric immersions f : Mn

c → Qn+p
c̃ with c > c̃, he also realized the

wide range of applications of the theory.
The first section of this chapter provides an account of some basic results on

isometric immersions f : Mn
c → Qn+p

c̃ that can be derived from the theory of flat
bilinear forms. As a consequence, in the following sections it is shown that, under
appropriate conditions, such submanifolds are holonomic. This allows to show that they
are in correspondence with solutions of certain systems of nonlinear partial differential
equations.

The last section is devoted to Nikolayevsky’s theorem on the nonexistence of
an isometric immersion into Q2n−1

c̃ of a complete non-simply connected Riemannian
manifold of dimension n and constant curvature c < min{0, c̃}.

5.1 The structure of the second fundamental form

A first application of the theory of flat bilinear forms to the study of isometric
immersions between manifolds of constant sectional curvature is shown in the following
basic result.

128
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Theorem 5.1. Let f : Mn
c → Qn+p

c̃ be an isometric immersion. Then the following
assertions hold:

(i) If c < c̃ then p ≥ n− 1.

(ii) If c > c̃ and p ≤ n−2 then for any x ∈Mn there exists a unit vector ζ ∈ NfM(x)
and a flat bilinear form

γ(x) : TxM × TxM → {ζ}⊥ ⊂ NfM(x)

such that the second fundamental form of f at x is given by

α(x) = γ(x) +
√
c− c̃ 〈 , 〉ζ.

Proof: Let f̃ = i ◦ f , where i : Qn+p
c̃ → Qn+p+1

c,s is an umbilical inclusion, with s = 0
or s = 1 depending on whether c < c̃ or c > c̃, respectively. Then, at any x ∈ Mn

c ,
the second fundamental form α̃(x) of f̃ is flat with respect to the inner product on
Nf̃M(x), which is either positive definite or Lorentzian according to whether c < c̃ or
c > c̃, respectively. We have

α̃(x) = i∗α(x) +
√
|c̃− c| 〈 , 〉ξ (5.1)

where ξ is one of the unit vectors normal to i at f(x). In particular,

〈α̃(x), ξ〉 =
√
|c̃− c| 〈ξ, ξ〉〈 , 〉 (5.2)

and hence α̃(x) has trivial kernel.
If c < c̃, then Lemma 4.10 yields p+ 1 = dimNf̃M(x) ≥ n, and part (i) follows.

On the other hand, if c > c̃ and p ≤ n−2, then Lemma 4.14 implies that S(α̃(x)) must
be degenerate, that is, there must exist a unit vector ζ ∈ NfM(x) such that

i∗ζ + ξ ∈ S(α̃(x)) ∩ S(α̃(x))⊥.

Hence
0 = 〈α̃(x), i∗ζ + ξ〉 = 〈α(x), ζ〉 −

√
c− c̃ 〈 , 〉.

Then, by the Gauss equation of f , the bilinear form γ(x) : TxM×TxM → {ζ}⊥ given by

γ(x) = α(x)−
√
c− c̃ 〈 , 〉ζ

is flat. �

Let f : Mn
c → Qn+p

c̃ be an isometric immersion with c > c̃. A point x ∈Mn
c where

the second fundamental form of f is given as in part (ii) of Theorem 5.1 is called a
weak-umbilic point for f .

Part (ii) of Theorem 5.1 states that all points of Mn
c are weak-umbilics for an

isometric immersion f : Mn
c → Qn+p

c̃ with c > c̃ and p ≤ n − 2. Notice that at a
weak-umbilic point x ∈ Mn

c the structure of the second fundamental form is that of a
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composition f = f̄ ◦i, where i : Mn
c → Qn+1

c̃ is an umbilical inclusion and f̄ : U → Qn+p
c̃

is an isometric immersion of an open subset U ⊂ Qn+1
c̃ containing i(Mn

c ). The question
of whether any isometric immersion f : Mn

c → Qn+p
c̃ with c > c̃ and p ≤ n − 2 must

actually be such a composition, at least locally, will be considered in Chapter 12.
To determine the structure of the second fundamental form of an isometric im-

mersion f : Mn
c → Qn+p

c̃ , free of weak-umbilic points if c > c̃, with the lowest possible
codimension p = n − 1 allowed by Theorem 5.1, we need the following result on flat
bilinear forms that attain equality in the inequality given in Lemmas 4.10 and 4.14.

Theorem 5.2. Let β : V n × V n → W p be a flat symmetric bilinear form with respect
to an inner product 〈 , 〉 : W ×W → R which is either positive definite or Lorentzian.
Assume that S(β) = W and that

dimN(β) = dimV − dimW.

If 〈 , 〉 is Lorentzian, assume further that there exists a vector e ∈ W such that the
real-valued symmetric bilinear form ϕ = 〈β, e〉 is positive definite. Then there exist
an orthogonal decomposition W = ⊕pi=1Wi into one-dimensional subspaces, uniquely
determined up to permutations, and flat bilinear forms βi : V × V → Wi, 1 ≤ i ≤ p,
such that

β = β1 ⊕ · · · ⊕ βp.

Thus there exists a basis X1, . . . , Xn of V that diagonalizes β, that is,

βr(Xi, Xj) = 0 unless r = i = j

and
Wi = span{β(Xi, Xi)}, 1 ≤ i ≤ p.

Proof: We give the proof only when 〈 , 〉 is positive definite, and refer the reader to part
(b) of Theorem 2 in [255] for the proof in the case of flat bilinear forms with respect to
Lorentzian inner products.

We may assume that dimV = dimW and that N(β) = {0}, for otherwise we can
work with V̂ = V/N(β) and the induced bilinear form β̂ : V̂ × V̂ → W . Then, for any
X ∈ RE(β), the map BX : V → W is an isomorphism. Fix X0 ∈ RE(β) and, for any
Y ∈ V , define a linear endomorphism C(Y ) of W by

C(Y ) = BY ◦B−1
X0
.

We claim that C(Y ) is symmetric and commutes with C(Ỹ ) for all Y, Ỹ ∈ V . Given
Z, Z̃ ∈ W , let X, X̃ ∈ V be such that

BX0X = Z and BX0X̃ = Z̃.
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Then the symmetry of C(Y ) follows from

〈C(Y )Z, Z̃〉 = 〈C(Y )BX0X,BX0X̃〉
= 〈β(Y,X), β(X0, X̃)〉
= 〈β(X0, X), β(Y, X̃)〉
= 〈BX0X,C(Y )BX0X̃〉
= 〈Z,C(Y )Z̃〉.

On the other hand,

〈C(Ỹ )C(Y )Z, Z̃〉 = 〈C(Y )Z,C(Ỹ )Z̃〉
= 〈β(Y, Z), β(Ỹ , Z̃)〉
= 〈β(Ỹ , Z), β(Y, Z̃)〉
= 〈C(Ỹ )Z,C(Y )Z̃〉
= 〈C(Y )C(Ỹ )Z, Z̃〉,

and the claim follows.
From the claim, there exists a common orthonormal diagonalizing basis ξ1, . . . , ξn

of all the C(Y ), Y ∈ V , that is, there are linear functionals µi on W such that

C(Y )ξi = µi(Y )ξi, 1 ≤ i ≤ n, (5.3)

for all Y ∈ V . Set Wi = span{ξi} and let Xi ∈ V be such that

BX0Xi = ξi, 1 ≤ i ≤ n.

Then (5.3) reads as
β(Y,Xi) = µi(Y )ξi

for all Y ∈ V , and hence the Wi-component βi of β satisfies

βi(Y, ) = 〈β(Y, ), ξi〉ξi
= 〈β(Y, ), β(X0, Xi)〉ξi
= 〈β(Y,Xi), β(X0, )〉ξi
= µi(Y )βi(X0, ).

In particular,
βi(X0, ) = aiµi

where ai = βi(X0, X0). Therefore

aiµi(Xj) = βi(X0, Xj)

= 〈β(X0, Xj), ξi〉ξi
= 〈ξj, ξi〉ξi
= δijξi, 1 ≤ i, j ≤ n,
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and
βi = aiµi ⊗ µi, 1 ≤ i ≤ n. (5.4)

Thus βi is flat, β(Xi, Xi) spans Wi and βr(Xi, Xj) = 0 unless r = i = j.
It remains to show that the subspaces W1, . . . ,Wn are uniquely determined up to

permutations. To prove this, it suffices to show that, for any unit-length vector

ξ =
n∑
i=1

biξi

such that 〈β, ξ〉 = ρ ⊗ ρ for some ρ ∈ V ∗, there exists i0 ∈ {1, . . . , n} such that ξ
coincides with ξi0 up to sign. Write ρ =

∑n
i=1 ciµi. By (5.4) we have

n∑
i=1

aibiµi ⊗ µi = 〈β, ξ〉

= ρ⊗ ρ

=
n∑

i,j=1

cicjµi ⊗ µj,

hence cicj = 0 for 1 ≤ i 6= j ≤ n. This implies that ci = 0 for all but one value of
i ∈ {1, . . . , n}, say, i = i0. Thus also bi = 0 for i 6= i0, that is, ξ = ±ξi0 , as we wished.

�

The following result is an immediate consequence of Theorem 5.2.

Proposition 5.3. Let f : Mn
c → Q2n

c be an isometric immersion. Then, at any point
x ∈Mn

c where ν(x) = 0, there exists a unique, up to signs, basis X1, . . . , Xn of TxM of
unit-length vectors and a unique orthogonal basis η1, . . . , ηn of NfM(x) such that the
second fundamental form α at x satisfies

α(Xi, Xj) = δijηi, 1 ≤ i, j ≤ n. (5.5)

Moreover, the basis X1, . . . , Xn is also orthogonal if and only if f has flat normal bundle
at x, in which case η1, . . . , ηn are the principal normals of f at x.

Remark 5.4. (i) By the Lorentzian case of Theorem 5.2, the statement of Proposi-
tion 5.3 remains true if the ambient space Q2n

c is replaced by a Lorentzian space form
Q2n
c,1, under the additional assumptions that the first normal space N1(x) of f at x

coincides with the whole normal space NfM(x), and that there exists a normal vector
ξ ∈ NfM(x) such that the shape operator Aξ is positive definite. Notice that, since
ν(x) = 0, from Lemmas 4.10 and 4.14 it follows that N1(x) does not coincide with
NfM(x) only if it is a degenerate subspace of NfM(x).

(ii) It was shown by Cartan [67] that the statement of Theorem 5.2, except for the last
assertion, is also true for a symmetric bilinear form β : V n×V n → W p that is flat with
respect to a positive definite inner product 〈 , 〉 : W ×W → R if n− dimN(β) ≤ 3 and
p is arbitrary.
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Theorem 5.5. Let f : Mn
c → Q2n−1

c̃ , c 6= c̃, be an isometric immersion and let
x ∈ Mn

c . If c > c̃, assume that x is not a weak-umbilic point for f . Then f has flat
normal bundle at x.

Proof: As in the proof of Theorem 5.1, consider the composition f̃ = i ◦ f of f with an
umbilical inclusion i : Q2n−1

c̃ → Q2n
c,s, with s = 0 or s = 1 depending on whether c < c̃

or c > c̃, respectively. As already observed in that proof, for any x ∈ Mn
c the second

fundamental form α̃(x) of f̃ at x is flat with respect to the inner product on Nf̃M(x),
which is either positive definite or Lorentzian, depending on whether c < c̃ or c > c̃,
respectively. Moreover, equation (5.2) implies that N(α̃(x)) = {0}, and that the extra
assumption of Theorem 5.2 in the Lorentzian case is satisfied.

If c < c̃, it follows from N(α̃(x)) = {0} and Lemma 4.10 that dim S(α̃(x)) ≥ n,
and hence that S(α̃(x)) = Nf̃M(x).

If c > c̃, to conclude that dim S(α̃(x)) ≥ n, and hence that S(α̃(x)) = Nf̃M(x),
from Lemma 4.10, Lemma 4.14 and the fact that N(α̃(x)) = {0}, we have to show that
S(α̃(x)) cannot be a degenerate subspace of Nf̃M(x). But, arguing as in the proof of
Theorem 5.1, in that case we would conclude that the second fundamental form α(x) of
f would be given as in part (ii) of that result, which has been ruled out by assumption.

It now follows from Theorem 5.2 that there exists a basis X1, . . . , Xn of TxM that
diagonalizes α̃(x). In particular, this basis diagonalizes

〈α̃(x), ξ〉 =
√
|c̃− c| 〈ξ, ξ〉〈 , 〉,

where ξ is one of the unit vectors normal to i at f(x). Therefore the vectors X1, . . . , Xn

must be orthogonal, and since the basis also diagonalizes α(x) by (5.1), we conclude
from Proposition 1.24 that the normal curvature tensor of f vanishes at x. �

5.2 Principal coordinates

The next result shows that isometric immersions f : Mn
c → Qn+p

c with flat normal
bundle and vanishing index of relative nullity are always locally holonomic, and provides
conditions under which they are globally holonomic. An isometric immersion f : Mn →
Qn+p
c with flat normal bundle is said to be holonomic (or globally holonomic) if Mn

carries global orthogonal coordinates (u1, . . . , un) such that the coordinate vector fields
are everywhere eigenvectors of all shape operators of f .

Proposition 5.6. Let f : Mn
c → Qn+p

c be an isometric immersion with flat normal
bundle and vanishing index of relative nullity. Then, for each x0 ∈ Mn

c , there exists a
diffeomorphism ψ : U → W from an open subset U ⊂ Rn onto an open neighborhood
W ⊂Mn

c of x0 such that the following assertions hold:

(i) The tangent frame ‖η1‖ψ∗∂/∂u1, . . . , ‖ηn‖ψ∗∂/∂un is orthonormal and principal,
where η1, . . . , ηn are the principal normal vector fields of f .
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(ii) The diffeomorphism ψ is an isometry with respect to the standard metric on U
and the metric on W given by the third fundamental form III. Thus III is a flat
metric on W .

Moreover, if Mn
c is complete and there exists δ > 0 such that ‖ηi‖ > δ, 1 ≤ i ≤ n, then

the following assertions are true:

(a) There is a global diffeomorphism ψ : Rn → M̂n
c onto the universal covering M̂n

c

of Mn
c such that (i) and (ii) above hold for f̂ = f ◦ π, where π : M̂n

c →Mn
c is the

covering map. In particular, c ≤ 0.

(b) The metric III is complete.

Proof: Given x0 ∈ Mn
c , choose an orthonormal tangent frame X1, . . . , Xn on an open

simply connected neighborhood W ⊂Mn
c of x0 such that the second fundamental form

of f is given by
α(Xi, Xj) = δijηi, 1 ≤ i, j ≤ n,

where η1, . . . , ηn are the principal normal vector fields of f on W , which satisfy

〈ηi, ηj〉 = 0, i 6= j,

by the Gauss equation. Write ηi = λiξi, where λi = ‖ηi‖, 1 ≤ i ≤ n. Then the Codazzi
equations (1.41) and (1.42) give

∇XiXj = λiXj(1/λi)Xi, 1 ≤ i 6= j ≤ n,

which implies that
[λ−1
i Xi, λ

−1
j Xj] = 0, 1 ≤ i 6= j ≤ n.

Set Yi = λ−1
i Xi, and let ϕi be the local one-parameter group of diffeomorphisms gen-

erated by Yi on W . Thus, for any x ∈ W , the map t 7→ ϕi(x, t) is the maximal integral
curve of Yi with ϕi(0, x) = x. Now define ψ = ψx0 by

ψ(t1, . . . , tn) = ϕn(· · · (ϕ2(ϕ1(x0, t1), t2), · · · ), tn) (5.6)

for ti, 1 ≤ i ≤ n, small enough. Since [Yi, Yj] = 0, the one-parameter groups ϕi and ϕj
commute. This implies that

ψx0(t+ s) = ϕn(· · · (ϕ2(ϕ1(ψx0(s), t1), t2), · · · ), tn) = ψψx0 (s)(t) (5.7)

whenever both sides are defined, where t = (t1, . . . , tn) and s = (s1, . . . , sn). Thus

ψ∗(s)∂/∂ui =
d

dt
|t=0 ψ(s1, . . . , si + t, . . . , sn)

=
d

dt
|t=0 ϕi(ψ(s), t)

= Yi(ψ(s))
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for any s = (s1, . . . , sn) with si, 1 ≤ i ≤ n, sufficiently small. In particular, ψ is a
diffeomorphism satisfying condition (i) of an open ball centered at the origin onto an
open neighborhood of x0. Since

III(Xi, Xj) =
n∑
k=1

〈α(Xi, Xk), α(Xj, Xk)〉

=
n∑
k=1

〈δikλiξi, δjkλjξj〉

= λiλjδij, (5.8)

it follows that

III(ψ∗∂/∂ui, ψ∗∂/∂uj) = III(λ−1
i Xi, λ

−1
j Xj) = δij.

Thus (ii) holds.
Now suppose that there exists δ > 0 such that ‖ηi‖ > δ for all 1 ≤ i ≤ n. We

show that there is a global diffeomorphism ψ : Rn → Mn
c satisfying conditions (i) and

(ii) if Mn
c is simply connected. First notice that, under the assumption that ‖ηi‖ > δ

for some δ > 0, 1 ≤ i ≤ n, the vector fields Yi, 1 ≤ i ≤ n, have bounded lengths,
hence their one-parameter groups are defined for all t ∈ R. We claim that, in this
case, the map ψ defined by (5.6) on the entire Rn is a covering map. This, together
with the assumption that Mn

c is simply connected, will imply that ψ is actually a
diffeomorphism and conclude the proof.

Given x ∈Mn
c , let B̃2ε(0) be an open ball of radius 2ε centered at the origin such

that ψx|B̃2ε(0) is a diffeomorphism onto B2ε(x) = ψx(B̃2ε(0)). If

ψ−1
x0

(x) = ∪α∈Ax̃α,

then let B̃2ε(x̃α) for each α ∈ A denote the open ball of radius 2ε centered at x̃α. Define
a map φα : B2ε(x)→ B̃2ε(x̃α) by

φα(y) = x̃α + ψ−1
x (y).

Then from (5.7) we obtain

ψx0(φα(y)) = ψx0(x̃α + ψ−1
x (y))

= ψψx0 (x̃α)(ψ
−1
x (y))

= ψx(ψ
−1
x (y))

= y

for all y ∈ B2ε(x). Thus ψx0 is a diffeomorphism from B̃2ε(x̃α) onto B2ε(x) having φα
as its inverse. In particular, this implies that B̃ε(x̃α) and B̃ε(x̃β) are disjoint if α and
β are distinct indices in A. Finally, it remains to check that if ỹ ∈ ψ−1

x0
(Bε(x)) then

ỹ ∈ B̃ε(x̃α) for some α ∈ A. This follows from the fact that

ψx0(ỹ − ψ−1
x (ψx0(ỹ))) = ψψx0 (ỹ)(−ψ−1

x (ψx0(ỹ))) = x.
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For the last equality, observe from (5.7) that for all x, y ∈ Mn
c we have ψx(t) = y if

and only if ψy(−t) = x.
Finally, if there exists δ > 0 such that ‖ηi‖ > δ for all 1 ≤ i ≤ n, then III ≥ δ2〈 , 〉

in view of (5.8). Hence III is complete if so is 〈 , 〉. �

Remark 5.7. The assertions (i) and (a) in Proposition 5.6 remain true if the am-
bient space Qn+p

c is replaced by a Lorentzian space form Qn+p
c,1 , under the additional

assumption that the first normal spaces of f are nondegenerate subspaces of the cor-
responding normal spaces at any point. Indeed, if this condition is satisfied then the
second fundamental form of f is also given by (5.5), hence the arguments in the proofs
of those assertions are still valid.

5.3 The associated systems of PDEs

The existence of principal coordinates for isometric immersions f : Mn
c → Qn+p

c

with flat normal bundle and vanishing index of relative nullity allows to show that
such isometric immersions are in correspondence with solutions of a certain system of
partial differential equations.

Proposition 5.8. Let f : Mn
c → Qn+p

c be an isometric immersion with flat normal
bundle and vanishing index of relative nullity, and let (u1, . . . , un) be a local principal
coordinate system on Mn

c given by Proposition 5.6. The following assertions hold:

(i) There exist orthonormal frames ξ1, . . . , ξn of N1, ξn+1, . . . , ξn+p of N⊥1 , and smooth
functions v1, . . . , vn and hiα, 1 ≤ i ≤ n, n + 1 ≤ α ≤ n + p, such that the in-
duced metric, second fundamental form and normal connection of f are given,
respectively, by

ds2 =
n∑
i=1

v2
i du

2
i ,

α(∂/∂ui, ∂/∂uj) = δijviξi (5.9)

and
∇⊥∂/∂uiξr = hirξi, 1 ≤ r ≤ n+ p, (5.10)

with hij = (1/vi)∂vj/∂ui for 1 ≤ j ≤ n.

(ii) The pair (v, h), with v = (v1, . . . , vn) and h = (hir), satisfies the system of partial
differential equations

(i)
∂vi
∂uj

= hjivj

(ii)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj + cvivj = 0

(iii)
∂hir
∂uj

= hijhjr

(iv)
∂hij
∂uj

+
∂hji
∂ui

+
∑
r

hirhjr = 0,

(5.11)
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where 1 ≤ i, j, k ≤ n, 1 ≤ r ≤ n+ p, i 6= j and k, r 6∈ {i, j}.

Conversely, let the pair (v, h) be a solution of (5.11) on a simply connected open subset
U ⊂ Rn, with vi 6= 0, 1 ≤ i ≤ n, at any point. Then there exists an immersion
f : U → Qn+p

c with flat normal bundle and vanishing index of relative nullity whose
induced metric ds2 =

∑n
i=1 v

2
i du

2
i has constant sectional curvature c and whose second

fundamental form and normal connection are given by (5.9) and (5.10), respectively.

Proof: As shown in the proof of Proposition 5.6, there exist orthonormal frames
X1, . . . , Xn of TM , ξ1, . . . , ξn of N1 and smooth functions λ1, . . . , λn such that

α(Xi, Xj) = δijλiξi, 1 ≤ i 6= j ≤ n,

and ∂/∂ui = (1/λi)Xi. The Codazzi equation (1.41) gives (5.10) for 1 ≤ r ≤ n. In
particular,

〈∇⊥∂/∂uiδ, ξj〉 = 0, 1 ≤ i 6= j ≤ n, (5.12)

for δ ∈ Γ(N⊥1 ).
Let ∇′ denote the connection on N⊥1 induced by ∇⊥, that is, ∇′Xδ is the or-

thogonal projection of ∇⊥Xδ onto N⊥1 for all X ∈ X(M) and δ ∈ Γ(N⊥1 ). Observe
that

〈∇′∂/∂ujδ,∇
′
∂/∂ui

ζ〉 = 〈∇⊥∂/∂ujδ,∇
⊥
∂/∂ui

ζ〉, 1 ≤ i 6= j ≤ n,

for all δ, ζ ∈ Γ(N⊥1 ), because the components in N1 of ∇⊥∂/∂ujδ and ∇⊥∂/∂uiζ are orthog-

onal by (5.12). Therefore

〈∇′∂/∂ui∇
′
∂/∂uj

δ, ζ〉 = ∂/∂ui〈∇′∂/∂ujδ, ζ〉 − 〈∇
′
∂/∂uj

δ,∇′∂/∂uiζ〉
= ∂/∂ui〈∇⊥∂/∂ujδ, ζ〉 − 〈∇

⊥
∂/∂uj

δ,∇⊥∂/∂uiζ〉
= 〈∇⊥∂/∂ui∇

⊥
∂/∂uj

δ, ζ〉.

Hence the curvature tensor R′ of ∇′ satisfies

〈R′(∂/∂ui, ∂/∂uj)δ, ζ〉 = 〈∇′∂/∂ui∇
′
∂/∂uj

δ −∇′∂/∂uj∇
′
∂/∂ui

δ, ζ〉
= 〈∇⊥∂/∂ui∇

⊥
∂/∂uj

δ −∇⊥∂/∂uj∇
⊥
∂/∂ui

δ, ζ〉
= 〈R⊥(∂/∂ui, ∂/∂uj)δ, ζ〉
= 0,

where the last equality follows from the Ricci equation of f .
Let ξn+1, . . . , ξn+p be a parallel orthonormal frame of N⊥1 with respect to ∇′.

Then ∇⊥∂/∂uiξα has no component in N⊥1 for n+ 1 ≤ α ≤ n+ p. Hence (5.10) holds for
n+ 1 ≤ α ≤ n+ p, with

hiα = 〈∇⊥∂/∂uiξα, ξi〉, n+ 1 ≤ α ≤ n+ p,

in view of (5.12).
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It is now straightforward to verify, as in the computations in Section 1.4.3 for
holonomic hypersurfaces, that the Gauss and Codazzi equations of f reduce to the
equations (ii) and (iii) of (5.11) with 1 ≤ r ≤ n. On the other hand, using (5.10) one
obtains that the normal curvature tensor of f satisfies

R⊥(∂/∂ui, ∂/∂uj)ξr = (∂hjr/∂ui − hjihir)ξj − (∂hir/∂uj − hijhjr)ξi

if i 6= j 6= r 6= i, and

〈R⊥(∂/∂ui, ∂/∂uj)ξi, ξj〉 =
∂hij
∂uj

+
∂hji
∂ui

+
∑
r 6=i,j

hirhjr, if i 6= j.

Therefore the Ricci equations of f reduce to the equations (iii) and (iv) of (5.11).
For the converse, consider on U the metric ds2 =

∑
i v

2
i du

2
i . Using equations (i),

(ii) and (iii) in (5.11), it follows from (1.24) and (1.25) that this metric has constant
sectional curvature c. Set Mn

c = (U, ds2). To conclude the proof from the Fundamental
theorem of submanifolds, consider the trivial vector bundle E = Mn

c × Rp, and let
e1, . . . , ep be an orthonormal frame of E. The compatible vector bundle connection ∇′
defined by

∇′∂/∂uier = hirei

is flat from equations (iii) and (iv) of (5.11). Define α ∈ Γ(Hom2(TM, TM ;E)) by

α(∂/∂ui, ∂/∂uj) = viδijei.

That α satisfies the Gauss equations follows from flatness of α and the fact that the
metric ds2 =

∑
i v

2
i du

2
i on U has constant sectional curvature c. The Codazzi equation

follows from (iii) and the Ricci equation is satisfied because ∇′ is flat by (iii) and (iv)
and α is orthogonally diagonalizable. �

Remark 5.9. Again, the statement of Proposition 5.8 remains true if the ambient
space Qn+p

c is replaced by a Lorentzian space form Qn+p
c,1 , under the additional assump-

tion that the first normal spaces of f are nondegenerate subspaces of the corresponding
normal spaces at any point.

5.4 The case of distinct curvatures

In this section we study isometric immersions f : Mn
c → Q2n−1

c̃ , c 6= c̃, which are
free of weak-umbilic points if c > c̃. The idea is to consider the composition f̃ = i ◦ f
with an umbilical inclusion i : Q2n−1

c̃ → Q2n
c,s, where s = 0 or s = 1, depending on

whether c < c̃ or c > c̃, respectively, and then to apply the results of the previous
sections to f̃ . The next result characterizes which isometric immersions f̃ : Mn

c → Q2n
c,s

arise in this way.

Proposition 5.10. Let f̃ : Mn
c → Q2n

c,s, s ∈ {0, 1}, be an isometric immersion. Then
the following assertions are equivalent:
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(i) There exist c̃ ∈ R, with c̃ > c if s = 0 and c̃ < c if s = 1, and an isometric
immersion f : Mn

c → Q2n−1
c̃ , free of weak-umbilic points if c̃ < c, such that

f̃ = i ◦ f , where i : Q2n−1
c̃ → Q2n

c,s is an umbilical inclusion.

(ii) The isometric immersion f̃ has flat normal bundle and pairwise orthogonal prin-
cipal normal vector fields η1, . . . , ηn such that 〈ηi, ηi〉 6= 0 at any point of Mn

c

and
n∑
i=1

1

〈ηi, ηi〉
=

1

c̃− c
, (5.13)

where c̃ > c if s = 0 and c̃ < c if s = 1.

Proof: Assume first that f̃ = i ◦ f for some isometric immersion f : Mn
c → Q2n−1

c̃ ,
where c̃ > c if s = 0 and c̃ < c if s = 1. Suppose further that f is free of weak-umbilic
points if c̃ < c.

By Theorem 5.5, the isometric immersion f has flat normal bundle. It follows
from (5.1) that the same holds for f̃ , and that f̃ has vanishing index of relative nullity.
Moreover, as seen in the proof of Theorem 5.5, the assumption that f is free of weak-
umbilic points if c̃ < c implies that the first normal spaces of f̃ are nondegenerate at
any point of Mn

c . By Proposition 5.3 and Remark 5.4, f̃ has principal normal vector
fields η1, . . . , ηn such that

〈ηi, ηi〉 6= 0 and 〈ηi, ηj〉 = 0, 1 ≤ i 6= j ≤ n, (5.14)

at any point of Mn
c . Thus the vector field

η =
n∑
i=1

1

〈ηi, ηi〉
ηi

satisfies Aη = I. On the other hand, if ζ =
∑

i aiηi ∈ Γ(NfM) is an umbilical normal
vector field, then

0 = 〈ζ, ηi − ηj〉 = ai〈ηi, ηi〉 − aj〈ηj, ηj〉, 1 ≤ i, j ≤ n,

hence ζ = aη if Aζ = aI for some a ∈ C∞(M). Since the shape operator Aξ of f with
respect to one of the unit vector fields normal to the inclusion i : Q2n−1

c̃ → Q2n
c,s along

f is
Aξ =

√
|c̃− c|I,

we conclude that ξ =
√
|c̃− c| η. Hence

(c̃− c)
n∑
i=1

1

〈ηi, ηi〉
= 1,

which implies (5.13).
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To prove the converse, we compute

∇⊥Xjη =
n∑
k=1

Xj(1/〈ηk, ηk〉)ηk +
n∑
k=1

1

〈ηk, ηk〉
∇⊥Xjηk, 1 ≤ j ≤ n.

The Codazzi equation (1.41) gives

1

〈ηj, ηj〉
〈∇⊥Xjηj, ηi〉 =

1

〈ηi, ηi〉
〈∇⊥Xjηi, ηi〉

=
1

2〈ηi, ηi〉
Xj〈ηi, ηi〉, 1 ≤ i 6= j ≤ n. (5.15)

Thus (1.41) and (5.15) yield

〈∇⊥Xjη, ηi〉 = Xj(1/〈ηi, ηi〉)〈ηi, ηi〉+
1

〈ηi, ηi〉
〈∇⊥Xjηi, ηi〉+

1

〈ηj, ηj〉
〈∇⊥Xjηj, ηi〉

= Xj(1/〈ηi, ηi〉)〈ηi, ηi〉+
1

〈ηi, ηi〉
Xj〈ηi, ηi〉

= 0, 1 ≤ i 6= j ≤ n.

On the other hand, using (5.15) we obtain

〈∇⊥Xjη, ηj〉 = Xj(1/〈ηj, ηj〉)〈ηj, ηj〉+
∑
k 6=j

1

〈ηk, ηk〉
〈∇⊥Xjηk, ηj〉+

1

〈ηj, ηj〉
〈∇⊥Xjηj, ηj〉

= − 1

〈ηj, ηj〉
Xj〈ηj, ηj〉 −

1

2

∑
k 6=j

〈ηj, ηj〉
〈ηk, ηk〉2

Xj〈ηk, ηk〉+
1

2〈ηj, ηj〉
Xj〈ηj, ηj〉

=
1

2
〈ηj, ηj〉Xj〈η, η〉.

Therefore, since (5.13) holds, then η is parallel in the normal connection. It follows
from Exercise 2.9 that f̃(Mn

c ) is contained in an umbilical hypersurface Q2n−1
c̃ of Q2n

c,s,
with c̃ > c if s = 0 and c̃ < c if s = 1. Thus there exists an isometric immersion
f : Mn

c → Q2n−1
c̃ such that f̃ = i ◦ f .

It remains to show that f is free of weak-umbilic points if c > c̃. Assume other-
wise, that is, that at some point x ∈ Mn

c there exist ζ ∈ NfM(x) and a flat bilinear
form

γ(x) : TxM × TxM → {ζ}⊥ ⊂ NfM(x)

such that the second fundamental form of f at x is given by

α(x) = γ(x) +
√
c− c̃ 〈 , 〉ζ.

Arguing as in the proof of Theorem 5.1, we see that the vector i∗ζ + ξ, where ξ is

one of the unit vector fields normal to i along f , belongs to N f̃
1 (x) ∩ (N f̃

1 (x))⊥. Thus

N f̃
1 (x) is a degenerate subspace of Nf̃M(x). But this contradicts the assumption
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that f̃ has pairwise orthogonal principal normal vectors η1(x), . . . , ηn(x) at x with
〈ηi(x), ηi(x)〉 6= 0 for 1 ≤ i ≤ n. �

An orthogonal metric ds2 =
∑n

i=1 v
2
i du

2
i on an open subset U ⊂ Rn is called a

Guichard-Darboux metric of signature (ε1, . . . , εn), with εi ∈ {−1, 1} for 1 ≤ i ≤ n, if
it has constant sectional curvature and there exists k ∈ R such that

n∑
i=1

εiv
2
i = k. (5.16)

It follows from (1.24) and (1.25) that an orthogonal metric ds2 =
∑

i v
2
i du

2
i has

constant sectional curvature c if and only if the functions v1, . . . , vn and

hij =
1

vi

∂vj
∂ui

, 1 ≤ i 6= j ≤ n,

satisfy the differential equations

∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj + cvivj = 0

and
∂hik
∂uj

= hijhjk,

where 1 ≤ i 6= j 6= k 6= i ≤ n. Moreover, equation (5.16) holds for some k ∈ R if and
only if

εi
∂vi
∂ui

+
∑
j 6=i

εjhijvj = 0, 1 ≤ i ≤ n,

which is the derivative of (5.16) with respect to ui.
In summary, Guichard-Darboux metrics of constant sectional curvature c and

signature (ε1, . . . , εn) on an open subset U ⊂ Rn are in correspondence with solutions
(v, h) on U , with v = (v1, . . . , vn) and h = (hij), of the system of partial differential
equations 

(i)
∂vi
∂uj

= hjivj

(ii)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj + cvivj = 0

(iii)
∂hik
∂uj

= hijhjk

(iv) εi
∂vi
∂ui

+
∑
j 6=i

εjhijvj = 0,

(5.17)

where 1 ≤ i 6= j 6= k 6= i ≤ n.
Notice that, if n = 2, (ε1, ε2) = (1, 1) and (5.16) holds with, say, k = 1, then we

can write
v1 = cosφ and v2 = sinφ
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for some φ ∈ C∞(U). Then system (5.17) reduces to a single PDE, namely,

∂2φ

∂u2
1

− ∂2φ

∂u2
2

+ c sinφ cosφ = 0 (5.18)

which is either the sine-Gordon or the wave equation for φ, depending on whether
c 6= 0 or c = 0, respectively. Accordingly, if (ε1, ε2) = (−1, 1) and (5.16) holds with,
say, k = −1, then we can write

v1 = coshφ and v2 = sinhφ

for some φ ∈ C∞(U), in which case system (5.17) reduces to

∂2φ

∂u2
1

+
∂2φ

∂u2
2

+ c sinhφ coshφ = 0

which is either the sinh-Gordon or the Laplace equation for φ, depending on whether
c 6= 0 or c = 0, respectively.

Corollary 5.11. Let f : Mn
c → Q2n−1

c̃ , c 6= c̃, be an isometric immersion free of weak
umbilic points if c > c̃. Then the following assertions hold:

(i) For each x0 ∈Mn
c there exists a diffeomorphism ψ : U → V from an open subset

U ⊂ Rn onto an open simply connected neighborhood V ⊂Mn
c which is principal

for f .

(ii) If c < c̃ and Mn
c is complete, there exists a global diffeomorphism ψ : Rn → M̂n

c

onto the universal covering M̂n
c of Mn

c which is principal for f̂ = f ◦ π, where
π : M̂n

c →Mn
c is the covering map. In particular, c ≤ 0.

(iii) The metric induced on U (on Rn, if c < c̃ and Mn
c is complete) by ψ is a

Guichard-Darboux metric whose signature is either (1, . . . , 1) or (−1, 1, . . . , 1),
depending on whether c < c̃ or c > c̃, respectively.

Conversely, let ds2 =
∑n

i=1 v
2
i du

2
i be a Guichard-Darboux metric of constant sectional

curvature c and signature (ε1, . . . , εn) on a simply connected open subset U ⊂ Rn so that

n∑
i=1

εiv
2
i =

1

c̃− c
(5.19)

for some c̃ ∈ R, where (ε1, . . . , εn) = (1, . . . , 1) or (−1, 1, . . . , 1), depending on whether
c < c̃ or c > c̃, respectively. Then there exists an immersion f : U → Q2n−1

c̃ which has
ds2 as induced metric and is free of weak-umbilic points if c > c̃.

Proof: Let f̃ = i ◦ f , where i : Q2n−1
c̃ → Q2n

c,s is an umbilical inclusion, with s = 0

or 1 depending on whether c < c̃ or c > c̃, respectively. By Proposition 5.10, f̃ has
flat normal bundle, vanishing index of relative nullity and nondegenerate first normal



Chapter 5. Constant curvature submanifolds 143

spaces at any point of Mn
c if c > c̃. Therefore, by Proposition 5.6 and Remark 5.7, for

each x0 ∈ Mn
c there exists a diffeomorphism ψ : U → V from an open subset U ⊂ Rn

onto an open simply connected neighborhood V ⊂Mn
c of x0 such that the frame√

|〈ηi, ηi〉|ψ∗∂/∂ui, 1 ≤ i ≤ n,

is orthonormal and principal, where η1, . . . , ηn are the principal normal vector fields of
f̃ . It follows from (5.1) that this frame is also principal for f , thus part (i) is proved.

By (5.13), if c < c̃ then the principal normal vector fields η1, . . . , ηn satisfy

‖ηi‖ ≥
√
c̃− c, 1 ≤ i ≤ n.

Therefore the assertion in part (ii) follows from assertion (a) in Proposition 5.6.
To prove part (iii), notice that the metric induced by ψ is

ds2 =
n∑
i=1

v2
i du

2
i , where vi =

1√
|〈ηi, ηi〉|

·

Therefore, it follows from (5.13) that ds2 is a Guichard-Darboux metric of signature
(ε1, . . . , εn), where (ε1, . . . , εn) = (1, . . . , 1) or (−1, 1, . . . , 1), depending on whether
c < c̃ or c > c̃, respectively.

Conversely, let ds2 =
∑n

i=1 v
2
i du

2
i be a Guichard-Darboux metric of constant

sectional curvature c and signature (ε1, . . . , εn) on a simply connected open subset
U ⊂ Rn such that

n∑
i=1

εiv
2
i =

1

c̃− c

for some c̃ ∈ R, where (ε1, . . . , εn) = (1, . . . , 1) or (−1, 1, . . . , 1), depending on whether
c < c̃ or c > c̃, respectively.

Differentiating equation (i) of (5.17) with respect to ui gives

∂2vi
∂ui∂uj

=
∂hji
∂ui

vj + hjihijvi. (5.20)

On the other hand, differentiating (iv) with respect to uj and using using (i), (iii) and
(iv) yield

εi
∂2vi
∂uj∂ui

= −
∑
k 6=i

εk
∂hik
∂uj

vk −
∑
k 6=i

εkhik
∂vk
∂uj

= −
∑
k 6=i,j

εkhijhjkvk − εj
∂hij
∂uj

vj −
∑
k 6=i,j

εkhikhjkvj

+
∑
k 6=i,j

εkhijhjkvk + εihijhjivi

= −εj
∂hij
∂uj

vj −
∑
k 6=i,j

εkhikhjkvj + εihijhjivi. (5.21)
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Comparing (5.20) and (5.21) implies that h = (hij) satisfies

εi
∂hij
∂uj

+ εj
∂hji
∂ui

+
∑
k 6=i,j

εkhikhjk = 0.

By Proposition 5.8 (see also Remark 5.9), there exists an immersion f̃ : U → Q2n
c,s

with flat normal bundle and vanishing index of relative nullity with ds2 =
∑n

i=1 v
2
i du

2
i

as its induced metric and whose second fundamental form and normal connection are
given by (5.9) and (5.10), respectively.

Since (5.19) holds, the principal normals η1, . . . , ηn of f̃ satisfy (5.13). It follows
from Proposition 5.10 that there exists an isometric immersion f : (U, ds2) → Q2n−1

c̃ ,
free of weak-umbilic points if c > c̃, such that f̃ = i ◦ f , where i : Q2n−1

c̃ → Q2n
c,s is an

umbilical inclusion. �

A diffeomorphism ψ : Πn
j=1Ij → V of a product of open intervals Ij ⊂ R onto

an open subset V of a Riemannian manifold Mn is called a Tschebyscheff net if the
parameter curves are parametrized by arc-length.

Corollary 5.12. If f : Mn
c → Q2n−1

c̃ is an isometric immersion with c < c̃, then
for each x0 ∈ Mn

c there exists a Tschebyscheff net ψ : Πn
j=1Ij → V onto an open

neighborhood V ⊂ Mn
c of x0 such that the coordinate vectors ψ∗∂/∂wi, 1 ≤ i ≤ n,

are unit-length asymptotic vectors for f . Moreover, if c ≤ 0 and Mn
c is complete and

simply connected then ψ can be taken as a global Tschebyscheff net ψ : Rn →Mn
c .

Proof: Let u1, . . . , un be the principal coordinates given by Corollary 5.11, with respect
to which the induced metric is ds2 =

∑
i v

2
i du

2
i , with

n∑
i=1

v2
i =

1

c̃− c
· (5.22)

Choose any invertible n×n-matrix ε = (εij) with εij ∈ {−1, 1} for all 1 ≤ i, j ≤ n, and
define w1, . . . , wn by

uj =
√
c̃− c

n∑
k=1

εkjwk, 1 ≤ j ≤ n.

Then
∂

∂wi
=
√
c̃− c

n∑
k=1

εik
∂

∂uk

and hence ∂/∂wi are unit-length vectors by (5.22).
Moreover, if f̃ = i ◦ f , where i : Q2n−1

c̃ → Q2n
c is an umbilical inclusion, then

αf̃ (∂/∂ui, ∂/∂uj) =
δij
〈ηi, ηi〉

ηi,
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where η1, . . . , ηn are the principal normal vector fields of f̃ . Therefore

αf̃ (∂/∂wi, ∂/∂wi) = η =
n∑
j=1

1

〈ηj, ηj〉
ηj, 1 ≤ i ≤ n,

and, from the proof of Proposition 5.10, η = (c̃ − c)−1/2ξ, where ξ is one of the unit
vector fields normal to i. By (5.1), this means that

αf (∂/∂wi, ∂/∂wi) = 0, 1 ≤ i ≤ n,

that is, ∂/∂wi, 1 ≤ i ≤ n, is an asymptotic vector field for f . �

Remarks 5.13. (i) It is a classical theorem of Hilbert that there exists no isometric
immersion f : M2

c → R3 if c < 0 and M2
c is complete. More generally, a complete M2

c

with c < 0 cannot be isometrically immersed in Q3
c̃ if c < c̃. The standard proofs

of this result consist in showing either that there is no global nonvanishing solution
φ : R2 → R of the sine-Gordon equation (5.18) or that there does not exist a global
Tschebyscheff net ψ : R2 → H2 (see [317], vol. III for proofs of both assertions).

(ii) If n ≥ 3, according to Theorem 5.1 there exists no isometric immersion of Mn
c

into Qn+p
c̃ if c < c̃ and p ≤ n − 2, even local ones. On the other hand, plenty of local

examples exist if p = n−1 by the results of this section (see Exercise 5.2 for an explicit
example).

(iii) It is a major open problem on the subject whether there exist isometric immer-
sions f : Mn

c → Q2n−1
c̃ with n ≥ 3, c < min{0, c̃} and Mn

c complete. The results of
this chapter show that the existence of such an isometric immersion with Mn

c simply
connected is equivalent both to the existence of a global Tschebyscheff net on Hn

c and
to the existence of a global solution (v1, . . . , vn) of system (5.17) on Rn with vi(u) 6= 0,
1 ≤ i ≤ n, at any point u ∈ Rn.

(iv) In the next section it is shown that if Mn
c complete and there exists an isometric

immersion f : Mn
c → Q2n−1

c̃ with n ≥ 3 and c < min{0, c̃}, then Mn
c has to be simply

connected.

5.5 Complete hyperbolic submanifolds

In this section we provide a proof of the nonexistence of an isometric immersion
with flat normal bundle f : Mn

c → Qn+p
c̃ , c < c̃, of a complete non-simply connected

Riemannian manifold of constant sectional curvature c < 0. Recall that, by Theo-
rem 5.5, flatness of the normal bundle is automatic if p = n− 1.

Theorem 5.14. If there exists an isometric immersion f : Mn
c → Qn+p

c̃ with flat
normal bundle of a complete Mn

c with p ≥ n− 1 and c < min{0, c̃}, then Mn
c is simply

connected.
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Proof: Let i : Qn+p
c̃ → Qn+p+1

c be an umbilical inclusion, and set f̃ = i ◦ f . Since the
second fundamental form of f̃ is

α̃ = i∗α +
√
c̃− c 〈 , 〉ξ,

where ξ is one of the unit vector fields normal to i, also f̃ has flat normal bundle.
Moreover, it has vanishing index of relative nullity, for

〈α̃, ξ〉 =
√
c̃− c 〈 , 〉.

On the other hand, by Proposition 5.10 the principal normal vector fields η̃1, . . . , η̃n of
f̃ satisfy condition (5.13). Thus

‖η̃i‖ ≥
√
c̃− c > 0, 1 ≤ i ≤ n.

Hence, by Proposition 5.6, the third fundamental form III of f̃ defines a complete flat
metric on Mn

c .
Let π : M̂n

c → Mn
c be the universal covering map and set f̂ = f̃ ◦ π. Suppose

that there exists a nontrivial deck transformation γ of π. Then γ is an isometry with
respect to the hyperbolic metric on M̂n

c obtained by lifting the metric of Mn
c . Since

f̂ ◦ γ = f̂ , at any point x ∈ Mn
c the normal spaces Nf̂M̂(x) and Nf̂M̂(γ(x)) coincide,

and for any ξ ∈ Nf̂M̂(x) we have

Af̂ξ ◦ γ∗ = γ∗ ◦ Af̂ξ ,

or equivalently,
γ∗α̂ = α̂. (5.23)

In particular, given x ∈ M̂n
c and an orthonormal basis ξ1, . . . , ξp+1 of Nf̂M̂(x),

III(γ∗X, γ∗Y ) =

p+1∑
r=1

〈Af̂ξrγ∗X,A
f̂
ξr
γ∗Y 〉

=

p+1∑
r=1

〈γ∗Af̂ξrX, γ∗A
f̂
ξr
Y 〉

=

p+1∑
r=1

〈Af̂ξrX,A
f̂
ξr
Y 〉

= III(X, Y )

for all X, Y ∈ TxM . Thus γ is also an isometry with respect to III. Moreover, by the
last assertion in Proposition 5.6, there exists a global diffeomorphism ψ : Rn → M̂n

c ,
which is an isometry with respect to the standard metric on Rn and the metric III
on M̂n

c .
Let γ̂ : Rn → Rn be defined by

ψ ◦ γ̂ = γ ◦ ψ.
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Then γ̂ is an isometry with respect to both the standard metric on Rn and the hyper-
bolic metric induced by ψ from the metric of M̂n

c . On the other hand, it follows from
(5.23) that the bases

‖η1(x)‖γ∗ψ∗∂/∂u1(x), . . . , ‖ηn(x)‖γ∗ψ∗∂/∂un(x)

and
‖η1(γ(x))‖ψ∗∂/∂u1(γ(x)), . . . , ‖ηn(γ(x))‖ψ∗∂/∂un(γ(x))

of Tγ(x)M̂ coincide up to signs and permutations, by the uniqueness, up to signs, of a

basis of unit-length vectors of Tγ(x)M̂ with respect to which the second fundamental

form of f̂ is given by (5.5). Since γ∗ψ∗ = ψ∗γ̂∗, it follows that γ̂∗ takes

∂/∂u1(x), . . . , ∂/∂un(x) into ± ∂/∂u1(γ(x)), . . . ,±∂/∂un(γ(x)),

possibly permuting its elements. But γ̂ is an isometry of Rn with respect to the
standard metric, hence γ∗ is given by an orthogonal matrix whose columns are obtained
by permuting the elements of the canonical basis of Rn and possibly changing some of
their signs. There are precisely n!2n such matrices, hence there exists a positive integer
m such that γm∗ is the identity endomorphism. Thus

γm(x) = x+ V

for some V ∈ Rn, and V must be nonzero, for otherwise γ would have a fixed point.
Therefore

d0(x, γ(x)) = ‖V ‖
for any x ∈ Rn, where d0 is the standard Euclidean distance. Hence

d(x, γ(x)) ≤ 1√
c̃− c

‖V ‖

for any x ∈ Rn, where d is the hyperbolic distance. But there is no nontrivial isometry
of the hyperbolic space with this property. This is a contradiction which shows that
no such nontrivial γ can exist. �

5.6 Notes

Surfaces with constant Gauss curvature in space forms have been extensively
studied by differential geometers in the nineteenth century and the beginning of the
last century; see Bianchi [36] and the references therein, as well as Gálvez [198] and
Spivak [317] for surveys of results of a global nature on the subject.

The study of isometric immersions of space forms into space forms with higher
dimension and codimension was initiated by Cartan [67]. In particular, he proved part
(i) of Theorem 5.1 by means of his theory of exteriorly orthogonal quadratic forms.
Part (ii) was first proved by O’Neill [278]. The proof given here was taken from Moore
[255], where the theory of flat bilinear forms was introduced.
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Theorem 5.2 was proved by Cartan [67] for symmetric flat bilinear forms with
respect to positive definite inner products, and by Moore [255] in the case of symmetric
flat bilinear forms with respect to Lorentzian inner products. As a consequence of this
result, Moore proved Theorem 5.5 in the case c > c̃, extending the dual result for
c < c̃ previously obtained by Cartan in [67]. In the same paper, Moore was also able
to describe what else may happen if the extra assumption needed in the Lorentzian
version of Theorem 5.2 is dropped.

The existence of principal and asymptotic coordinates for isometric immersions
f : Mn

c → Q2n−1
c̃ , c < c̃, was shown by Moore [253], who observed in [255] that principal

coordinates also exist for isometric immersions f : Mn
c → Q2n−1

c̃ , c > c̃, that are free of
weak-umbilic points.

The correspondence between isometric immersions f : Mn
c → Q2n−1

c̃ , c < c̃, and
solutions of the associated systems of partial differential equations was independently
established by Aminov [17], [18] and Tenenblat-Terng [325] for 0 = c < c̃, and then
extended to the case 0 = c < c̃ by Tenenblat [324]. The remaining cases have been
considered by Dajczer-Tojeiro [137], [142].

A simple example of an isometric immersion f : Rn → S2n−1 is the n-dimensional
Clifford torus (see Exercise 1.7). An explicit example by Schur [314] of an isomet-
ric immersion f : Mn

c → R2n−1 with c < 0 is the higher dimensional version of the
pseudosphere given in Exercise 5.2.

Useful tools to produce further examples of isometric immersions of space forms
into space forms are the Ribaucour and Bäcklund transformations. The former was ex-
tended from surface theory by Dajczer-Tojeiro [142], [143], and the latter by Tenenblat-
Terng [325] for Euclidean submanifolds and by Tenenblat [324] for submanifolds of the
sphere and the hyperbolic space.

Two n-dimensional submanifolds in Rm are said to be related by a Ribaucour
transformation if they envelop a common congruence of n-spheres in Rm in such a way
that their shape operators with respect to corresponding normal directions commute.
Each of the two envelopes is said to be a Ribaucour transform of the other. Ribaucour
transforms of a given submanifold can be parametrized in terms of the latter and the
solutions of a linear system of partial differential equations. Given a submanifold of a
certain class, one can then look for its Ribaucour transforms that belong to the same
class. This yields a process to generate a family of new submanifolds within a certain
class by starting with a given element of that class. This was carried out in [142]
for the class of submanifolds of constant sectional curvature. Using this approach, a
large family of further local explicit isometric immersions of the hyperbolic space Hn

intoR2n−1 was obtained in [142], as well as of local isometric immersions of Sn into
R2n−1 that are free of weak-umbilic points.

In Guimarães-Tojeiro [204], based on a vectorial version of the Ribaucour trans-
formation developed by Dajczer-Florit-Tojeiro [106], it was shown that from k initial
Ribaucour transforms of a given submanifold of constant curvature that also have the
same constant curvature, one can produce a whole k-dimensional cube, all of whose
remaining 2k−(k+1) vertices are submanifolds with the same constant curvature given
by explicit algebraic formulas.
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Methods of soliton theory and integrable systems have been successfully applied
to the study of isometric immersions of space forms into space forms. For instance, see
[44], [177], [326] and [327].

Concerning global results, an important open problem remains is whether there
exists a global isometric immersion of Hn into R2n−1. This would extend the classical
result of Hilbert on the nonimmersibility of the hyperbolic plane H2 in R3. Examples
of isometric immersions of Hn into R4n−3 have been constructed by Henke [216]. See
Henke-Nettekoven [217] for isometric embeddings of Hn into R6n−6 whose image is the
graph of a smooth map g : Rn → R5n−6. Blanusa [37] produced examples of isometric
immersions of Hn into S6n−4. For other related results see Mirandola-Vitório [248].
Theorem 5.14 is due to Nikolayevsky [266] and generalizes previous results by Pedit
[289], Xavier [350] and Dajczer-Tojeiro [137].

The example in Exercise 5.2 of a n-dimensional submanifold of constant negative
sectional curvature in Euclidean space R2n+1 belongs to a family of multi-rotational
submanifolds described by Dajczer-Tojeiro [137], whereas the examples in Exercise 5.5
of local isometric immersions of S3

c into R5, with 0 < c < 1, that are free of weak-umbilic
points, have been taken from Manfio-Tojeiro [241].

5.7 Exercises

Exercise 5.1. Let β : V n × V n → W n be a flat symmetric bilinear form with respect
to a Lorentzian inner product on W n. Assume that there exists a light-like vector
ζ ∈ W n such that

〈β(X, Y ), ζ〉 = −〈X, Y 〉 (5.24)

for all X, Y ∈ V n. Given a time-like vector ξ ∈ W n with 〈ξ, ζ〉 < 0, show that the
bilinear form φ : V n×V n → R given by φ = 〈β, ξ〉 has at least one negative eigenvalue.

Hint: First notice that N(β) = {0} by (5.24). If S(β) is a nondegenerate subspace of
W n, conclude from Lemmas 4.10 and 4.14 that S(β) = W n. Then use Theorem 5.2
and (5.24) to show that there exists an orthonormal basis X1, . . . , Xn of V n and an
orthogonal basis η1, . . . , ηn of W n such that

β(Xi, Xj) = δijηi, 1 ≤ i, j ≤ n.

Exactly one of the vectors ηi is time-like, say η1, and 〈η1, ζ〉 = −1 by (5.24). Conclude
that

φ(X1, X1) = 〈η1, ξ〉 < 0.

Now assume that S(β) is degenerate. Show that there exists a light-like vector ρ ∈ W n

with 〈ρ, ζ〉 = −1 such that dimN(β − 〈 , 〉ρ) ≥ 2. Now notice that

φ(X,X) = 〈ρ, ξ〉 < 0

for any unit vector X ∈ N(β − 〈 , 〉ρ).
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Exercise 5.2. Choose nonzero real numbers ai, 1 ≤ i ≤ n − 1, such that
∑
a2
i = 1,

and define an immersion from

D = {(x1, . . . , xn) ∈ Rn : xn < 0}

into R2n−1 by
y2i−1 = aie

xn cos(xi/ai)

y2i = aie
xn sin(xi/ai) 1 ≤ i ≤ n− 1

y2n−1 =

∫ xn

0

(1− e2u)
1
2 du.

Show that the induced metric on D is of constant negative curvature but it is not
complete.

Exercise 5.3. Show that there exists an isometric immersion f : Rn → Q2n−1
c , c 6= 0,

free of weak-umbilic points if c < 0.

Hint: Use Exercise 1.7.

Exercise 5.4. Let φ : R→ R be given by

φ(s) =

∫ s

0

√
d+ (1− d)e2τ

e2τ + d
dτ

where 0 < d < 1. Define g, h : R→ R by

g(s) =
√
e2s + d coshφ and h(s) =

√
e2s + d sinhφ.

Let L2n be the Lorentz space endowed with the inner product of signature (−1, 1, . . . , 1)
and let F : Rn → L2n be defined by

F (u1, u2, . . . , un) = (g(u1), h(u1), a1e
u1+i(u2/a1), . . . , an−1e

u1+i(un−1/an−1)),

where
∑n−1

i=1 a
2
i = 1.

(i) Show that the Riemannian manifold

Mn
−1 = R×a1es S1 ×a2es · · · ×an−1es S1

where ai > 0 for 1 ≤ i ≤ n, is complete and has constant sectional curvature −1.

(ii) Show that F induces an isometric embedding f : Mn
−1 → H2n−1

−1/d free of weak-
umbilic points.

Exercise 5.5. Let g : M2 → S3 ⊂ R4 be a flat surface and let gs : M2 → S3 ⊂ R4 be
the family of its parallel surfaces, that is,

gs(x) = cos sg(x) + sin sN(x)
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where N is a unit normal vector field to g in S3. Define f : M2 × I → R5 = R4 × R,
where 0 ∈ I ⊂ R is an open interval, by

f(x, s) = gs(x) + bs∂/∂t

where b ∈ R and ∂/∂t is a unit vector spanning the R-factor in the orthogonal decom-
position R5 = R4 × R.

(i) Prove that the metric induced by f on the subset V ⊂M2 ×R of regular points
has constant sectional curvature 1/

√
1 + b2.

(ii) Show that f has no weak-umbilic points and that f(V ) ⊂ S3 × R ⊂ R5.

(iii) Conclude that the map f : (0, π/2)× (0, π/2)× R→ R5 given by

f(s, t1, t2) = (cos s cos t1, cos s sin t1, cos s cos t2, cos s sin t2, bs), b ∈ R,

induces an isometric immersion of S3
c \ X into R5 without weak-umbilic points,

where c = 1/
√

1 + b2 and X is the union of two circles of unit radii centered at
the origin in orthogonal planes.

Exercise 5.6. Let f : Mn
c → Qn+p

c,s , s ∈ {0, 1}, be an isometric immersion with flat
normal bundle and vanishing index of relative nullity. If s = 1, assume further that
the first normal spaces of f are nondegenerate subspaces of the corresponding normal
spaces at any point. Let (u1, . . . , un) be the principal coordinates given locally on Mn

c

by Proposition 5.6 or Remark 5.7, depending on whether s = 0 or s = 1, respectively.
Let (v, h, V ) be the triple associated with f with respect to (u1, . . . , un) and to any
parallel orthonormal normal frame ξ1, . . . , ξp, with 〈ξj, ξj〉 = εj for all 1 ≤ j ≤ n,
where (ε1, . . . , εn) = (1, . . . , 1) if s = 0 and (ε1, . . . , εn) = (−1, 1, . . . , 1) if s = 1 (see
Exercise 1.38).

(i) Show that V takes values in Os(n × p), where Os(n × p) denotes the subspace
of Mp×n(R) of all matrices that satisfy V tJV = J , where J = diag(ε1, . . . , εn).
Show also that (v, h, V ) satisfies the system of partial differential equations



(i)
∂vi
∂uj

= hjivj

(ii)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj + cvivj = 0

(iii)
∂hik
∂uj

= hijhjk

(iv)
∂Vir
∂uj

= hjiVjr, i 6= j 6= k 6= i.

(5.25)

(ii) Show that, conversely, if (v, h, V ) is a solution of (5.25) on an open simply con-
nected subset U ⊂ Rn such that V takes values in Os(n × p) and vi 6= 0 at
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any point, then there exist an immersion f : U → Qn+p
c,s with flat normal bundle

and vanishing index of relative nullity and a parallel orthonormal normal frame
ξ1, . . . , ξp, with 〈ξj, ξj〉 = εj for all 1 ≤ j ≤ n, with respect to which f has (v, h, V )
as associated triple and whose induced metric has constant sectional curvature c.

Hint for (i): Let η1, . . . , ηn be the principal normal vector fields of f . By the assumption
for s = 1, 〈ηi, ηi〉 6= 0 for all 1 ≤ i ≤ n, and by Proposition 5.6 and Remark 5.7, the
coordinates (u1, . . . , un) are such that

vi =
1√
|〈ηi, ηi〉|

for all 1 ≤ i ≤ n. Moreover, 〈ηi, ηj〉 = 0 if 1 ≤ i 6= j ≤ n by the Gauss equation. Let
ξ1, . . . , ξp be a parallel orthonormal normal frame with 〈ξj, ξj〉 = εj for all 1 ≤ j ≤ n,
where (ε1, . . . , εn) = (1, . . . , 1) if s = 0 and (ε1, . . . , εn) = (−1, 1, . . . , 1) if s = 1. Show
that

ηi =

p∑
r=1

Vir
vi
ξr, 1 ≤ i ≤ n, (5.26)

and check that the equations

〈ηi, ηj〉 = εiδijv
2
i , 1 ≤ i, j ≤ n, (5.27)

imply that V takes values in Os(n× p). Now use Exercise 1.38 and verify that system
(1.51) reduces to (5.25).

Hint for (ii): Use Exercise 1.38 to obtain an isometric immersion f : U → Qn+p
s (c)

that has (v, h, V ) as associated triple with respect to a parallel orthonormal normal
frame with 〈ξj, ξj〉 = εj for all 1 ≤ j ≤ n, where (ε1, . . . , εn) = (1, . . . , 1) if s = 0 and
(ε1, . . . , εn) = (−1, 1, . . . , 1) if s = 1. Show that the principal normal vector fields of f
are given by (5.26), and prove that they satisfy (5.27) by using that V takes values in
Os(n×p). Conclude that f has vanishing index of relative nullity, that the first normal
spaces of f are nondegenerate subspaces of the corresponding normal spaces if s = 1,
and that the induced metric ds2 =

∑n
i=1 v

2
i du

2
i has constant sectional curvature c.

Exercise 5.7. Let f : Mn
c → Q2n−1

c̃ be an isometric immersion with c 6= c̃. If c > c̃,
assume that f is free of weak-umbilic points. Let (v, h, V ) be the triple associated
with f with respect to the local principal coordinates (u1, . . . , un) given by Corollary
5.11 and to any parallel orthonormal normal frame ξ1, . . . , ξn−1. Define the augmented
matrix V̂ ∈Mn(R) by

V̂ir = Vir, 1 ≤ r ≤ p, and V̂in =
√
|c− c̃| vi.

(i) Show that the augmented matrix V̂ takes values in Os(n), where s = 0 or s = 1
depending on whether c̃ > c or c̃ < c, respectively, and that the triple (v, h, V )
satisfies (5.25).
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(ii) Show that, conversely, if (v, h, V ) is a solution of (5.25) on an open simply con-
nected subset U ⊂ Rn such that vi 6= 0 everywhere and such that the augmented
matrix V̂ takes values in Os(n), then there exist an immersion f : U → Q2n−1

c̃ ,
where c̃ > c or c̃ < c depending on whether s = 0 or s = 1, respectively, and
a parallel orthonormal normal frame ξ1, . . . , ξn−1 with respect to which f has
(v, h, V ) as associated triple and whose induced metric has constant sectional
curvature c.

Hint for (i): Let i : Q2n−1
c̃ → Q2n

c,s be an umbilical inclusion and define f̃ = i ◦ f . If
c > c̃, use the assumption that f is free of weak-umbilic points and the fact that the
second fundamental forms of f and f̃ are related by

α̃ = α +
√
|c̃− c|〈 , 〉ξ, (5.28)

where ξ is one of the vector fields normal to i with 〈ξ, ξ〉 = (c̃− c)/|c̃− c|, to show that
the first normal spaces of f̃ are nondegenerate subspaces of the corresponding normal
spaces at any point. If (v, h, V ) is the triple associated with f with respect to the
coordinates (u1, . . . , un) and a parallel orthonormal normal frame ξ1, . . . , ξn−1, show

that (v, h, V̂ ) is the triple associated with f̃ with respect to (u1, . . . , un) and the frame

i∗ξ1, . . . , i∗ξp, ξ. Conclude from the preceding exercise that V̂ takes values in Os(n),
where s = 0 or s = 1 depending on whether c̃ > c or c̃ < c, respectively, and that the
triple (v, h, V ) satisfies (5.25).

Hint for (ii): Use Exercise 5.6 to obtain an isometric immersion f̃ : U → Q2n
c,s and

a parallel orthonormal normal frame ξ1, . . . , ξn with (v, h, V̂ ) as associated triple and
induced metric ds2 =

∑n
i=1 v

2
i du

2
i of constant sectional curvature c. Show that ξn is a

parallel normal vector field satisfying

〈ξn, ξn〉 =
c̃− c
|c̃− c|

and Af̃ξn =
√
|c̃− c| I.

Conclude from Exercise 2.9 that f̃(U) is contained in an umbilical hypersurface Q2n−1
c̃ ,

hence f̃ = i ◦ f for some isometric immersion f : U → Q2n−1
c̃ . Show that there exists a

parallel orthonormal normal frame ζ1, . . . , ζn−1 such that ξi = i∗ζi for all 1 ≤ i ≤ n− 1
and that (v, h, V ) is the triple associated with f with respect to the same coordinates
and the frame ζ1, . . . , ζn−1.

Exercise 5.8. Prove that there is no isometric immersion f : Mn
c → Sn+p

c̃ with flat
normal bundle if 0 < c < c̃.

Hint: Let f̃ = i ◦ f be the composition of f with an umbilical inclusion of Sn+p
c̃ into

Sn+p+1
c . Arguing as in the proof of Proposition 5.10, show that the principal normal

vector fields η̃1, . . . , η̃n of f̃ satisfy

n∑
i=1

‖η̃i‖−2 ≤ 1

c̃− c
·

Hence ‖η̃i‖ ≥
√
c̃− c for all 1 ≤ i ≤ n. Then apply assertion (a) in Proposition 5.6.



Chapter 6

Submanifolds with nonpositive
extrinsic curvature

The results of this chapter show that isometric immersions f : Mn → M̃m with
low codimension and nonpositive extrinsic curvature at any point must satisfy strong
geometric conditions. That f has nonpositive extrinsic curvature at any point means
that the sectional curvature KM(σ) of Mn along any plane σ does not exceed the
corresponding sectional curvature KM̃(f∗σ) of M̃m. The simplest result along this line
is that a two-dimensional surface with nonpositive curvature in R3 cannot be compact.
This is a consequence of the fact that at a point of maximum of a distance function
on a compact surface in R3 the Gaussian curvature must be positive. It turns out that
the simple idea in the proof of this elementary fact has far-reaching generalizations for
non-necessarily compact submanifolds in fairly general ambient Riemannian manifolds.

One of the main tools to extend this idea to higher dimensions and codimensions
is an algebraic lemma due to Otsuki, whereas a key ingredient to handle the noncom-
pact case is a maximum principle due to Omori [275] and Yau [347], and generalized
by Pigola-Rigoli-Setti [292]. Using these tools, one can derive estimates for the ex-
trinsic curvatures of submanifolds of certain Riemannian manifolds, under some sort
of boundedness assumption. We present a theorem of this type for submanifolds of a
product manifold Pm×R`, obtained by Aĺıas-Bessa-Montenegro [10], which generalizes
several previous results.

Going in a different direction, the Chern-Kuiper inequalities show that if the
extrinsic curvatures of a submanifold vanish at a point, then the index of relative
nullity at that point must be positive, as long as the codimension of the submanifold
does not exceed its dimension. If the extrinsic curvatures are only assumed to be
nonpositive, a theorem by Florit states that the same conclusion holds under the sharp
assumption that the codimension of the submanifold is not greater than half of its
dimension. This is discussed in the last section.

154
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6.1 Otsuki’s lemma

Throughout this section, V n and W p denote real vector spaces of dimensions n
and p, respectively, endowed with positive definite inner products. For a symmetric
bilinear form α : V n × V n → W p, we denote

Kα(X, Y ) = 〈α(X,X), α(Y, Y )〉 − ‖α(X, Y )‖2

for any pair of vectors X, Y ∈ V n. If σ is a two-dimensional subspace of V n, we define

Kα(σ) =
Kα(X, Y )

‖X ∧ Y ‖2

where X, Y is any basis of σ and

‖X ∧ Y ‖2 = ‖X‖2‖Y ‖2 − 〈X, Y 〉2.

Given an isometric immersion f : Mn → M̃m with second fundamental form α, for any
x ∈Mn and any plane σ ∈ TxM the Gauss equation yields

Kα(σ) = Kf (σ) = KM(σ)−KM̃(f∗σ),

which is called the extrinsic curvature of f at x along σ.

A basic tool in this chapter is the following algebraic lemma.

Lemma 6.1. Let α : V n×V n → W p be a symmetric bilinear form. Assume that there
exists a real number λ ≥ 0 such that the following conditions hold:

(i) Kα(σ) ≤ λ for every plane σ ⊂ V n,

(ii) ‖α(X,X)‖ >
√
λ for every unit vector X ∈ V n.

Then p ≥ n.

Proof: Suppose p < n and set

S = {X ∈ V n : ‖X‖ = 1}.

Let X0 ∈ S be a minimum for f ∈ C∞(S) defined by

f(X) = ‖α(X,X)‖2.

For any unit vector Y ∈ TX0S, the curve given by

γ(t) = cos tX0 + sin tY

satisfies γ(0) = X0 and γ′(0) = Y . Then

0 = Y (f)(X0) = 2

〈
d

dt
α(γ(t), γ(t))|t=0, α(X0, X0)

〉
= 4〈α(X0, Y ), α(X0, X0)〉. (6.1)
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Using that γ′′(0) = −X0 we obtain

0 ≤ Y Y (f)(X0) = 8‖α(X0, Y )‖2 + 4〈α(Y, Y ), α(X0, X0)〉 − 4‖α(X0, X0)‖2. (6.2)

Consider the linear map BX0 : TX0S → W given by

BX0(Y ) = α(X0, Y ).

Then (6.1) implies that
〈BX0(Y ), α(X0, X0)〉 = 0

for any Y ∈ TX0S. Hence
dimBX0(TX0S) ≤ p− 1,

since α(X0, X0) 6= 0 by condition (ii). Thus kerBX0 6= {0}, that is, there exists a unit
vector Y0 orthogonal to X0 such that

α(X0, Y0) = 0.

From (6.2) and the hypothesis, it follows that

0 ≤ 〈α(Y0, Y0), α(X0, X0)〉 − ‖α(X0, X0)‖2

< λ− (
√
λ)2

= 0,

which is a contradiction. �

Given a symmetric bilinear form α : V n × V n → W p, a vector X ∈ V n is said to
be an asymptotic vector of α if X 6= 0 and α(X,X) = 0.

In the next statement and the sequel, we write Kα ≤ 0 (respectively, Kα < 0) as
a shorthand for Kα(σ) ≤ 0 (respectively, Kα(σ) < 0) for any plane σ ⊂ V n.

Corollary 6.2. Let α : V n × V n → W p be a symmetric bilinear form.

(i) If Kα ≤ 0, then any subspace S ⊂ V n with dimS > p contains an asymptotic
vector of α.

(ii) If Kα < 0, then p ≥ n− 1.

Proof: (i) This is just an equivalent way of stating Lemma 6.1 for λ = 0.

(ii) If there are no asymptotic vectors of α, then the assertion follows from Lemma 6.1.
Suppose p < n − 1 and assume that there exists an asymptotic vector X0 ∈ V n of
α. Let U be the orthogonal complement to X0 in V n, and consider the linear map
BX0 : U → W p defined by

BX0(Y ) = α(X0, Y ).

Since dimU = n− 1 > p, there exists a nonzero vector Y0 ∈ U such that BX0(Y0) = 0.
This fact, together with α(X0, X0) = 0, contradicts the assumption. �

In the proof of Theorem 6.9 below, the following stronger version of Lemma 6.1
for the case λ = 0 will be needed.
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Lemma 6.3. Let α : V n × V n → W p be a symmetric bilinear form. If there is a
subspace S ⊂ V n with no asymptotic vectors of α such that dimS > p, then there
exists a pair of linearly independent vectors X, Y ∈ V n such that

α(X,X) = α(Y, Y ) and α(X, Y ) = 0. (6.3)

Proof: Let S ⊂ V n be a subspace of dimension m > p. Restrict α to S × S and then
extend it to a complex symmetric bilinear form α : SC×SC → WC, where SC = S⊗C
and WC = W ⊗ C. Then, for Z ∈ SC, the equation

α(Z,Z) = 0

is equivalent to p quadratic equations

α1(Z,Z) = · · · = αp(Z,Z) = 0

in m variables. It is a well-known fact that m > p implies the existence of a nontrivial
solution Z (see [207], p. 48), which cannot be real by assumption. If Z = X+ iY , then

0 = α(Z,Z) = α(X,X)− α(Y, Y ) + 2iα(X, Y ).

Thus the vectors X and Y satisfy (6.3), which, together with the fact that there are
no asymptotic vectors of α in S, implies that they must be linearly independent. �

The following result is a direct consequence of part (ii) of Corollary 6.2.

Theorem 6.4. Let f : Mn → M̃n+p be an isometric immersion. Assume that there
exist a point x0 ∈ Mn and a subspace Vx0 of Tx0M of dimension m ≥ 2 such that
Kf (σ) < 0 along every plane σ ⊂ Vx0. Then p ≥ m− 1.

The preceding inequality is sharp, as it is shown by any isometric immersion
f : Mn

c → Q2n−1
c̃ with c < c̃, e.g., the n-dimensional Clifford torus in S2n−1 given in

Exercise 3.1 or the higher dimensional version of the pseudosphere in Exercise 5.2.

For a compact Riemannian manifold one has the following generalization of Corol-
lary 4.12. The noncompact case is treated in the next section.

Theorem 6.5. Let Mn be a compact Riemannian manifold such that at any point
x ∈ Mn there exists a subspace Vx of TxM with dimension m ≥ 2 such that K(σ) ≤ 0
for every plane σ ⊂ Vx. If f : Mn → Rn+p is an isometric immersion, then p ≥ m.

Proof: Since Mn is compact, by Corollary 1.6 there exists a point x0 ∈ Mn such that
α(X,X) 6= 0 for every nonzero vector X ∈ Tx0M . Furthermore, Kα(σ) ≤ 0 for every
plane σ ⊂ Vx0 by the Gauss equation. The statement then follows from part (i) of
Corollary 6.2. �
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6.2 Cylindrically bounded submanifolds

In order to generalize Theorem 6.5 to noncompact submanifolds of more general
ambient spaces, the idea is to show that, if compactness is replaced by some sort of
boundedness, one can still find points on the submanifold satisfying the assumption in
Otsuki’s lemma (at least on suitable tangent subspaces), provided that the submanifold
satisfies the maximum principle stated next.

The Omori-Yau maximum principle for the Hessian is said to hold on a given
Riemannian manifold Mn if for any function g ∈ C2(M) with g∗ = supM g < +∞
there exists a sequence of points {xk}k∈N in Mn satisfying:

(i) g(xk) > g∗ − 1/k,

(ii) ‖grad g(xk)‖ < 1/k,

(iii) Hess g(xk)(X,X) ≤ (1/k)〈X,X〉 for all X ∈ TxkM .

The next result provides conditions on a complete Riemannian manifold for the
Omori-Yau maximum principle for the Hessian to hold. The function r(x) denotes the
distance to a reference point p ∈Mn. It is a standard fact that r(x) is smooth within
the cut locus cut(p) of p.

Theorem 6.6. Let Mn be a complete noncompact Riemannian manifold. Assume that
the sectional curvature satisfies KM(x) ≥ −G2(r(x)), where G ∈ C1([0,+∞)) satisfies

(i) G(0) > 0, (ii) G′(t) ≥ 0 and
1

G(t)
6∈ L1(+∞).

Then the Omori-Yau maximum principle for the Hessian holds on Mn.

The following version of the Hessian comparison theorem will be used. Here Krad
M

denotes the radial sectional curvatures of Mn with respect to p, that is, the sectional
curvatures of tangent planes to Mn containing the vector grad r.

Theorem 6.7. Let Mn be a complete Riemannian manifold and let D = Mn \ cut(o)
denote the domain of the normal geodesic coordinates centered at o ∈ Mn. Given
F ∈ C0([0,+∞)), let g be the solution of the problem{

g′′(t)− F (t)g(t) ≥ 0

g(0) = 0, g′(0) = 1.

Assume that Krad
M (x) ≤ −F (r(x)) on the ball Br0(o), where (0, r0) ⊂ (0,+∞) is the

maximal interval where the function g is positive. Then

Hess r(x) ≥ g′(r(x))

g(r(x))
(〈 , 〉 − dr ⊗ dr)

on D ∩Br0(o) \ {o}.
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Remark 6.8. If Krad
M ≤ b for some constant b ∈ R and r(x) < π/

√
b if b > 0, then

Hess r(x)(X,X) ≥ Cb(r(x))‖X‖2

for any X ∈ TxM orthogonal to grad r(x), where

Cb(t) =


√
b cot(

√
b t) if b > 0 and 0 < t < π/2

√
b

1/t if b = 0 and t > 0√
−b coth(

√
−b t) if b < 0 and t > 0.

This is the usual statement of the Hessian comparison theorem, and follows by taking
g(t) = (1/

√
b) sin

√
b t, g(t) = t or g(t) = (1/

√
−b) sinh

√
−b t, according as b > 0,

b = 0 or b < 0, respectively.

Theorem 6.9. Let f : Mn → Pm × R`, 2 ≤ m ≤ 2(n − `) − 1, be an isometric
immersion between complete Riemannian manifolds such that f(M) ⊂ BR(o)×R` with
0 < R < min{injP (o), π/2

√
b}, where injP (o) is the injectivity radius at o and π/2

√
b

is replaced by +∞ if b ≤ 0. Assume that the scalar curvature of Mn satisfies

s(x) ≥ −Aρ2(x)
(

ΠN
j=1 log(j)(ρ(x))

)2

, ρ(x) >> 1,

for a constant A > 0 and some integer N ≥ 1, where ρ is the distance function in Mn

to a point and log(j) stands for the j-iterated logarithm. If KP ≤ b in BR(o), then

sup{Kf (σ) : x ∈Mn and σ ⊂ TxM} ≥ C2
b (R).

In particular,
sup
M

KM ≥ C2
b (R) + inf

BR(o)
KP .

Proof: Denote Nm+` = Pm ×R`, and let πP : Nm+` → Pm be the projection onto Pm.
Then the function

ψ(t) =


1− cos(

√
b t) if b > 0

t2 if b = 0

cosh(
√
−b t) if b < 0,

where t > 0 if b ≤ 0 and t < π/2
√
b if b > 0, satisfies ψ′′ = ψ′Cb. Define h ∈ C∞(N)

by h = ψ ◦ r ◦ πP . Since f(M) ⊂ BR(o)× R`, then the function g = h ◦ f satisfies

g∗ = sup
M

g ≤ ψ(R) < +∞.

We may assume that supKM < +∞, for otherwise the estimate in the theorem is
trivially satisfied. Then, since the scalar curvature is an average of sectional curvatures,
it follows from the assumption on s that

KM(x) ≥ −Cρ2(x)
(

ΠN
j=1 log(j)(ρ(x))

)2

, ρ(x) >> 1,

for a constant C > 0. According to Theorem 6.6, this curvature decay is sufficient to
conclude that the Omori-Yau maximum principle for the Hessian holds on Mn. Thus
there exists a sequence of points {xk}k∈N in Mn such that
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(i) g(xk) > g∗ − 1/k,

(ii) HessMg(xk) ≤ (1/k)〈 , 〉.

The idea of the argument is to use part (ii) and (1.6) to estimate ‖α(X,X)‖ for X in
a suitable subspace Vxk ⊂ TxkM , and then to apply Lemma 6.3 to α|Vxk×Vxk . This will
imply the estimate in the statement.

By (1.5) we have

gradNh(f(x)) = f∗gradMg(x) + (gradNh(f(x)))⊥.

Note that
gradNh(z, y) = ψ′(r(z))grad P r(z). (6.4)

Since h only depends on Pm, from (1.6) and (6.4) we obtain

Hess g(x)(X,X) = Hess Pψ ◦ r(z(x))(XP , XP ) + ψ′(r(z(x)))〈grad P r(z(x)), α(X,X)〉,

where z(x) = πP (f(x)) and XP = πP∗f∗X. Observe that

Hess Pψ ◦ r(z)(XP , XP ) = ψ′′(r(z))〈grad P r,XP 〉2 + ψ′(r(z))Hess Pr(z)(XP , XP ).

Since ψ′′ = ψ′Cb, the last two equations yield

Hess g(x)(X,X) = ψ′(r(z(x)))[Cb(r(z(x)))〈grad P r(z(x)), XP 〉2

+ 〈grad P r(z(x)), α(X,X)〉+ Hess Pr(z(x))(XP , XP )]. (6.5)

Taking into account Remark 6.8, Theorem 6.7 gives

Hess Pr(z)(Y, Y ) = Hess Pr(z)(Y ⊥, Y ⊥)

≥ Cb(r(z))(‖Y ‖2 − 〈grad P r, Y 〉2) (6.6)

where Y ∈ TzP and Y ⊥ is defined by the orthogonal decomposition

Y = 〈grad P r, Y 〉grad P r + Y ⊥.

Consider the subspace Vx ⊂ TxM defined by

f∗Vx = f∗TxM ∩ Tz(x)P ⊂ Tf(x)N

whose dimension is at least n − ` ≥ 2. Since XP = f∗X for any X ∈ Vx, from (6.5)
and (6.6) we obtain

Hess g(x)(X,X) ≥ ψ′(r(z(x)))(Cb(r(z(x)))‖X‖2 + 〈grad P r(z(x)), α(X,X)〉)
≥ ψ′(r(z(x)))(Cb(r(z(x)))‖X‖2 − ‖α(X,X)‖).

Hence
1

k
‖X‖2 ≥ ψ′(r(z(xk)))(Cb(r(z(xk)))‖X‖2 − ‖α(X,X)‖)
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for any xk and X ∈ Vxk . Therefore

‖α(X,X)‖ ≥
(
Cb(r(z(xk)))−

1

kψ′(r(z(xk)))

)
‖X‖2.

Since

Cb(r(z(xk))) >
1

kψ′(r(z(xk)))

for k sufficiently large, and

dimVxk ≥ n− ` > m+ `− n = dimNfM(xk),

we can apply Lemma 6.3 to

α|Vxk×Vxk : Vxk × Vxk → NfM(xk).

We obtain linearly independent vectors Xk, Yk ∈ Vxk such that

α(Xk, Xk) = α(Yk, Yk) and α(Xk, Yk) = 0.

We may assume ‖Xk‖ ≥ ‖Yk‖. Setting σk = span{Xk, Yk}, the Gauss equation yields

Kf (σk) = Kα(σk)

≥
(
‖α(Xk, Xk)‖
‖Xk‖2

)2

≥
(
Cb(r(z(xk)))−

1

kψ′(r(z(xk)))

)2

,

and the conclusion follows by letting k → +∞. �

Remarks 6.10. (i) If follows from the proof that Theorem 6.9 is still valid under the
weaker assumption that the weak maximum principle for the Hessian holds on Mn.
The latter only requires conditions (i) and (iii) in the definition of the Omori-Yau
maximum principle for the Hessian.

(ii) The weak maximum principle for the Hessian holds on Mn if the manifold is
complete and there exist ϕ ∈ C2(M) and a constant k > 0 such that ϕ(x) → +∞ as
x→∞ and

Hessϕ ≤ kϕ〈 , 〉
outside a compact set of Mn; see Theorem 2.10 in [14].

For ` = 0, the assumption on f reduces to f(M) being bounded, and this implies,
in particular, the following result.

Corollary 6.11. Let f : Mn → Nm, m ≤ 2n − 1, be an isometric immersion of a
complete Riemannian manifold into a Hadamard manifold. Assume that the scalar
curvature of Mn is bounded from below. If f has nonpositive extrinsic curvature at any
point x ∈Mn and for every plane σ ⊂ TxM , then f(M) is unbounded.
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6.3 Florit’s nullity estimate

The aim of this section is to prove a sharp estimate of the index of relative nullity
of an isometric immersion with nonpositive extrinsic curvature.

We start with a key fact on asymptotic vectors of a symmetric bilinear form
α : V n × V n → W p satisfying Kα ≤ 0. We always assume that W p is endowed with a
positive definite inner product and denote by A(α) the set of asymptotic vectors of α.
For a given X0 ∈ V n, set

Lα(X0) = α(X0, ) : V n → W p.

Lemma 6.12. Let α : V n × V n → W p be a symmetric bilinear form with Kα ≤ 0.
Then for any X0 ∈ A(α) we have

S(α|V̂×V̂ ) ⊂ Ŵ

where V̂ = kerLα(X0) and Ŵ = ImLα(X0)⊥.

Proof: Take Z ∈ V̂ and Y ∈ V n. Then for all t ∈ R we have

0 ≥ Kα(X0 + tY, Z) = 〈2tα(X0, Y ) + t2α(Y, Y ), α(Z,Z)〉 − t2‖α(Y, Z)‖2

= 2t〈α(X0, Y ), α(Z,Z)〉+ t2Kα(Y, Z).

Thus
〈α(X0, Y ), α(Z,Z)〉 = 0,

and the statement follows using the symmetry of α. �

Given a symmetric bilinear form α : V n × V n → W p with Kα ≤ 0, a vector
subspace T ⊂ V n is called an asymptotic subspace of α if α(X, Y ) = 0 for all X, Y ∈ T .

The next result provides a stronger version of part (i) of Corollary 6.2.

Proposition 6.13. Let α : V n×V n → W p be a symmetric bilinear map with Kα ≤ 0.
Then there exists an asymptotic subspace T ⊂ V n of α such that dimT ≥ n− p.

Proof: Using Lemma 6.12, we inductively construct a sequence of pairs of subspaces

(V,W ) = (V0,W0) ⊃ (V1,W1) ⊃ · · · ⊃ (Vk,Wk) ⊃ · · ·

and symmetric bilinear maps αk = α|Vk×Vk : Vk × Vk → Wk such that

nk = dimVk = n−
k−1∑
i=0

ri and pk = dimWk = p−
k−1∑
i=0

ri

where
ri = max {dim ImLαi(X) : X ∈ A(αi)}.
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In fact, assuming that Vi, Wi and αi, 0 ≤ i ≤ k, have been defined, choose Xk ∈ A(αk)
such that

rk = dim ImLαk(Xk)

= max {dim ImLαk(X) : X ∈ A(αk)}

and set

Vk+1 = kerLαk(Xk), Wk+1 = ImLαk(Xk)
⊥ ⊂ Wk and αk+1 = α|Vk+1×Vk+1

.

Then
S(αk+1) ⊂ Wk+1

by Lemma 6.12, and therefore the construction can be extended up to k + 1.
There must exist a positive integer m such that rm = 0. This means that

T = A(αm) = N(αm).

It follows from part (i) of Corollary 6.2 that

S ∩ T = S ∩ A(αm) 6= {0}

for any subspace S ⊂ Vm with dim S > pm. Therefore

dimT ≥ nm − pm = n− p.

Moreover, since αm = α|Vm×Vm , then T is an asymptotic subspace of α. �

The following result estimates the dimension of the kernel of a symmetric bilinear
map α with Kα ≤ 0 in terms of the dimension of an asymptotic subspace of α.

Proposition 6.14. Let α : V n×V n → W p be a symmetric bilinear map with Kα ≤ 0.
If T is an asymptotic subspace of α, then dimN(α) ≥ dim T − p.

Proof: Set
β = α|T ′×T : T ′ × T → W p.

where V n = T ′ ⊕ T . Take Y0 ∈ RE(β) and define

BY0 = β(Y0, ).

Given Z ′ ∈ kerBY0 ⊂ T, Z ∈ T and Y ∈ T ′, using that T is asymptotic gives

Kα(Y0 + tZ, Y + sZ ′) = 〈α(Y0, Y0) + 2tα(Y0, Z), α(Y, Y ) + 2sα(Y, Z ′)〉
− ‖α(Y0 + tZ, Y + sZ ′)‖2

for all s, t ∈ R. Since α(Y0, Z
′) = 0 we obtain

Kα(Y0 + tZ, Y + sZ ′) = Kα(Y0, Y )− t2‖α(Z, Y )‖2 + 2t〈α(Y0, Z), α(Y, Y )〉
− 2t〈α(Y0, Y ), α(Z, Y )〉+ 2s〈α(Y0, Y0), α(Y, Z ′)〉
+ 2st〈α(Y0, Z), α(Y, Z ′)〉.



164 6.3. Florit’s nullity estimate

In view of the hypothesis on Kα, that the right-hand side is linear in s implies that

〈α(Y0, Y0), α(Y, Z ′)〉+ 2t〈α(Y0, Z), α(Y, Z ′)〉 = 0

for all t ∈ R. Hence
〈α(Y0, Z), α(Y, Z ′)〉 = 0,

and therefore
β(Y, kerBY0) ⊂ (BY0(T ))⊥

for all Y ∈ T ′. This and Proposition 4.6 imply that α(Y,X) = 0 for all Y ∈ T ′ and
that X ∈ kerBY0 . But since kerBY0 ⊂ T , we see that kerBY0 ⊂ N(α). Then

dimN(α) ≥ dim kerBY0

= dimT − dimBY0(T )

≥ dimT − p,

as we wished. �

Theorem 6.15. Let f : Mn → M̃n+p be an isometric immersion between Riemannian
manifolds. If there exists a point x0 ∈Mn such that Kf (σ) ≤ 0 for all σ ∈ Tx0M , then
the index of relative nullity satisfies ν(x0) ≥ n− 2p.

Proof: It follows from the Gauss equation and Propositions 6.13 and 6.14. �

That the estimate in Theorem 6.15 is sharp is shown by the following example.

Example 6.16. Let U2 ⊂ R3 be a surface with negative Gaussian curvature at some
point x0 ∈ U2. Then the product immersion of p factors

U2 × · · · × U2 → R3p

satisfies ν(x0, . . . , x0) = 0 = n− 2p.

The case in which a submanifold f : Mn → Rn+p has constant index of relative
nullity ν = n − 2p was considered by Florit-Zheng [187]. They obtained the result
given next without proof.

Theorem 6.17. Let f : Mn → Rn+p be an isometric immersion of a Riemannian
manifold with sectional curvature KM ≤ 0. Assume that the index of relative nullity
satisfies ν = n − 2p at any point. Then each point of an open dense subset U ⊂ Mn

has an open neighborhood V ⊂ U that splits as a Riemannian product of manifolds
V = Mn1

1 × · · · ×M
np
p with KMi

≤ 0 such that f |V = f1 × · · · × fp is a product of
hypersurfaces fj : M

nj
j → Rnj+1, 1 ≤ j ≤ p.

The above result has the following application.

Corollary 6.18. Let f : Mn → Qn+p
c be an isometric immersion of a Riemannian

manifold with sectional curvature KM ≤ c and Ricci curvature RicM < c. If 2p ≤ n,
then c = 0, n = 2p and f splits locally as a product of p surfaces in R3 with negative
Gauss curvature. Moreover, if Mn is a Hadamard manifold then the splitting is global.



Chapter 6. Submanifolds with nonpositive extrinsic curvature 165

6.4 Notes

The idea of the proof that any compact surface in R3 must have a point of
positive Gauss curvature was first taken up by Tompkins [335], who has shown that a
compact flat n-dimensional Riemannian manifold cannot be isometrically immersed in
R2n−1. This result inspired the seminal paper of Chern-Kuiper [86], where Lemma 6.1
was proved for dimensions n = 2, 3 and conjectured to be true for any dimension.
This conjecture was proved by Otsuki [284] for λ = 0 who, consequently, obtained
Theorem 6.4 for all dimensions.

The Chern-Kuiper result gave rise to a long series of works, among others, by
O’Neill [276], Moore [254], Jorge-Koutroufiotis [226] (Corollary 6.11), Pigola-Rigoli-
Setti [292] and, finally, by Aĺıas-Bessa-Montenegro [10], who obtained Theorem 6.9
on cylindrically bounded submanifolds. See also the work of Canevari-Freitas-Manfio
[51]. The result on the maximum principle used in the proof of Theorem 6.6 is due
to Pigola-Rigoli-Setti [292] and can be found in [14]. For the version of the Hessian
comparison theorem used here we refer to [14] or [293]. Several related results, obtained
with techniques similar to those in the proof of Theorem 6.9, are given in Chapter 5 of
[14]. See also [9], [11], [12] and [13].

Finally, the nullity estimate on submanifolds with nonpositive extrinsic curvature
given by Theorem 6.15 is due to Florit [181]. Concerning Theorem 6.17 (respectively,
Corollary 6.18), Florit-Zheng [188] considered the more difficult case in which the index
of relative nullity satisfies ν = n − 2p + 1 (respectively, the codimension of f satisfies
2p ≤ n+ 1). Theorem 6.17 has been extended to submanifolds of nonflat space forms
by Florit [183].

6.5 Exercises

Exercise 6.1. Show that Corollary 6.11 is false if the ambient space is not simply
connected.

Exercise 6.2. Let M̃m be a Riemannian manifold. Assume that there exists a con-
stant b ≤ 0 (respectively, b > 0) such that the radial sectional curvatures Krad

M̃
of M̃m

along geodesics issuing from o ∈ M̃m satisfy Krad
M̃

(x) ≤ b for all x ∈ M̃m (respectively,

for all x ∈ Bπ/
√
b(o)). If f : Mn → M̃m is an isometric immersion of a compact Rie-

mannian manifold such that f(M) ⊂ Bπ/
√
b(o) if b > 0, show that there exists x0 ∈Mn

and ξ ∈ NfM(x0) such that Afξ is positive definite.

Hint: Consider the function γ : M̃m → R given by γ(x) = (1/2)r2(x), where r(x) is the
distance from x to o. Let x0 be a point of Mn where g = γ ◦ f attains its maximum.
Show that ξ = −grad γ(f(x0)) ∈ NfM(x0). Use the Hessian comparison theorem to
obtain

Hess γ(f∗X, f∗X) ≥ r(x0)Cb(r(x0))‖X‖2

for all X ∈ Tx0M . Then use formula (1.6) as in the proof of Corollary 1.6 to conclude
that Afξ is positive definite.
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Exercise 6.3. Show that the estimate given by Theorem 6.9 is sharp.

Exercise 6.4. Let Mn = Nn1
1 ×Nn2

2 be the Riemannian product of two Riemannian
manifolds. Assume that there exists a point (x1, x2) ∈Mn such that

KN1(x1), KN2(x2) ≤ c

for some constant c > 0. Show that there exists no isometric immersion of Mn into
Sn+p
c if 2p < n.



Chapter 7

Submanifolds with relative nullity

Several of the results of Chapters 4 and 6 have provided relevant geometric con-
ditions under which a submanifold of a space form must have positive index of relative
nullity at any point. The aim of this chapter is to study submanifolds that have this
property.

According to Proposition 1.18, on each open subset where the index of relative
nullity is a positive constant, the submanifold is foliated by totally geodesic submani-
folds of the ambient space. It turns out that this imposes severe restrictions on complete
submanifolds of low codimension, due to the fact that the leaves of the minimum rel-
ative nullity foliation of a complete submanifold are also complete. Among the main
applications are Hartman’s splitting theorem for complete Euclidean submanifolds with
nonnegative Ricci curvature, and Dajczer-Gromoll’s generalization of the rigidity of the
totally geodesic inclusion of a round sphere Sn into Sn+p, p ≤ n−1. These results will be
proved after developing the necessary tools, especially the splitting tensor of a totally
geodesic foliation.

A useful parametrization of any oriented hypersurface with constant index of
relative nullity of a space form, called the Gauss parametrization, is subsequently
discussed. Some applications are provided, including a strong rigidity property of com-
plete minimal hypersurfaces of the Euclidean space and the classification of Euclidean
hypersurfaces with constant scalar curvature and type number two at any point.

The chapter ends with a discussion of intrinsically homogeneous hypersurfaces of
space forms that includes a proof of Cartan’s fundamental formula for isoparametric
hypersurfaces.

7.1 The splitting tensor

Let Mn be a Riemannian manifold and let D be a smooth distribution on Mn.
Let D⊥ denote the distribution on Mn that assigns to each x ∈ Mn the orthogonal
complement of D(x) in TxM . According to the orthogonal splitting TM = D ⊕ D⊥,
we write

X = Xv +Xh

167
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for any X ∈ X(M). We denote

∇h
XY = (∇XY )h

for all X, Y ∈ X(M).
The splitting tensor C of D is the map C : Γ(D)× Γ(D⊥)→ Γ(D⊥) defined by

C(T,X) = −∇h
XT.

It is clear that C is C∞(M)-linear with respect to the second variable. That it is
also C∞(M)-linear with respect to the first variable follows from

C(ϕT,X) = −∇h
XϕT = −ϕ∇h

XT = ϕC(T,X).

Therefore the value of C(T,X) at x ∈ Mn depends only on the values of T and X
at that point. Hence, for all x ∈ Mn and T ∈ D(x), the map C gives rise to an
endomorphism

CT : D⊥(x)→ D⊥(x),

which we call the splitting tensor of D at x with respect to T . Accordingly, we usually
regard C as a map

C : Γ(D)→ Γ(End(D⊥)).

Notice that the distribution D⊥ is integrable if and only if CT is self-adjoint for
all T ∈ Γ(D), for

〈CTX, Y 〉 − 〈X,CTY 〉 = −〈∇h
XT, Y 〉+ 〈X,∇h

Y T 〉
= 〈∇XY −∇YX,T 〉
= 〈[X, Y ], T 〉

for all X, Y ∈ Γ(D⊥) and T ∈ Γ(D). In this case, CT is precisely the shape operator
with respect to T of the inclusion of the leaves of D⊥ into Mn.

Notice also that C vanishes identically if and only if D⊥ is totally geodesic, for

〈CTX, Y 〉 = −〈∇XT, Y 〉
= 〈∇XY, T 〉

for all X, Y ∈ Γ(D⊥) and T ∈ Γ(D). More generally, the image of the splitting tensor
C is spanned by the identity endomorphism of D⊥ if and only if the distribution D⊥

is umbilical. In fact, there exists S ∈ Γ(D) such that

CT = 〈T, S〉I

for all T ∈ Γ(D) if and only if

〈∇XY, T 〉 = −〈∇XT, Y 〉
= 〈CTX, Y 〉
= 〈T, S〉〈X, Y 〉
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for all X, Y ∈ Γ(D⊥) and T ∈ Γ(D). This is the condition for D⊥ to be umbilical with
mean curvature vector field S.

For later use, in particular in the next section, given a smooth distribution D on
a Riemannian manifold Mn and B ∈ Γ(End(D⊥)), we define ∇h

XB ∈ Γ(End(D⊥)) by

(∇h
XB)Y = ∇h

XBY −B∇h
XY (7.1)

for all X ∈ X(M) and Y ∈ Γ(D⊥).

7.1.1 The splitting tensor of the relative nullity distribution

In the sequel we derive some useful formulas that are satisfied by the splitting
tensor associated with the relative nullity distribution ∆ of a submanifold of a space
form. In fact, we consider a slightly more general situation as seen next.

Given an isometric immersion f : Mn → Qm
c , let D be a smooth totally geodesic

distribution such that D(x) ⊂ ∆(x) for all x ∈ Mn. Since ∇SX ∈ Γ(D⊥) for all
S ∈ Γ(D) and X ∈ Γ(D⊥) because D is totally geodesic, we write simply ∇SCT for
the covariant derivative ∇h

SCT defined in (7.1)of the splitting tensor CT ∈ Γ(End(D⊥))
with respect to S ∈ Γ(D). Thus

(∇SCT )X = ∇SCTX − CT (∇SX)

for all S ∈ Γ(D) and X ∈ Γ(D⊥).

Proposition 7.1. The differential equation

∇TCS = CSCT + C∇TS + c〈T, S〉I (7.2)

holds for all S, T ∈ Γ(D). In particular, the operator Cγ′ along a unit-speed geodesic γ
contained in a leaf of D satisfies the differential equation

D

dt
Cγ′ = C2

γ′ + cI. (7.3)

Proof: By the definition of the splitting tensor we have

(∇TCS)X = −∇T∇h
XS − CS∇TX

for all X ∈ Γ(D⊥) and S, T ∈ Γ(D). Since D is totally geodesic we obtain

∇T∇h
XS = ∇h

T∇h
XS and ∇h

T∇v
XS = 0.

Hence
(∇TCS)X = −∇h

T∇XS − CS∇TX. (7.4)

The Gauss equation gives

∇X∇TS −∇T∇XS −∇[X,T ]S = R(X,T )S = c〈T, S〉X.



170 7.1. The splitting tensor

Taking the D⊥-components and using that ∇h
[X,T ]vS = 0 yield

−∇h
T∇XS = C∇TSX +∇h

∇hXT
S −∇h

∇hTX
S + c〈T, S〉X

= C∇TSX + CSCTX + CS∇TX + c〈T, S〉X,

and the result follows by substituting the preceding expression in (7.4). �

Proposition 7.2. The differential equation

(∇h
XCT )Y − (∇h

YCT )X = C∇vXTY − C∇vY TX (7.5)

holds for all X, Y ∈ Γ(D⊥) and T ∈ Γ(D).

Proof: We first compute

(∇h
XCT )Y = ∇h

XCTY − CT∇h
XY

= −∇h
X∇h

Y T − CT∇h
XY

= −∇h
X∇Y T +∇h

X∇v
Y T +∇h

∇hXY
T

= −∇h
X∇Y T − C∇vY TX +∇h

∇hXY
T.

Therefore

(∇h
XCT )Y − (∇h

YCT )X = −Rh(X, Y )T −∇h
[X,Y ]vT + C∇vXTY − C∇vY TX

= C∇vXTY − C∇vY TX

since ∇h
[X,Y ]vT = 0 and R(X, Y )T = 0 by the Gauss equation. �

The shape operators in the following statement are considered restricted to D⊥.

Proposition 7.3. The differential equation

∇TAξ = AξCT + A∇⊥T ξ (7.6)

holds for all T ∈ Γ(D) and ξ ∈ Γ(NfM). In particular, the endomorphism AξCT of
D⊥ is symmetric, that is,

AξCT = Ct
TAξ. (7.7)

Proof: The Codazzi equation

(∇TAξ)X − A∇⊥T ξX = (∇XAξ)T − A∇⊥XξT

for all X ∈ Γ(D⊥) and T ∈ Γ(D) gives

(∇TAξ)X = −Aξ∇XT + A∇⊥T ξX,

and (7.6) follows. �
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7.1.2 Submanifolds with umbilical conullity

Given an isometric immersion f : Mn → Qm
c with constant index of relative

nullity, the simplest possible structures of the splitting tensor of its relative nullity
distribution ∆ occur when either C vanishes identically or C(Γ(∆)) is spanned by
the identity endomorphism of the conullity distribution ∆⊥. As already observed right
before Section 7.1.1, they correspond to the cases in which ∆⊥ is either totally geodesic
or umbilical, respectively. In this section we determine the isometric immersions with
either of these properties.

Given an isometric immersion g : Mn−k → Rm−k, set Mn = Mn−k×Rk and define
f : Mn → Rm by f = g × id, where id : Rk → Rk is the identity map. We call f a
k-cylinder over g, or simply a cylinder over g. When it is unimportant which is the
isometric immersion g, we just say that f is a k-cylinder .

Proposition 7.4. Let f : Mn → Qm
c be an isometric immersion and let D be a smooth

totally geodesic distribution of rank 0 < k < n such that D(x) ⊂ ∆(x) for all x ∈Mn.
If the distribution D⊥ is totally geodesic, then c = 0 and f is locally a k-cylinder.

Proof: Since the splitting tensor C of D vanishes identically, it follows from (7.2) that
c = 0. Because the distribution D⊥ is totally geodesic,

∇̃Xf∗T = f∗∇XT ∈ Γ(f∗D)

for all X ∈ Γ(D⊥) and T ∈ Γ(D), where ∇̃ is the induced connection on f ∗TRm. Thus
f∗D is constant in Rm along any leaf Σ of D⊥. Defining Mn−k = Σ and g = f ◦ i, where
i : Σ→Mn is the inclusion, this implies that the immersion g reduces codimension to
m− k and that f coincides locally with the cylinder over g. �

Corollary 7.5. Let f : Mn → Qm
c be an isometric immersion of a Riemannian product

Mn = Mn−k ×Mk such that the tangent spaces to the second factor are contained in
the relative nullity subspaces of f at any point. Then c = 0 and there exist an isometric
immersion g : Mn−k → Rm−k and a local isometry i : Mk → Rk such that f = g × i,
that is, f(M) is an open subset of (the image of) a k-cylinder over g.

Let g : Mn−k → Qm−k
c̃ be an isometric immersion and let i : Qm−k

c̃ → Qm
c , c̃ ≥ c,

be an umbilical inclusion. Then the normal bundle of g̃ = i ◦ g splits as

Ng̃M
n−k = i∗NgM

n−k ⊕NiQm−k
c̃ .

Thus we may regard L = NiQm−k
c̃ as a subbundle of Ng̃M

n−k. Define f : L→ Qm
c by

f(x, v) = expg̃(x) v,

where exp is the exponential map of Qm
c . We call the restriction of f to the open subset

of its regular points the generalized cone over g.
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Proposition 7.6. Let f : Mn → Qm
c be an isometric immersion with constant index

of relative nullity ν > 0. If the conullity distribution is umbilical, then f coincides
locally with the generalized cone over an isometric immersion g : Mn−ν → Qm−ν

c̃ into
an umbilical submanifold Qm−ν

c̃ of Qm
c .

Proof: Let j : Σ → Mn be the inclusion of a leaf Σ of ∆⊥ into Mn, and let g̃ = f ◦ j.
Then the normal bundle Ng̃Σ of g̃ splits as

Ng̃Σ = f∗NjΣ⊕NfM = f∗∆⊕NfM.

By assumption, there exists S ∈ Γ(∆) such that

CT = 〈T, S〉I

for all T ∈ Γ(∆). Thus

∇̃Xf∗T = f∗∇XT + αf (X,T )

= −f∗CTX + f∗∇v
XT

= −〈T, S〉f∗X + f∗∇v
XT

for all T ∈ Γ(∆), where ∇̃ is the induced connection on f ∗TQm
c . It follows that the

subbundle L = f∗∆ of Ng̃Σ is parallel with respect to the normal connection, and that
the shape operator of g̃ with respect to any section η = f∗T of L, with T ∈ Γ(∆), is
given by

Ag̃η = 〈T, S〉I.

By Exercise 2.14, g̃(Σ) is contained in an umbilical submanifold Qm−ν
c̃ of Qm

c , that
is, there exist an umbilical inclusion i : Qm−ν

c̃ → Qm
c and an isometric immersion

g : Mn−ν = Σ → Qm−ν
c̃ such that g̃ = i ◦ g. Moreover, at any x ∈ Σ the fiber

L(x) = f∗∆(x) coincides with the normal space of i at g(x). Therefore the generalized
cone over g coincides locally with f . �

7.2 Completeness of the relative nullity foliation

Most of the results of this section rely on the fundamental fact that the leaves of
the minimum relative nullity distribution of a complete submanifold of a space form
are also complete. This is a consequence of the following result.

Theorem 7.7. Let f : Mn → Qm
c be an isometric immersion and let U ⊂ Mn be an

open subset where the index of relative nullity ν = s is positive. If γ : [0, b]→Mn is a
unit-speed geodesic such that γ([0, b)) is contained in a leaf of ∆ in U , then ∆(γ(b)) =
Pb0(∆(γ(0)), where Pt0 denotes the parallel transport along γ from γ(0) to γ(t). Hence
ν(γ(b)) = s. Moreover, the splitting tensor Cγ′ extends smoothly to γ(b) and (7.6)
holds on [0, b].
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Proof: First we show that there exists a unique solution

t ∈ [0, b) 7→ T (t) : ∆⊥(γ(t))→ ∆⊥(γ(t))

of the differential equation
D

dt
T + Cγ′T = 0 (7.8)

with initial condition T (0) = I. To see this, choose an orthonormal basis Y1, . . . , Yn−s
of ∆⊥(γ(0)) and parallel transport Yj along γ[0, b) for 1 ≤ j ≤ n−s. Since ∆ is totally
geodesic, then ∆⊥ is parallel along γ, and hence Yj(t) ∈ ∆⊥(γ(t)) for all t ∈ [0, b),
1 ≤ j ≤ n− s. If T (t) : ∆⊥(γ(t))→ ∆⊥(γ(t)) is given by

T (t)Yj(t) =
n−s∑
i=1

aij(t)Yi(t), (7.9)

then (7.8) is equivalent to the ordinary linear differential matrix equation of first order

A′(t) + C(t)A(t) = 0 (7.10)

where A(t) = (aij(t)) and C(t) is the matrix of Cγ′(t) with respect to Y1(t), . . . , Yn−s(t).
Thus the unique solution of (7.8) with initial condition T (0) = I is given by (7.9),
where A(t) = (aij(t)) is the unique solution of the ordinary linear differential equation
of first order (7.10) whose initial condition A(0) is the identity matrix.

Next we argue that T is also a solution on [0, b) of the second order differential
equation with a constant coefficient

D2

dt2
T + cT = 0.

In fact, using (7.3) and (7.8) we have

−D
dt

(
D

dt
T

)
=
D

dt
(Cγ′T )

=

(
D

dt
Cγ′

)
T + Cγ′

DT

dt

= (C2
γ′ + cI)T − Cγ′(Cγ′T )

= cT.

It follows that T extends smoothly to t = b as an endomorphism of Pb0(∆⊥(γ(0)).
Now let Z and Y be parallel vector fields along γ such that Z is arbitrary and

Y (t) ∈ ∆⊥(γ(t)) in [0, b). Denoting by X an extension of γ′ in U , along γ we have

∇⊥γ′α(TY, Z) = (∇⊥Xα)(TY, Z) + α(DTY/dt, Z)

= (∇⊥TY α)(X,Z) + α(DTY/dt, Z)

= −α(∇TYX,Z) + α(DTY/dt, Z)

= α(Cγ′TY +DTY/dt, Z)

= 0.
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Thus α(TY, Z) is parallel along γ, and hence T is invertible in [0, b]. Moreover, since
Pb0(∆(γ(0)) ⊂ ∆(γ(b)) by continuity, it follows that Pb0(∆⊥(γ(0)) = ∆⊥(γ(b)). In
addition, Cγ′ extends smoothly to [0, b] as Cγ′ = −DT/dt ◦ T−1. �

Corollary 7.8. Let Mn be a complete Riemannian manifold and let f : Mn → Qm
c be

an isometric immersion with positive index of relative nullity ν at any point. Then the
leaves of the relative nullity distribution are complete on the open subset where ν = ν0

is minimal.

7.2.1 The case of pairs of immersions

We discuss next the case of pairs of isometric immersions. The results in this
section will be of use in Chapter 13.

Given isometric immersions f : Mn → Qn+p
c and f̂ : Mn → Qn+q

c with second
fundamental forms α and α̂, respectively, endow the vector bundle NfM ⊕Nf̂M with
the indefinite metric of signature (p, q) given by

〈〈(ξ, ξ̂), (η, η̂)〉〉NfM⊕Nf̂M = 〈ξ, η〉NfM − 〈ξ̂, η̂〉Nf̂M

and the compatible connection ∇∗ = (f∇⊥, f̂∇⊥). Then the symmetric bilinear map

β = α⊕ α̂ : X(M)× X(M)→ Γ(NfM ⊕Nf̂M),

which can be regarded as a section of Hom2(TM, TM ;NfM ⊕ Nf̂M), satisfies the
Codazzi-type equation

(∇∗Xβ)(Y, Z) = (∇∗Y β)(X,Z) (7.11)

for all X, Y, Z ∈ X(M). At x ∈Mn denote

∆∗(x) = N(β)(x) = ∆f (x) ∩∆f̂ (x)

and ν∗(x) = dim ∆∗(x). Clearly, the distribution ∆∗ is smooth and totally geodesic
along any open subset of Mn where ν∗ is constant.

Taking into account that the proof of Theorem 7.7 relies only on the fact that
the second fundamental form of an isometric immersion f : Mn → Qn+p

c satisfies the
Codazzi equation, its proof can be easily adapted to yield the following results for pairs
of isometric immersions.

Theorem 7.9. Let f : Mn → Qn+p
c and f̂ : Mn → Qn+q

c be isometric immersions,
and let U ⊂ Mn be an open set where the dimension of ∆∗ satisfies ν∗ = s > 0. If
γ : [0, b]→ Mn is a geodesic such that γ([0, b)) is contained in a leaf of ∆∗ in U , then
also ν∗(γ(b)) = s. Moreover, the splitting tensor Cγ′ of ∆∗ extends smoothly to γ(b)
and equation (7.6) holds on [0, b].

Corollary 7.10. Let Mn be a complete Riemannian manifold, and let f : Mn → Qm
c

and f̂ : Mn → Qn+q
c be isometric immersions such that the index ν∗ is positive at any

point. Then the leaves of ∆∗ are complete on the open subset where ν∗ = ν∗0 is minimal.
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7.2.2 The spherical case

The completeness of the leaves of relative nullity has strong consequences for
complete submanifolds of the sphere with positive index of relative nullity at any point,
as shown by the main result in this section.

Theorem 7.11. Let f : Mn → Smc be an isometric immersion of a complete Rieman-
nian manifold with positive index of relative nullity ν at any point. Then, at any point
where ν = ν0 is minimal, and for any normal direction at that point, the numbers of
positive and negative principal curvatures are equal.

Proof: Let
U = {x ∈Mn : ν(x) = ν0}

and let γ : [0,∞) → Mn be a geodesic contained in a leaf L of the relative nullity
foliation of U . Take ξ ∈ Nγ(0)M and let ξt be its parallel transport along γ with
respect to the normal connection. It follows from (7.6) and (7.7) that the equation

∇γ′(t)Aξt = AξtCγ′(t)

= Ct
γ′(t)Aξt

holds for Aξt |∆⊥ . Let Z1(t), . . . , Zn−ν0(t) be a parallel orthonormal frame of ∆⊥ along
γ. Then the matrix A(t) of Aξt|∆⊥ with respect to Z1(t), . . . , Zn−ν0(t) satisfies the
linear differential equation

A′(t) = Ct(t)A(t)

where C(t) is the matrix of Cγ′(t) with respect to Z1(t), . . . , Zn−ν0(t). In Exercise 7.3
the reader is asked to prove that the rank of A(t) is constant on [0,∞). It follows
that Aξt has constant rank along γ, and hence the numbers of positive and negative
eigenvalues remain constant along γ.

On the other hand, according to Corollary 7.8, f embeds the leaf L onto a totally
geodesic sphere Sν0 . Hence the antipodal map I = −id : Smc → Smc induces an involution
τ on U satisfying f ◦ τ = I ◦ f . Therefore, at any x ∈ U , the second fundamental form
of f satisfies

AI∗ξτ∗X = τ∗AξX

for all X ∈ TxM and ξ ∈ NfM(x).
Let i : Smc → Rm+1 denote the standard inclusion and let ∇̃ be the induced

connection on (i ◦ f)∗TRm+1. Then

∇̃γ′(t)i∗ξt = i∗(−f∗Aξtγ′(t) +∇⊥γ′(t)ξt)
= 0,

hence i∗ξt is constant in Rm+1 along γ. In particular, ξ(τ(x)) = −I∗ξ(x), and thus

Aξ(τ(x))τ∗X = −τ∗Aξ(x)X.

It follows that the number of positive eigenvalues of Aξ(x) is equal to the number of
negative eigenvalues of Aξ(τ(x)). Since the numbers of positive and negative eigenvalues
are constant along γ, the statement follows. �
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Corollary 7.12. Let f : Mn → Smc be an isometric immersion of a complete Rieman-
nian manifold with positive index of relative nullity ν at any point. Suppose that at
some point x ∈ Mn where ν is minimal the Ricci curvature satisfies RicM ≥ c. Then
f is totally geodesic.

Proof: If f was not totally geodesic at x, we would have H 6= 0 from (3.8), and then
AH|∆⊥ would be positive definite at x, in contradiction with Theorem 7.11. �

By the preceding corollary, if an isometric immersion f : Mn → Smc of a complete
Riemannian manifold is not totally geodesic and has constant positive index of relative
nullity, then RicM < c at any point. Examples of this situation are the minimal
(homogeneous) isoparametric hypersurfaces with three distinct principal curvatures
(cf. [249] and [250]). Recall that a hypersurface is called isoparametric if all of its
principal curvatures are constant.

An important consequence of Corollary 7.12 is that the totally geodesic inclusion
i : Snc → Sn+p

c is rigid if 1 ≤ p ≤ n− 1.

Corollary 7.13. If f : Snc → Sn+p
c is an isometric immersion with 1 ≤ p ≤ n−1, then

f is totally geodesic.

Proof: Since the index of nullity µ is constant and equal to n, then Theorem 4.9 implies
that ν ≥ n− p > 0 at any point. The statement now follows from Corollary 7.12. �

Example 7.14. There exist nontotally geodesic isometric immersions f : Snc → S2n+1
c .

For instance, let φ : Rn+1 → R2n+2 be defined by

φ(x1, . . . , xn+1) =
1√
n+ 1

(ei
√
n+1x1 , . . . , ei

√
n+1xn+1),

and note that φ(Rn+1) ⊂ S2n+1 ⊂ R2n+2. If i : Sn → Rn+1 is the standard inclusion,
then the map f : Sn → S2n+1 ⊂ R2n+2, given by f = φ ◦ i, is a nontotally geodesic
isometric immersion.

7.2.3 The Euclidean case

We now consider isometric immersions f : Mn → Rm whose index of relative
nullity is positive at any point. The simplest examples are the k-cylinders. The main
result of this section is due to Hartman and states that these are the only possible
complete examples with nonnegative Ricci curvature.

Theorem 7.15. Let Mn be a complete manifold with nonnegative Ricci curvature and
let f : Mn → Rm be an isometric immersion with minimal index of relative nullity
ν0 > 0. Then f is a ν0-cylinder.
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The main step in the proof of Theorem 7.15 is Lemma 7.16 below. Given an
isometric immersion f : Mn → Rm, that f(M) contains s linearly independent lines
means that there exist s everywhere minimizing geodesics in Mn that intersect at
some point, have linearly independent tangent vectors at that point and are mapped
by f onto straight lines in Rm (therefore span an s-dimensional affine subspace of Rm).

Lemma 7.16. Let f : Rn → Rm be an isometric immersion such that f(Rn) contains
s linearly independent lines. Then f is an s-cylinder.

Proof: We may suppose that n = 2 and s = 1. Let L be a straight line in R2 such that
L̃ = f(L) is a straight line in Rm. First we show that any straight line r orthogonal to
L is mapped by f into the hyperplane H through f(L ∩ r) orthogonal to L̃.

Choose coordinates (x, y) in R2 and (u, v) = (u1, . . . , um−1, v) in Rm such that L,
r, L̃ and H have equations x = 0, y = 0, u = 0 and v = 0, respectively. Write

f(x, y) = (u(x, y), v(x, y)).

Since f maps L isometrically onto L̃ and the point O = r ∩ L is mapped by f into
H, we see that u(0, y) = 0 and v(0, y) = y for all y ∈ R, after changing v by −v, if
necessary. Then, we must prove that v(x, 0) = 0 for all x ∈ R.

We denote by d and d̃ the distances in R2 and Rm, respectively. Take p = (x0, 0)
and suppose that v(x0, 0) 6= 0. Then we may assume that

v(x0, 0) = c > 0. (7.12)

Choose q = (0, y0) ∈ L such that

y0 < 0 and 0 < d(p, q)− d(O, q) ≤ c/2. (7.13)

From (7.12), (7.13) and the fact that f is an isometric immersion, we obtain

|y0|+ c ≤ d̃(f(p), f(q)) ≤ d(p, q) ≤ |y0|+ c/2,

and that is not possible since c > 0. Hence v(x0, 0) = 0, as we wished to prove.
It follows that the function v(x, y) depends only on y, and hence v(x, y) = y,

because v(0, y) = y. Now, from

1 = ‖∂f/∂y‖2 = ‖uy(x, y)‖2 + 1,

we conclude that uy(x, y) = 0, and thus u(x, y) = u(x). �

Proof of Theorem 7.15. It follows from Corollary 7.8 that Mn contains ν0 linearly
independent lines through each point where the index of relative nullity is minimal.
By the splitting theorem of Cheeger-Gromoll, the Riemannian manifold Mn is isometric
to a Riemannian product Nn−ν0 × Rν0 , and we may consider f : Nn−ν0 × Rν0 → Rm.
Fix a point x0 ∈ Nn−ν0 and let γ : R → Nn−ν0 be any smooth unit-speed curve such
that γ(0) = x0. Consider the isometric immersion fγ : R× Rν0 → Rm given by

fγ(t, y) = f(γ(t), y).
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By Lemma 7.16 we have a splitting Rm = Rm−ν0 × Rν0 such that

fγ(t, y) = (hγ(t), y)

for some smooth map hγ : R → Rm−ν0 . Since the subspace Rν0 in the orthogonal
decomposition Rm = Rm−ν0 × Rν0 is the image Rν0 = fγ∗(t, y)Rν0 = f∗(γ(t))Rν0 of
the factor Rν0 in the orthogonal decomposition Mn = Nn−ν0 × Rν0 for every t ∈ R, it
follows that the splitting Rm = Rm−ν0 ×Rν0 depends neither on x0 nor on the curve γ.
Moreover, the map h : Nn−ν0 → Rm−ν0 defined by

h(x) = hγ(t),

where γ is any smooth unit-speed curve in Nn−ν0 such that γ(0) = x0 and γ(t) = x, is
well defined, for if γ̃ is another such curve with γ̃(0) = x0 and γ̃(t̃) = x, then

(hγ(t), y) = fγ(t, y) = f(γ(t), y) = f(γ̃(t̃), y) = fγ̃(t̃, y) = (hγ̃(t̃), y)

for any y ∈ Rν0 , hence hγ(t) = hγ̃(t̃). Thus

f(x, y) = f(γ(t), y) = fγ(t, y) = (hγ(t), y) = (h(x), y)

for all x ∈ Nn−ν0 and y ∈ Rν0 , which implies that h is an isometric immersion and
concludes the proof. �

The next result follows immediately from Theorem 7.15 and the Chern-Kuiper
inequality (4.6).

Corollary 7.17. If f : Mn → Rn+p, n ≥ 2 and 1 ≤ p ≤ n − 1, is an isometric
immersion of a complete flat Riemannian manifold, then f is a (n− p)-cylinder.

7.3 The Gauss parametrization

The aim of this section is to describe a useful parametrization of any oriented
hypersurface f : Mn → Qn+1

c with constant index of relative nullity ν = k.

The case of hypersurfaces of the sphere and the hyperbolic space will be derived
by considering their cones in Euclidean and Lorentzian spaces, respectively. Since
cones in the Lorentzian space over hypersurfaces of the hyperbolic space are Lorentzian
hypersurfaces, we start by developing the theory both for hypersurfaces of Euclidean
space Rn+1 and for Lorentzian hypersurfaces of Lorentzian space Ln+1.

Let Rn+1
µ stand for either Rn+1 or Ln+1, and let Sn1,µ ⊂ Rn+1

µ denote either the
Euclidean unit sphere Sn ⊂ Rn+1 or the Lorentzian unit sphere (or de Sitter space)
Sn1,1 ⊂ Ln+1, depending on whether µ = 0 or µ = 1, respectively. Hence

Sn1,µ = {x ∈ Rn+1
µ : 〈x, x〉 = 1},

where 〈 , 〉 is the inner product in Rn+1
µ . The starting point for the Gauss parametriza-

tion of an oriented hypersurface f : Mn → Rn+1
µ with constant index of relative nullity
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ν = k, with Lorentzian induced metric if µ = 1, is the fact that the Gauss map
η : Mn → Sn1,µ of such a hypersurface is constant in Rn+1

µ along the leaves of the rela-
tive nullity distribution ∆. Hence, if U ⊂ Mn is an open saturated subset (meaning
that U is a union of leaves of ∆), then η induces an immersion g : Ln−k → Sn1,µ on the
quotient space Ln−k of relative nullity leaves, given by

g ◦ π = η,

where π : U → Ln−k is the projection. We also refer to g in the sequel as the Gauss
map of f . If µ = 1 we also assume that the relative nullity subspaces of f are time-
like subspaces in the induced metric, which is always the case if f is the cone over a
hypersurface of the hyperbolic space Hn ⊂ Ln+1. With this assumption, even in this
case the quotient space Ln−k becomes a Riemannian manifold.

The support function γ ∈ C∞(M) of f , given by

γ = 〈f, i ◦ η〉,

where i : Sn1,µ → Rn+1
µ is the inclusion map, is also constant along the leaves of ∆, hence

it induces a function γ̄ ∈ C∞(L) given by γ̄ ◦π = γ. The Gauss parametrization allows
to recover f by means of g and γ̄, at least locally.

Denote h = i◦g. The basic observation is that the subspaces h∗Tx̄L and f∗∆
⊥(x)

coincide for any x̄ = π(x) ∈ Ln−k. This follows from the fact that

h∗X̄ = i∗η∗X = −f∗AX (7.14)

for any X̄ = π∗X ∈ Tx̄L. Therefore, if Λ = NgL denotes the normal bundle of g, then
i∗Λ(x̄) can be identified with f∗∆(x). Moreover, given any cross section ξ : Ln−k → U
to the submersion π : U → Ln−k, we can define a diffeomorphism ϕξ from U onto an
open neighborhood V of the zero section of Λ, in such a way that ξ(L) is mapped into
the zero section of Λ and the leaf of ∆ through x in U into the fiber of Λ at x̄ = π(x).
Explicitly,

ϕξ(x) = (x̄, f(x)− f(ξ(x̄))).

If θξ : V → U is the inverse of ϕξ, then

f(θξ(x̄, v)) = f(ξ(x̄)) + i∗v,

which is well defined and smooth on the whole normal bundle Λ, but may be singular
outside V .

In the sequel, we work with a natural cross section ξ defined locally as follows:
given x̄ = π(x) ∈ Ln−k, let ξ(x̄) be the unique point on the leaf Σ of ∆ through x such
that f(ξ(x̄)) is closest to the origin among the points on the affine subspace f(Σ). This
is equivalent to requiring the position vector f(ξ(x̄)) to be orthogonal to f∗∆(x), that
is, f(ξ(x̄)) must belong to the orthogonal complement of f∗∆(x) in Rn+1

µ , which is

f∗∆
⊥(x)⊕ span{η(x)} = h∗Tx̄L⊕ span{h(x̄)}.
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We claim that
f(ξ(x̄)) = γ̄(x̄)h(x̄) + h∗grad γ̄(x̄)

where grad γ̄ denotes the gradient of γ̄ in the induced metric of Ln−k. First, using that
the vector f(x)− f(ξ(x̄)) belongs to f∗∆(x), we obtain

〈f(ξ(x̄)), h(x̄)〉 = 〈f(ξ(x̄)), i(η(x))〉 = 〈f(x), i(η(x))〉 = γ(x)

= γ̄(x̄).

On the other hand, given Z̄ ∈ Tx̄L and Z ∈ ∆⊥(x) such that π∗(x)Z = Z̄, we have

〈f(ξ(x̄)), h∗Z̄〉 = 〈f(ξ(x̄)), i∗η∗Z〉 = 〈f(x), i∗η∗Z〉 = Z(γ) = Z̄(γ̄)

= 〈h∗∇γ̄, h∗Z̄〉,

and the claim follows.
Observe that the natural cross section ξ we have just constructed is global pro-

vided that the relative nullity leaves are complete. It follows that

f(θξ(x̄, v)) = γ̄(x̄)h(x̄) + h∗grad γ̄(x̄) + i∗v, (7.15)

called the Gauss parametrization of f .

We have just proved the converse statement of the following theorem.

Theorem 7.18. Let g : Ln−k → Sn1,µ be an isometric immersion of a Riemannian
manifold and let γ ∈ C∞(L). Denote h = i ◦ g, where i : Sn1,µ → Rn+1

µ is the inclusion
map, and consider the map ψ : Λ→ Rn+1

µ defined on Λ = NgL by

ψ(y, w) = γ(y)h(y) + h∗ grad γ(y) + i∗w. (7.16)

Then, on the open subset of regular points, ψ is an immersed hypersurface with constant
index of relative nullity ν = k.

Conversely, any hypersurface of Rn+1
µ having constant index of relative nullity

ν = k, and time-like relative nullity subspaces in the induced metric if µ = 1, can be
parametrized in this way, at least locally. The parametrization is global if the leaves of
the relative nullity distribution are complete.

The direct statement in the preceding theorem is a consequence of the assertion
in part (ii) of the following result, in which we collect other relations between the
geometric data of g and ψ for later use.

Proposition 7.19. The following assertions hold:

(i) The map ψ is regular at (y, w) ∈ Λ if and only if the self-adjoint operator

Pw(y) = γ(y)I + Hess γ(y)− Aw

on TyL is nonsingular, where Aw is the shape operator of g with respect to w.
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(ii) On the open subset V of regular points, ψ is an immersed hypersurface having
the map G : Λ→ Sn1,µ, given by

G(y, w) = g(y), (7.17)

as a Gauss map of rank n− k.

(iii) For any (y, w) ∈ V there exists a map j = j(y, w) : TyL → T(y,w)Λ, which is an
isometry onto the orthogonal complement ∆⊥(y, w) of the relative nullity subspace
∆(y, w) = NgL(y) of ψ at (y, w), such that

∇ξjX = 0 (7.18)

for all ξ ∈ ∆(y, w) and X ∈ X(L) and

Aj = −jP−1
w , (7.19)

where A is the shape operator of ψ at (y, w) with respect to G.

(iv) For any (y, w) ∈ V the splitting tensor Cξ : ∆⊥(y, w) → ∆⊥(y, w) of ∆ with
respect to ξ ∈ ∆(y, w) = NgL(y) is related to the shape operator Aξ of g at y by

Cξj = jAξP
−1
w . (7.20)

(v) The Levi-Civita connections of the metrics 〈 , 〉′ and 〈 , 〉 on Ln−k and V induced
by g and ψ, respectively, are related by

〈∇′
P−1
w X

Y, Z〉′ = 〈∇jXjY, jZ〉 (7.21)

for all X, Y, Z ∈ X(L).

(vi) The normal connection of g and the Levi-Civita connection of 〈 , 〉 are related by

〈∇jXξ, η〉 = 〈∇⊥
P−1
w X

ξ, η〉 (7.22)

for all X ∈ X(L) and ξ, η ∈ Γ(NgL). Here ξ ∈ Γ(NgL) is also regarded as an
element of Γ(∆) by defining ξ(y, w) = ξ(y) for all (y, w) ∈ V .

Proof: Given y ∈ Ln−k and w ∈ Λ(y), we denote by V(y, w) the vertical subspace of
T(y,w)Λ, the tangent space at (y, w) to the fiber Λ(y), which can be identified with
Λ(y) itself. Any vector in T(y,w)Λ that does not belong to V(y, w) is given by ζ∗X,
where X ∈ TyL and ζ ∈ Γ(NgU) is a local section of NgL with ζ(y) = w on an open
neighborhood U of y. We choose such a local section satisfying

ζ(y) = w and ∇⊥Xζ + α(X, grad γ) = 0

for all X ∈ TyL (see Exercise 7.6). Then, differentiating (7.16) we obtain

ψ∗(y, w)ζ∗(y)X = h∗(y)Pw(y)X (7.23)
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for all X ∈ TyL. Since ψ∗(y, w) is the identity map on V(y, w), the assertion in part
(i) follows from (7.23).

On the open subset of regular points of ψ, one can also write (7.23) as

ψ∗j = h∗, (7.24)

where j = j(y, w) : TyL→ T(y,w)Λ is given by

j(y, w) = ζ∗(y)P−1
w (y). (7.25)

In other words, if X ∈ TyL and β : I → Ln−k is a smooth curve defined on an open
interval 0 ∈ I such that β(0) = y and β′(0) = P−1

w X, then

j(y, w)X = (ζ ◦ β)′(0). (7.26)

In particular, if π̂ : Λ→ Ln−k is the projection, then

π̂∗j = P−1
w . (7.27)

It follows from (7.24) that j(TyL) is the orthogonal complement of V(y, w) in
T(y,w)Λ with respect to the metric induced by ψ, and that the map G : Λ→ Sn1,µ, given
by (7.17), is a Gauss map for ψ. Moreover,

− ψ∗Aζ∗ = i∗G∗ζ∗ = (i ◦G ◦ ζ)∗ = h∗ (7.28)

by the Weingarten equation of ψ. Using (7.24) and (7.28) we obtain

−ψ∗Aj = −ψ∗Aζ∗P−1
w

= h∗P
−1
w

= ψ∗jP
−1
w ,

and (7.19) follows. Thus A is nonsingular on j(TyL). Since V(y, w) clearly belongs to
∆(y, w) and j(TyL) = V⊥(y, w), it follows that V(y, w) = ∆(y, w), and hence

j(TyL) = ∆⊥(y, w).

Thus G has rank n− k. That j : TyL→ ∆⊥(y, w) is an isometry follows from (7.24).
Now, using (7.24) for the second equality, we have

ψ∗∇ξjX = ∇̃ξψ∗jX

= ∇̃ξh∗X

= 0

for all ξ ∈ ∆(y, w) = NgL(y) and X ∈ X(L). This proves (7.18).



Chapter 7. Submanifolds with relative nullity 183

It remains to prove the assertions in parts (iv) to (vi). Using (7.24) and the
Gauss formulas for ψ and g, we obtain

〈∇jXjY, jZ〉 = 〈ψ∗∇jXjY, ψ∗jZ〉
= 〈∇̃jXψ∗jY, ψ∗jZ〉
= 〈∇̃P−1

w Xh∗Y, h∗Z〉
= 〈h∗∇′P−1

w X
Y, h∗Z〉

= 〈∇′
P−1
w X

Y, Z〉′

for all X, Y, Z ∈ X(L), which proves the assertion in part (v). In the second and third
terms in the preceding computation, as well as in the next computation, ∇̃ stands both
for the connection on ψ∗TRn+1

µ and for that on h∗TRn+1
µ , and in the third equality we

have used (7.26).
On the other hand, it follows from the Gauss formula for ψ and the Weingarten

formula for h that

ψ∗∇jXξ = ∇̃jXψ∗ξ

= ∇̃P−1
w Xi∗ξ

= −h∗AξP−1
w X + i∗∇⊥P−1

w X
ξ

for all X ∈ X(L) and ξ ∈ Γ(∆) = Γ(NgL). This implies that

〈CξjX, jY 〉 = −〈∇jXξ, jY 〉
= −〈ψ∗∇jXξ, ψ∗jY 〉
= 〈h∗AξP−1

w X, h∗Y 〉
= 〈AξP−1

w X, Y 〉′

= 〈jAξP−1
w X, jY 〉

and

〈∇jXξ, η〉 = 〈ψ∗∇jXξ, ψ∗η〉
= 〈∇⊥

P−1
w X

ξ, η〉

for all X, Y ∈ X(L) and ξ, η ∈ Γ(NgL). Thus the assertions in parts (iv) and (vi) hold.
�

Corollary 7.20. Let c : I → Sn1,µ be a smooth curve parametrized by arc-length, let
e1, . . . , en−1 be any frame of NcI, and choose an arbitrary γ ∈ C∞(I). Then the map
F : I × Rn−1 → Rn+1

µ , defined by

F (s, t1, . . . , tn−1) = γ(s)c(s) + γ′(s)c′(s) +
n−1∑
i=1

tiei(s),
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parametrizes, at regular points, a flat hypersurface without totally geodesic points.
Conversely, any flat hypersurface of Rn+1

µ without totally geodesic points, and
time-like relative nullity subspaces if µ = 1, can be parameterized in this way, at least
locally.

As an application of the formulas derived in Proposition 7.19, we characterize in
the next result the hypersurfaces of Rn+1

µ that carry a relative nullity distribution ∆ of
rank ν = k, with time-like fibers if µ = 1, such that ∆⊥ is integrable.

Corollary 7.21. Under the assumptions of Theorem 7.18, the following assertions
are equivalent:

(i) The distribution ∆⊥ is integrable.

(ii) The surface g : L2 → Sn1,µ has flat normal bundle and [Hess γ,Aw] = 0 for all
w ∈ Γ(NgL).

Proof: The distribution ∆⊥ is integrable if and only if the splitting tensor Cw′ is
symmetric for all (y, w) ∈ V and w′ ∈ ∆(y, w) = NgL(y). By (7.20) this is equivalent
to

Aw′P
−1
w = P−1

w Aw′

for all y ∈ L2 and w,w′ ∈ NgL(y), which is the same as

[Pw, Aw′ ] = 0 (7.29)

for all y ∈ L2 and w,w′ ∈ NgL(y). This condition is trivially satisfied if (ii) holds.
Conversely, applying (7.29) to w = 0 and w′ yields

[Hess γ,Aw] = 0

for all w ∈ Γ(NgL), and hence
[Aw, Aw′ ] = 0

for all y ∈ L2 and w,w′ ∈ NgL(y), that is, g has flat normal bundle. �

According to Theorem 7.18, the Gauss map of a hypersurface f : Mn → Rn+1
µ

with constant index of relative nullity k, and time-like relative nullity subspaces if
µ = 1, can be arbitrarily prescribed, and all hypersurfaces with a given Gauss map g
are parametrized by an arbitrary (“support”) function. This also applies for k = 0, in
which case the map ψ in (7.16) becomes

ψ = γh+ h∗grad γ,

and is just the inverse of the Gauss map. This justifies the terminology “Gauss
parametrization.”

We now turn to the case of hypersurfaces of Qn+1
ε , ε ∈ {−1, 1}.
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Corollary 7.22. Let g : Ln−k → Sn+1
1,µ be an isometric immersion of a Riemannian

manifold. Define

Λε = {(y, w) ∈ Λ = NgL : 〈w,w〉 = ε}, ε = 1− 2µ,

and consider the map ψ : Λε → Qn+1
ε defined by

ψ(y, w) = w. (7.30)

Then the following assertions hold:

(i) On the open subset V of regular points, ψ is an immersed hypersurface with
constant index of relative nullity ν = k, having the map G : Λε → Sn+1

1,µ , given by

G(y, w) = g(y),

as a Gauss map.

(ii) Conversely, any hypersurface of Qn+1
ε with constant index of relative nullity ν = k

can be parametrized in this way, at least locally.

(iii) The map ψ is regular at (y, w) ∈ Λε if and only if the shape operator Aw of g at
y ∈ Ln−k is nonsingular.

(iv) At any (y, w) ∈ V , there exists an isometry j = j(y, w) : TyL → ∆⊥(y, w) onto
the orthogonal complement of the relative nullity subspace ∆(y, w) of ψ at (y, w),
such that the shape operator A of ψ at (y, w) with respect to G satisfies

Aj = jA−1
w .

Proof: Extend ψ to all of Λ by (7.30), thus parametrizing the cone over ψ in Rn+2
µ

through the origin. By Proposition 7.19, on the open subset of regular points, the
map ψ : Λ → Rn+2

µ is an immersed hypersurface of constant index of relative nullity
ν = k + 1. Assertions (i), (iii) and (iv) then follow from the relation between the
second fundamental forms of a hypersurface of Qn+1

ε and the cone over it in Rn+2
µ .

It remains to prove part (ii). Consider the cone over the hypersurface, which has
zero support function and constant index of relative nullity ν = k + 1, with the same
Gauss image g : Ln−k → Sn+1

1,µ . Thus it can be parametrized in terms of the Gauss
parametrization by ψ : Λ = NgL→ Rn+2

µ given by (7.30). The restriction of ψ to Λε is
therefore a parametrization of the original hypersurface. �

The hypersurface ψ : Λε → Rn+2
µ defined by (7.30) is called the polar map of

g : Ln−k → Sn+1
1,µ ⊂ Rn+2

µ . The polar maps of the standard embeddings of the real
projective planes given by (3.3) provide examples of compact minimal hypersurfaces
of the sphere with constant index of relative nullity ν = 1 (see Exercise 7.14). They
belong to the family of Cartan’s isoparametric hypersurfaces of S4 with three distinct
principal curvatures.
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Corollary 7.23. Let c : I → Sn+1
1,µ be a smooth curve parametrized by arc-length, let

e1, . . . , en be an orthonormal frame of NcI and let F : I × Qn−1
ε → Qn+1

ε ⊂ Rn+2
µ be

defined by

F (s, t) =
n∑
j=1

ij(t)i∗ej(s),

where i = (i1, . . . , in) : Qn−1
ε → Rn

µ is an inclusion. Then F parametrizes, at regular
points, a hypersurface of Qn+1

ε with constant sectional curvature ε that is free of totally
geodesic points. Conversely, any hypersurface of Qn+1

ε with constant sectional curvature
ε that is free of totally geodesic points can be parameterized in this way, at least locally.

7.3.1 Some applications

The Gauss parametrization has proved to be a powerful tool in the study of hy-
persurfaces of space forms with constant index of relative nullity. Some applications
are given below. They include a strong rigidity property of complete minimal hyper-
surfaces of the Euclidean space, and the classification of Euclidean hypersurfaces with
constant scalar curvature and index of relative nullity ν = n− 2 at any point.

First we prove the following simple but useful fact.

Lemma 7.24. Let f : Mn → Rn+1 be an isometric immersion with index of relative
nullity ν = k at any point. Assume that the leaves of relative nullity are complete
and that the image of the induced Gauss map g : Ln−k → Sn is contained in a totally
geodesic submanifold Ss of Sn. Then f is a cylinder over an isometric immersion
f0 : M s → Rs+1 with index of relative nullity νf0 = k − n+ s.

Proof: Since the leaves of relative nullity are complete, there exists a global diffeomor-
phism θ : Λ → Mn of the normal bundle Λ of g onto Mn such that f ◦ θ is given by
(7.15). By the assumption that g(Ln−k) is contained in a totally geodesic Ss ⊂ Sn, the
normal bundle Λ splits as Λ = Λ1 ⊕ Λ2, where Λ1 is the normal bundle of g in Ss and
Λ2 is the normal bundle of Ss in Sn along g. The latter being parallel along g in Rn+1,
we can identify its fibers with a fixed subspace Rn−s of Rn+1. Identifying Mn with Λ,
endowed with the metric induced by θ, and denoting by M s the manifold Λ1 endowed
with the metric induced by θ|Λ1 , it follows from (7.15) that the map φ : Λ1×Rn−s → Λ
given by

φ((y, w1), w2) = (y, w1 + w2)

is an isometry, and that f ◦ φ splits accordingly as

f ◦ φ = f0 × id

where f0 = f ◦ θ|Λ1 : M s → Rs+1. �

Theorem 7.25. Let f : Mn → Rn+1 be an isometric immersion with constant index
of relative nullity ν = n − 2. Suppose that the leaves of relative nullity are complete
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and that the mean curvature H does not change sign along leaves. Then the induced
Gauss map g : L2 → Sn is a minimal surface and f is a cylinder over an isometric
immersion f0 : M2+j → R3+j, 0 ≤ j ≤ 1, with index of relative nullity νf0 = j.

Proof: Let θ : Λ → Mn be a global diffeomorphism of the normal bundle Λ of g onto
Mn such that f ◦θ is given by (7.15). By part (i) of Proposition 7.19, for any (y, w) ∈ Λ
the endomorphism

Pw(y) = γ(y)I + Hess γ(y)− Aw
of TyL is nonsingular, where Aw is the shape operator of g with respect to w. Then
part (iii) of the same proposition implies that

H(y, w) = −trPw(y)−1

= −trPw(y) detP−1
w (y).

Since
trPtw(y) = ∆γ(y) + 2γ(y)− (trAw(y))t

and H does not change sign along the leaf through y, then trAw(y) = 0.
Now suppose that there exist y ∈ L2 and a two-dimensional linear subspace

S ⊂ NgL(y) such that Aw 6= 0 for any 0 6= w ∈ S. Then the map w 7→ Aw is a
linear isomorphism from S onto the subspace of self-adjoint endomorphisms of TyL with
vanishing trace. Therefore the image of the map w 7→ Pw(y) is the affine plane of all self-
adjoint endomorphisms of TyL with the same trace as the operator γ(y)I + Hess γ(y).
We have reached a contradiction by the fact that such affine plane always contains
singular elements. Therefore, for any y ∈ L2, the kernel of the linear map w → Aw
must have codimension at most one in TyL, that is, the first normal space of g must
have dimension at most one. Thus, by the real analyticity of minimal immersions,
either g is totally geodesic or its first normal spaces have dimension one at any point.
In the latter case, Exercise 2.2 implies that g(L) lies in a totally geodesic S3 ⊂ Sn,
because a nontotally geodesic minimal surface cannot have index of relative nullity
one. The conclusion follows from Lemma 7.24. �

Theorem 7.26. Let f : Mn → Rn+1, n ≥ 4, be a minimal isometric immersion
of a complete Riemannian manifold. Then any other minimal isometric immersion
f̃ : Mn → Rn+p, p ≥ 1, is congruent to i ◦ f , where i : Rn+1 → Rn+p is a stan-
dard inclusion, unless f is a cylinder over an isometric immersion f0 : M2+j → R3+j,
0 ≤ j ≤ 1, with index of relative nullity νf0 = j.

Proof: The statement is trivial if f is totally geodesic. If there exists a point where the
index of relative nullity ν is less than n− 2, then the statement is true even locally by
Theorem 3.11. Hence it remains to consider the case in which ν = n − 2 on an open
and dense subset U of Mn, which automatically contains a complete leaf of relative
nullity through each of its points.

By Theorem 7.25, each connected component of U splits as a Riemannian product
U = M2+j×Rn−2−j, with 0 ≤ j ≤ 1, and f splits accordingly as a product of isometric
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immersions f = f0 × id, where f0 : M2+j → R3+j has index of relative nullity νf0 = j.
By real analyticity, the splitting is global. �

We conclude this chapter with a classification of the Euclidean hypersurfaces
Mn with nonzero constant scalar curvature s and constant index of relative nullity
ν = n− 2.

In the next statetement the scalar curvature s is not normalized.

Theorem 7.27. Let Mn be a Riemannian manifold with constant scalar curvature
s 6= 0, and let f : Mn → Rn+1 be an isometric immersion with index of relative nullity
ν = n − 2 at any point. Then f is locally a cylinder over an isometric immersion
f0 : L2 → R3. Moreover, if Mn is complete then s > 0 and f is globally a cylinder over
the standard inclusion of Ss/2 into R3.

Proof: In view of Lemma 7.24, for the first assertion it suffices to show that the induced
Gauss map g : L2 → Sn of f is totally geodesic. The last assertion then follows from
Hilbert’s theorem on the nonexistence of an isometric immersion of the hyperbolic
plane H2 into R3 and Hilbert-Liebmann’s theorem on the isometric rigidity of Ss/2 in
R3.

Suppose that there exists (y, w) ∈ Λ with ‖w‖ = 1 such that Aw 6= 0, where Λ
is the normal bundle of g. Let θ : U ⊂ Λ → V ⊂ Mn be a diffeomorphism of an open
neighborhood of (y, w) such that f ◦ θ is given by (7.15). Set

Pt = γI + Hess γ − tAw. (7.31)

Using an orthonormal basis of principal directions, let λ1 6= 0 and λ2 be the princi-
pal curvatures and hij the components of Hess γ. Then the (not normalized) scalar
curvature s at (y, tw) satisfies

s−1 = detPt = (γ + h11 − tλ1)(γ + h22 − tλ2)− h2
12.

Since s is constant, we see that

(i) detAw = 0,

(ii) (γ + h22)λ1 + (γ + h11)λ2 = 0,

(iii) detP0 = s−1.

It follows easily from (i) that g has index of relative nullity νg = 1 in a neighborhood
of y, which we still denote by V . In particular, L2 has constant Gauss curvature 1 on
V . Let X, Y be an orthonormal tangent frame such that Y spans the relative nullity
subspace of g at each point of V . Then λ2 = 0 on V , and thus

γ + Y Y (γ) = 0

by part (ii). Since
∇Y Y = 0 = ∇YX,
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then [X, Y ] = ∇XY is collinear with X, and we obtain

−X(γ) = X〈∇Y grad γ, Y 〉
= 〈∇X∇Y grad γ, Y 〉+ 〈∇Y grad γ,∇XY 〉
= 〈R(X, Y )grad γ, Y 〉+ 〈∇Y∇Xgrad γ, Y 〉+ 2〈∇[X,Y ]grad γ, Y 〉
= −X(γ) + 2〈∇[X,Y ]grad γ, Y 〉,

because
〈∇Xgrad γ, Y 〉 = h12

is constant by part (iii). It follows that

〈∇[X,Y ]grad γ, Y 〉 = 0,

and since h2
12 = −s−1 6= 0 and [X, Y ] is collinear with X, this gives

[X, Y ] = ∇XY = 0.

Together with ∇Y Y = 0, this implies that V is flat, a contradiction. �

7.4 Intrinsically homogeneous hypersurfaces

As an application of some of the results of this and previous chapters, in this
section we study isometric immersions f : Mn → Qn+1

c of homogeneous Riemannian
manifolds into space forms.

A Riemannian manifold Mn is said to be homogeneous if its group of isometries
acts transitively on Mn, that is, if for all x, y ∈ Mn there exists an isometry g of Mn

such that g(x) = y. A homogeneous Riemannian manifold is always complete.

Proposition 7.28. If f : Mn → Qn+1
c is an isometric immersion of a homogeneous

Riemannian manifold, then the type number τ of f either satisfies τ(x) ≤ 1 for all
x ∈Mn or is constant on Mn.

Proof: Given x ∈Mn, consider the c-nullity subspace

Γc(x) = {X ∈ TxM : R(X, Y ) = c(X ∧ Y ) for all Y ∈ TxM}

of Mn at x. Since Mn is homogeneous, for any y ∈ Mn there is an isometry g of Mn

such that g(x) = y. The differential g∗ at x is a linear isomorphism of TxM onto TyM
that preserves inner products. Thus

g∗Γc(x) = {g∗X ∈ TyM : R(X, Y ) = c(X ∧ Y ) for all Y ∈ TxM}
= {g∗X ∈ TyM : R(g∗X, g∗Y ) = c(g∗X ∧ g∗Y ) for all Y ∈ TxM}
= Γc(y).
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In particular, the dimension of Γc is constant on Mn.
By the Gauss equation, we have τ(x) ≤ 1 at x ∈ Mn if and only if Γc(x) has

dimension n. By the above argument, if τ(x) ≤ 1 for some x ∈Mn, then τ ≤ 1 at any
point. On the other hand, by Exercise 4.1 the relative nullity subspace ∆(x) of f at x
coincides with Γc(x) if τ(x) ≥ 2. Therefore, if τ(x) ≥ 2 for some point x ∈ Mn, then
τ is constant on Mn. �

Proposition 7.29. Let f : Mn → Qn+1
c be an isometric immersion of a homogeneous

Riemannian manifold. If τ(x) ≥ 3 for some x ∈ Mn, then the principal curvatures of
f are constant on Mn.

Proof: By Proposition 7.28, τ(x) ≥ 3 for all x ∈ Mn. Choose x, y ∈ Mn and an
isometry g of Mn such that g(x) = y. By Exercise 4.2, there exists an isometry T of
Qn+1
c such that T ◦ f = f ◦ g. Therefore the shape operators of f at x and y with

respect to ξ ∈ NfM(x) and T∗ξ ∈ NfM(y), respectively, are related by

A(y)g∗(x) = g∗(x)A(x).

It follows that A(x) and A(y) have the same eigenvalues. �

In the study of isoparametric hypersurfaces in space forms, the following result
is known as Cartan’s fundamental formula.

Theorem 7.30. Let f : Mn → Qn+1
c be an isoparametric hypersurface. If λ1, . . . , λg

are its pairwise distinct principal curvatures and m1, . . . ,mg are the corresponding mul-
tiplicities, then

g∑
j=1,j 6=i

mj
c+ λiλj
λi − λj

= 0 (7.32)

for any 1 ≤ i ≤ g.

Proof: Let X1, . . . , Xn be a local orthonormal frame such that

AXi = λiXi, 1 ≤ i ≤ n,

where the principal curvatures are counted as many times as their multiplicities. The
Gauss equation (1.18) gives

c+ λiλj = 〈∇Xi∇XjXj, Xi〉 − 〈∇Xj∇XiXj, Xi〉 − 〈∇[Xi,Xj ]Xj, Xi〉 if i 6= j. (7.33)

Denote Ei = Eλi = ker(A−λiI). Since the principal curvatures are constant, it follows
from (1.19) that each Ei is a totally geodesic distribution. In particular,

∇XiXi ∈ Γ(Ei), 1 ≤ i ≤ n.

Therefore

〈∇Xi∇XjXj, Xi〉 = Xi〈∇XjXj, Xi〉 − 〈∇XjXj,∇XiXi〉
= 0 (7.34)
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and

〈∇Xj∇XiXj, Xi〉 = Xj〈∇XiXj, Xi〉 − 〈∇XiXj,∇XjXi〉
= −〈∇XiXj,∇XjXi〉 (7.35)

if λi 6= λj. On the other hand,

〈∇[Xi,Xj ]Xj, Xi〉 = 〈∇∇XiXjXj, Xi〉 − 〈∇∇XjXiXj, Xi〉

=
n∑
k=1

(〈∇XiXj, Xk〉〈∇XkXj, Xi〉+ 〈∇XjXi, Xk〉〈∇XkXi, Xj〉). (7.36)

If g = 2, then (7.32) just says that the two distinct principal curvatures λ1, λ2

satisfy
c+ λ1λ2 = 0,

and this follows from (7.33), (7.34), (7.35) and (7.36). From now on assume that g ≥ 3.
By (1.20), if λi 6= λj 6= λk 6= λi then

(λi − λj)〈∇XkXj, Xi〉 = (λk − λi)〈∇XjXi, Xk〉 (7.37)

and
(λi − λj)〈∇XkXi, Xj〉 = (λj − λk)〈∇XiXj, Xk〉. (7.38)

Substituting in (7.36) yields

(λi − λj)〈∇[Xi,Xj ]Xj, Xi〉 =
n∑
k=1

λi 6=λj 6=λk 6=λi

((λk − λi)〈∇XiXj, Xk〉〈∇XjXi, Xk〉

+ (λj − λk)〈∇XiXj, Xk〉〈∇XjXi, Xk〉)

= (λj − λi)
n∑
k=1

λi 6=λj 6=λk 6=λi

〈∇XiXj, Xk〉〈∇XjXi, Xk〉

= (λj − λi)〈∇XiXj,∇XjXi〉.

Hence
〈∇[Xi,Xj ]Xj, Xi〉 = −〈∇XiXj,∇XjXi〉. (7.39)

It follows from (7.33), (7.34), (7.35), (7.37), (7.38) and (7.39) that

c+ λiλj = 2〈∇XiXj,∇XjXi〉

= 2
n∑
k=1

〈∇XiXj, Xk〉〈∇XjXi, Xk〉

= 2
n∑
k=1

λi 6=λj 6=λk 6=λi

(λi − λj)2

(λi − λk)(λj − λk)
〈∇XkXi, Xj〉2
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if λi 6= λj. Using (1.20) again, we obtain

n∑
i=1
λi 6=λj

c+ λiλj
λi − λj

= 2
n∑

j,k=1
λi 6=λj 6=λk 6=λi

λi − λj
(λi − λk)(λj − λk)

〈∇XkXi, Xj〉2

= −2
n∑

j,k=1
λi 6=λj 6=λk 6=λi

λi − λk
(λi − λj)(λk − λj)

〈∇XjXi, Xk〉2

= −
n∑
k=1
λk 6=λi

c+ λiλk
λi − λk

and formula (7.32) follows. �

Theorem 7.31. Let f : Mn → Rn+1 be an isoparametric hypersurface. Then f(M)
is an open subset of the image of the standard isometric immersion of Skc × Rn−k into
Rn+1 for some c > 0 and 0 ≤ k ≤ n.

Proof: After changing the sign of the unit normal vector field, if necessary, we can
assume that there exist positive principal curvatures. Take λi as the smallest positive
principal curvature. Then all terms in the sum on the left-hand side of (7.32) are
nonpositive, and hence must be zero. Thus there are at most two distinct principal
curvatures, and if there are two, then one must be zero.

If there is only one principal curvature, the result follows from Proposition 1.20.
If λ is the only nonzero principal curvature with multiplicity k and ∆ is the relative
nullity distribution of f , since Eλ = ∆⊥ is totally geodesic then Proposition 7.4 implies
that f is locally a cylinder over the restriction g = f |Σ of f to a leaf Σ of Eλ. Since g
is umbilical with principal curvature λ, it is the standard embedding of Skc into Rk+1,
where c = λ2. The global statement follows by applying Exercise 1.20 to the family of
standard isometric immersions of Skc × Rn−k into Rn+1. �

Theorem 7.32. Let f : Mn → Rn+1 be an isometric immersion of a homogeneous
Riemannian manifold. Then f is either a cylinder over a (complete) plane curve or
the standard isometric embedding of Skc×Rn−k into Rn+1 for some c > 0 and 2 ≤ k ≤ n.

Proof: By Proposition 7.28, either τ(x) ≤ 1 for all x ∈Mn or τ is constant on Mn. If
the first possibility holds, then Mn is flat and f is a cylinder over a (complete) plane
curve by Corollary 7.17. If τ ≥ 3, then f is isoparametric by Proposition 7.29, and the
conclusion follows from Theorem 7.31. Finally, if τ = 2 one can apply Theorem 7.27,
because a homogeneous Riemannian manifold has constant scalar curvature. �

7.5 Notes

The proof of the completeness of the relative nullity foliation given in this book
was basically taken from Ferus [171]. Other proofs were given by Abe [1], Maltz [240]
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and Olmos-Vittone [274]. Completeness of umbilical foliations, that is, foliations by
umbilical submanifolds, was studied by Reckziegel [297].

Hartman [205] proved the cylinder Theorem 7.15 under the stronger assumption
that Mn has nonnegative sectional curvatures, making use of Toponogov’s theorem (see
[77]), since the splitting theorem of Cheeger-Gromoll [78] was not yet available at that
time. The result still holds if the assumption on the index of relative nullity is replaced
by the hypothesis that the image of the immersion contains ν0 linearly independent
lines. The hypersurface case was previously considered by Hartman-Nirenberg [206].
A generalization of Hartman’s Theorem 7.15 was obtained by Freitas-Guimarães [195].
The structure of complete submanifolds in Euclidean space of rank two and arbitrary
codimension will be discussed in Chapter 13.

A description of the isometric immersions f : Hn
c → Hn+1

c that are free of umbilic
points was given by Ferus [172], after the work of Nomizu [269] for n = 2, and goes as
follows: fix a unit-speed curve γ : R→ Hn that has curvature κ ≤ 1. The image by the
exponential map of the normal bundle of γ then yields a totally geodesic foliation F(γ)
by complete totally geodesic leaves. Conversely, any complete totally geodesic foliation
of Hn arises in this way by considering γ as a trajectory of a unit vector field normal
to the foliation. Now, given any smooth function λ : R → R r {0}, there exists an
isometric immersion f : Hn

c → Hn+1
c , without umbilical points, whose relative nullity

foliation is F(γ), and whose second fundamental form satisfies Aγ′ = λγ′ along γ. In
particular, every foliation of Hn by totally geodesic hypersurfaces arises as the relative
nullity foliation of a suitable isometric immersion f : Hn → Hn+1 without umbilical
points.

There is a description, due to Alexander-Portnoy [8], of the umbilical free isomet-
ric immersion f : Hn

c → Hn+1
c , in the spirit of the Euclidean cylinder theorem. They

proved that any such immersion takes the form of a hyperbolic (n− 1)-cylinder over a
uniquely determined parallelizing curve. If umbilical points are allowed, the situation
becomes quite more complicated, but this has also been considered; see Abe-Haas [2]
and Abe-Mori-Takahashi [3].

The existence of a complete irreducible minimal hypersurface f : M3 → R4 with
index of relative nullity ν = 1 at any point is an important open problem. It was
shown by Hasanis-Savas Halilaj-Vlachos [209] that the problem has a negative answer
if the scalar curvature of M3 is bounded from below. In view of Exercise 3.9, the
universal covering of such a hypersurface would provide a solution to the question of
whether there exists a complete irreducible nonruled hypersurface f : M3 → R4 that
is not isometrically rigid. This is a main unsolved problem in the subject. We point
out that the examples in [263] do not solve the problem, because they are 2-cylinders.
The similar problem for hypersurfaces of the sphere and the hyperbolic space was
investigated by Hasanis-Savas Halilaj-Vlachos [210], [211].

Theorem 7.11 on spherical submanifolds with positive index of relative nullity
is due to Dajczer-Gromoll [108], and generalizes a sequence of results by O’Neill-Stiel
[279], Ferus [174], Abe[1] and Rodŕıguez [303]. The existence of nontotally geodesic
isometric immersions f : Snc → S2n

c remains an open problem for n > 2. A positive
answer for dimension n = 2 was obtained by Ferus-Pinkall [178]. It is also unknown
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whether there exist isometric immersions f : Snc → S2n
c̃ with c < c̃, or if there exist

nonumbilical isometric immersions f : Snc → S2n
c̃ with c > c̃.

For additional information on isometric immersions of space forms into space
forms we refer to the survey [40].

The Gauss parametrization for hypersurfaces in space forms with constant posi-
tive index of relative nullity was introduced by Dajczer-Gromoll [109], but was used long
before by Sbrana [311], [312] in the case of Euclidean hypersurfaces with type number
two. A complex Gauss parametrization for holomorphic hypersurfaces was discussed
by Dajczer-Florit [102]. The result in Exercise 7.13 was obtained by Dajczer-Tojeiro
[136].

Cartan’s fundamental formula for isoparametric hypersurfaces in space forms ap-
pears in [69]. Cartan made use of it to determine all isoparametric hypersurfaces of
Euclidean and hyperbolic spaces (see Theorem 7.31 and Exercise 8.6 in the next chap-
ter). He also initiated the much richer theory of isoparametric hypersurfaces of the
sphere, whose full classification has not yet been achieved. We refer to [74] for a dis-
cussion on this subject. See also Berndt-Console-Olmos [34] and the references therein
for the generalization of this theory to higher codimension.

Intrinsically homogeneous hypersurfaces of Euclidean and hyperbolic spaces were
classified by Takahashi [321], [322]. Intrinsically homogeneous Euclidean submanifolds
of codimension two, that is, isometric immersions f : Mn → Rn+2 of homogeneous Rie-
mannian manifolds, were considered by Castro-Noronha [158]. The cases of the sphere
and the hyperbolic space were also addressed by Castro-Noronha [159]. Extrinsically
homogeneous submanifolds of space forms, that is, submanifolds that are orbits of
closed subgroups of the isometry group of the ambient space, are discussed in [34].

Going in a different direction, Theorem 7.32 was generalized by Mercuri-Podesta-
Seixas-Tojeiro [246] for cohomogeneity one complete Euclidean hypersurfaces, that
is, isometric immersions f : Mn → Rn+1 of complete Riemannian manifolds whose
isometry groups act on Mn with principal orbits of codimension one. Isometric actions
of cohomogeneity one are special cases of polar actions, for which the orthogonal spaces
to the orbits give rise to a totally geodesic distribution on the regular part of the
manifold. Compact Euclidean hypersurfaces acted on polarly by a closed connected
subgroup of its isometry group were described by Moutinho-Tojeiro [264].

7.6 Exercises

Exercise 7.1. Let f : Mn → Qm
c be an isometric immersion with constant positive

index of relative nullity. Prove that the first normal spaces of f are parallel along the
leaves of the relative nullity distribution with respect to the induced connection on
f ∗TQm

c .

Exercise 7.2.

(i) Let U be a umbilical distribution on a Riemannian manifold Mn with mean
curvature vector field δ. Show that its splitting tensor satisfies the differential
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equations

(∇h
TCS)X = CSCTX + C∇vTSX −R

h(T,X)S + 〈T, S〉(〈X, δ〉δ −∇h
Xδ) (7.40)

and

(∇h
XCT )Y − (∇h

YCT )X = C∇vXTY −C∇vY TX −R
h(X, Y )T −〈[X, Y ], T 〉δ. (7.41)

(ii) If U = Eη is the distribution associated with a principal curvature normal vector
field η of an isometric immersion f : Mn → Rm, show that (7.40) and (7.41) take,
respectively, the form

(∇h
TCS)X = CSCTX + C∇vTSX + 〈T, S〉(AηX + 〈δ,X〉δ −∇h

Xδ)

and
(∇h

XCT )Y − (∇h
YCT )X = C∇vXTY − C∇vY TX − 〈[X, Y ], T 〉δ.

Exercise 7.3. Let U : I → Mn(R) be a solution on an interval I ⊂ R of the linear
ordinary differential equation

U ′(t) = B(t)U(t)

where B : I →Mn(R) is continuous. Then rank U(t) is constant on I.

Hint: Observe that each column Ui, 1 ≤ i ≤ n, of U is a solution of the linear ordinary
differential equation

X ′(t) = B(t)X(t)

for X : I → Rn ≈ Mn×1(R). Let S be the space of solutions of this equation. By the
existence and uniqueness theorem for solutions of such equation, for each s ∈ I the
map ψs : S→ Rn, given by

ψs(X) = X(s),

is an isomorphism. Therefore

rank U(s1) = dim span{U1(s1), . . . , Un(s1)}
= dim span{ψs1(U1), . . . , ψs1(Un)}
= dim span{U1, . . . , Un}
= dim span{ψs2(U1), . . . , ψs2(Un)}
= dim span{U1(s2), . . . , Un(s2)}
= rank U(s2)

for all s1, s2 ∈ I.

Exercise 7.4. Show that the conclusion of Theorem 7.11 remains true if the com-
pleteness assumption is replaced by the weaker requirement that each point in the open
subset

U = {x ∈Mn : ν(x) = ν0}
belongs to a geodesic arc that is contained in a leaf of the relative nullity distribution
and contains a pair of points that are mapped into antipodal points of Smc .
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Exercise 7.5. Show that the conclusion of Theorem 7.15 is false without the assump-
tion on the Ricci curvature.

Hint: See part (ii) of Exercise 1.23.

Exercise 7.6. Let π : E →M be a vector bundle endowed with a linear connection ∇.
Given x0 ∈ M , let ξ0 ∈ Ex0 = π−1(x0) and let φ : Tx0M → Ex0 be any linear map.
Then there exist an open neighborhood U ⊂M of x0 and ξ ∈ Γ(U) such that ξ(x0) = ξ0

and ∇Xξ = φ(X) for any X ∈ Tx0M .

Exercise 7.7. Let f : Mn → Sn+1 be an isometric immersion with index of relative
nullity ν = k > 0 at any point. Show that f is minimal if and only if the Gauss map
g : Ln−k → Sn+1 of f satisfies

trA−1
w (y) = 0

for all y ∈ Ln−k and all w ∈ NgL(y). In particular, if ν = n − 2, conclude that f is
minimal if and only if g is minimal.

Exercise 7.8. Let f : Mn → Rn+1 be an isometric immersion with constant index
of relative nullity ν = n − 2. Show that f is minimal if and only if its Gauss map
g : L2 → Sn is a minimal surface and the support function γ ∈ C∞(L) satisfies the
differential equation

∆γ + 2γ = 0.

Exercise 7.9. Show that any isometric immersion f : Mn → Rn+1 with constant
mean curvature H 6= 0 is rigid, unless f(M) is an open subset of a cylinder over an
isometric immersion f0 : L2 → R3 with constant mean curvature H or Mn is (isometric
to) an open subset of S1×Rn−1 and f is the restriction to Mn of the cylinder over the
standard inclusion of S1 into R2.

Hint: If the minimal index of relative nullity ν0 is greater than n−2, then the assertion
follows from the Beez-Killing theorem. Suppose ν0 = n− 2, and let θ : V ⊂ Λ→ U ⊂
Mn be a diffeomorphism of an open neighborhood of the zero section of the normal
bundle Λ of the induced Gauss map g : L2 → Sn onto an open subset of Mn where
ν = n−2 such that f ◦θ is given by (7.15). If there exists (y, w) ∈ Λ such that ‖w‖ = 1
and Aw(y) 6= 0, use that

H = −trP−1
t = −trPt detP−1

t

is constant in t, where Pt is as in (7.31), to obtain

(i) detAw = 0,

(ii) h((γ + h22)λ1 + (γ + h11)λ2) = −trAw,

(iii) trP0 = −H detP0.

Conclude that h2
12 = −H2, which is a contradiction. Then use Lemma 7.24 and the

real analyticity of f . The case ν0 = n− 1 is easier and similar.
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Exercise 7.10. Let f : Mn → Sn+1, n ≥ 4, be an isometric immersion of a complete
Riemannian manifold with constant index of relative nullity ν = n − 2 at any point.
Prove that the mean curvature H of f must change sign along each leaf of the relative
nullity distribution.

Hint: Assume otherwise, and let θ : Λ1 → Mn be a global diffeomorphism of the unit
normal bundle of the induced Gauss map g : L2 → Mn such that f ◦ θ is given by
(7.30). Since

H(y, w) = trA−1
w (y) = −trA−1

−w(y) = −H(y,−w)

for any (y, w) ∈ Λ, the assumption implies that trAw(y) = 0. Now use that the space of
symmetric 2× 2-matrices with trace zero has dimension two and that the codimension
of g is at least three; hence at any y ∈ L2 there exists a unit vector w ∈ NgL(y) such
that Aw = 0.

Exercise 7.11. Let Mn be an oriented complete Riemannian manifold whose not-
normalized scalar curvature s is bounded away from zero and let f : Mn → Rn+1 be
an isometric immersion with constant index of relative nullity ν = n− 2 at any point,
and whose mean curvature H is bounded from above (below) along leaves. Show that
f is a cylinder over an isometric immersion f0 : M2 → R3 of a compact surface with
positive curvature. In particular, f is rigid.

Hint: In view of Lemma 7.24, for the first assertion it suffices to show that the induced
Gauss map g : L2 → Sn of f is totally geodesic. Suppose that there exists (y, w) ∈
Λ = NgL with ‖w‖ = 1 such that Aw 6= 0, where Λ is the normal bundle of g. Let
θ : Λ → Mn be a diffeomorphism such that f ◦ θ is given by (7.15). Let Pt be given
by (7.31). If hij are the components of the Hessian Hγ with respect to an orthonormal
frame of principal directions of g and λ1 6= 0, λ2 are the principal curvatures, from the
assumption that

s−1 = detPt = (γ + h11 − tλ1)(γ + h22 − tλ2)− h2
12

is bounded in t, conclude that λ2 = 0 and γ + h22 = 0. Then use that

H = −trP−1
t

= trPt detP−1
t

= (δγ + 2γ − tλ1)h−2
12

to obtain a contradiction with the assumption on H. Finally, use the fact that L2

is complete with Gaussian curvature K bounded away from zero to conclude from
Efimov’s theorem that K must be positive, and hence that L2 is compact. For the
rigidity of f0, hence of f , use Minkowski’s theorem.

Exercise 7.12. Let i : S3 → R4 be the standard inclusion and let γ ∈ C∞(U) satisfy

∆γ + 3γ = 0
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on an open subset U ⊂ S3. Prove that the map f : U → R4 given by

f = γi+ i∗grad γ

defines, at regular points, a hypersurface with constant scalar curvature and vanish-
ing Gauss-Kronecker curvature. Conversely, show that any hypersurface f : M3 → R4

with constant scalar curvature and vanishing Gauss-Kronecker curvature can locally
be parametrized in this way.

Exercise 7.13. Let f : Mn → Rn+1 be an oriented complete hypersurface with con-
stant support function γ. Show that

f(M) = Sm × Rn−m ⊂ Rn+1, 0 ≤ m ≤ n,

where the spherical factor is centered at the origin.

Exercise 7.14. Let f : S2
1/3 → S4 be the Veronese surface given by (3.3). Show that

the polar map ψ : N1
fS2

1/3 → S4 of f , given by

ψ(y, w) = w,

is a minimal isoparametric hypersurface with three distinct principal curvatures and
index of relative nullity ν = 1.

Exercise 7.15. Let f : Mn → Ln+1 be an isometric immersion with constant index
of relative nullity ν = k of an oriented Riemannian manifold into Lorentzian space.
Show that, similar to the case of hypersurfaces in Euclidean space, the Gauss map
η : Mn → Hn induces an immersion g : Ln−k → Hn, where Ln−k is the quotient space
of relative nullity leaves, and the support function

γ = −〈f, i ◦ η〉,

where i : Hn → Ln+1 is the inclusion map, also induces a function γ ∈ C∞(Ln−k). Show
that the Gauss parametrization defined in the normal bundle of g has in this case the
form

ψ(y, w) = γ(y)h(y)− h∗grad γ(y) + i∗w

where h = i ◦ g.



Chapter 8

Isometric immersions of
Riemannian products

The simplest way of constructing an immersion of a product manifold into a
space form is to take an extrinsic product of immersions of the factors, a concept
that will be discussed in this chapter. The metric induced on a product manifold by
an extrinsic product of immersions is the Riemannian product of the metrics induced
by the immersions of the factors, and its second fundamental form is adapted to the
product structure of the manifold in the sense that the tangent spaces to each factor
are preserved by all shape operators.

It is a basic fact that the latter condition characterizes extrinsic products of im-
mersions among isometric immersions of Riemannian products into space forms. After
giving a proof of this fact, in the rest of the chapter we present several results which
assure that this condition is satisfied by a given isometric immersion of a Riemannian
product under assumptions of both local and global nature.

8.1 Product manifolds

In this section we first introduce some terminology related to product manifolds
and then state basic results on Riemannian product metrics.

A net E = (Ei)i=1,...,r on a differentiable manifold M is a splitting TM = ⊕ri=1Ei
of its tangent bundle by a family of integrable subbundles. A net E = (Ei)i=1,...,r on a
Riemannian manifold M is called an orthogonal net if the subbundles of E are mutually
orthogonal.

For a product manifold M = Πr
i=1Mi let πi : M → Mi denote the canonical

projection of M onto Mi. The map τ x̄i : Mi →M , for x̄ = (x̄1, . . . , x̄r) ∈M , stands for
the inclusion of Mi into M given by

τ x̄i (xi) = (x̄1, . . . , xi, . . . , x̄r), 1 ≤ i ≤ r.

The product net of a product manifold M = Πr
i=1Mi is the net E = (Ei)i=1,...,r on M

199
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defined by
Ei(x) = τxi ∗TxiMi, 1 ≤ i ≤ r,

for any x = (x1, . . . , xr) ∈M .
A metric g on a product manifold M = Πr

i=1Mi is the Riemannian product of
metrics gi on Mi, 1 ≤ i ≤ r, if

g =
r∑
i=1

π∗i gi.

To describe the Levi-Civita connection of a Riemannian product it suffices to
consider Riemannian products with only two factors. If M = M1 ×M2 is a product
manifold and E = (E1, E2) is its product net, then elements of Γ(E1) will always be
denoted by the letters X, Y, Z, whereas those in Γ(E2) by U, V,W . The same applies to
individual tangent vectors. A vector field X ∈ Γ(E1) (respectively, V ∈ Γ(E2)) is said
to be the lift of a vector field X̃ ∈ X(M1) (respectively, Ṽ ∈ X(M2)) if π1∗X = X̃ ◦ π1

(respectively, π2∗V = Ṽ ◦ π2).
We denote the set of all lifts of vector fields in M1 (respectively, M2) by L(M1)

(respectively, L(M2)), and always denote vector fields in M1 and M2 with a tilde and
use the same letters without the tilde to represent their lifts to M . Then the Levi-Civita
connections ∇1, ∇2 and ∇ of of M1, M2 and M = M1 ×M2 are related by

∇XY is the lift of ∇1
X̃
Ỹ , (8.1)

∇XV = ∇VX = 0, (8.2)

∇VW is the lift of ∇2
Ṽ
W̃ . (8.3)

Observe that the formula ∇XV = 0 (respectively, ∇VX = 0) is tensorial in
X (respectively, V ), hence it also holds for elements of Γ(E1) (respectively, Γ(E2))
that are not necessarily lifts. On the other hand, they characterize elements of Γ(E2)
(respectively, Γ(E1)) that are lifts.

It follows from (8.1), (8.2) and (8.3) that E1 and E2 are totally geodesic dis-
tributions. In general, for a Riemannian product M = Πr

i=1Mi, the product net
E = (Ei)i=1,...,r is an orthogonal net such that Ei and E⊥i are totally geodesic for
1 ≤ i ≤ r. Clearly, these conditions are equivalent to Ei and E⊥i being parallel dis-
tributions on M . The next proposition shows that Riemannian product metrics on a
product manifold are characterized by this property of its product net.

Proposition 8.1. A Riemannian metric g on a product manifold M = Πr
i=1Mi is a

Riemannian product metric if and only if the product net E = (Ei)i=1,...,r of M is an
orthogonal net such that Ei and E⊥i are totally geodesic for 1 ≤ i ≤ r.

Let N be a smooth manifold endowed with a net F = (Fi)i=1,...,r. A product
representation of F is a smooth diffeomorphism ψ : M → N of a product manifold
M = Πr

i=1Mi onto N such that ψ∗Ei(x) = Fi(ψ(x)) for all x ∈ M , 1 ≤ i ≤ r, where
E = (Ei)i=1,...,r is the product net of M . Therefore the restriction of the product
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representation ψ to the leaf of Ei through any x ∈M is a smooth diffeomorphism onto
the leaf of Fi through ψ(x).

In applying the results of this chapter on isometric immersions of Riemannian
products, a first step is to recognize that a given submanifold of a space form is in-
trinsically a Riemannian product. The basic tool in that direction is the well-known
theorem due to de Rham, which in the above terminology can be stated as follows.

Theorem 8.2. Let M be a Riemannian manifold that carries an orthogonal net
E = (Ei)i=1,...,r such that Ei and E⊥i are totally geodesic for 1 ≤ i ≤ r. Then there
exists locally (globally, if M is simply connected and complete) a product representa-
tion ψ : Πr

i=1Mi →M of E which is an isometry with respect to a Riemannian product
metric on Πr

i=1Mi.

For a Riemannian product M = M1 × M2 we list, for later use, the relations
between the curvature tensors of M , M1 and M2. We denote by Ri both the curvature
tensor of Mi, 1 ≤ i ≤ 2, and its lift to M , which is the tensor whose value at T1, T2, T3 ∈
TzM is the unique vector in Ei(z) that projects to Ri(πi∗T1, πi∗T2)πi∗T3 in Tπi(z)Mi.
The formulas 

R(X, Y )Z = R1(X, Y )Z

R(X, Y )V = R(V,W )X = R(X,U)V = 0

R(V,W )U = R2(V,W )U

(8.4)

hold for all X, Y, Z ∈ Γ(E1) and U, V,W ∈ Γ(E2).

8.2 Extrinsic products of immersions

In this section we introduce the concept of an extrinsic product of immersions
into Euclidean space and present some of its basic properties. After that we discuss
the case of nonflat ambient spaces.

A map f : M → Rm from a product manifold M = Πr
i=1Mi is said to be the ex-

trinsic product of the immersions fi : Mi → Rmi , 1 ≤ i ≤ r, if there exist an orthogonal
decomposition Rm = Πr

j=0Rmj , with Rm0 possibly trivial, and v ∈ Rm0 (in case Rm0 is
nontrivial) such that

f(x) = (v, f1(x1), . . . , fr(xr))

for all x = (x1, . . . , xr) ∈M .

A few elementary properties of an extrinsic product of immersions are collected
in the next result whose proof is left to the reader.

Proposition 8.3. Let the map f : M → Rm from a product manifold M = Πr
i=1Mi

be an extrinsic product of immersions fi : Mi → Rmi, 1 ≤ i ≤ r. Then the following
assertions hold:
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(i) The differential of f at any x = (x1, . . . , xr) ∈M is given by

f∗τ
x
i ∗Xi = fi∗Xi 1 ≤ i ≤ r,

for all Xi ∈ TxiMi.

(ii) The map f is an immersion whose induced metric is the Riemannian product of
the Riemannian metrics on Mi induced by fi, 1 ≤ i ≤ r.

(iii) The normal space of f at x ∈M is

NfM(x) = Rm0 ⊕ri=1 NfiMi(xi).

(iv) The second fundamental form of f at x ∈M is given by

αf (τxi ∗Xi, τ
x
i ∗Yi) = αfi(Xi, Yi)

for all Xi, Yi ∈ TxiMi, and

αf (τxi ∗Xi, τ
x
j ∗Xj) = 0, i 6= j,

for all Xi ∈ TxiMi and Xj ∈ TxjMj.

The notion of an extrinsic product of immersions can be extended to the cases in
which the target manifold is the sphere or the hyperbolic space. It will be convenient
to use the notations

Sn(r) = Sn1/r2 = {X ∈ Rn+1 : 〈X,X〉 = r2}

and

Hn(r) = Hn
−1/r2 = {X = (x0, . . . , xn) ∈ Ln+1 : 〈X,X〉 = −r2, x0 > 0}.

A map f : M → Sm from a product manifold M = Πr
i=1Mi into the sphere Sm ⊂

Rm+1 is said to be the extrinsic product of the immersions fi : Mi → Smi−1(ri) ⊂ Rmi ,
1 ≤ i ≤ r, if there exist an orthogonal decomposition Rm+1 = Πr

j=0 Rmj , with Rm0

possibly trivial, and v ∈ Rm0 (in case Rm0 is nontrivial), with

‖v‖2 +
r∑
i=1

r2
i = 1,

such that
f(x) = (v, f1(x1), . . . , fr(xr))

for all x = (x1, . . . , xr) ∈M .

Extrinsic products of immersions into hyperbolic space are of three different types.
First, given an orthogonal decomposition

Lm+1 = Lm1 × Πr+1
i=2 Rmi , (8.5)
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with Rmr+1 possibly trivial, let v ∈ Rmr+1 (in case Rmr+1 is nontrivial) and let

f1 : M1 → Hm1−1(r1) ⊂ Lm1 and fi : Mi → Smi−1(ri) ⊂ Rmi , 2 ≤ i ≤ r,

be immersions with

−r2
1 +

r∑
i=2

r2
i + ‖v‖2 = −1.

The map f : M = Πr
i=1Mi → Hm ⊂ Lm+1, given by

f(x) = (f1(x1), . . . , fr(xr), v) (8.6)

for all x = (x1, . . . , xr) ∈M , is said to be the extrinsic product of f1, . . . , fr.

The other two types of extrinsic products of immersions into Hm arise by com-
posing extrinsic products of immersions into either Euclidean space Rn or the sphere
Sn of dimension n < m with an umbilical inclusion of either of these spaces into Hm.

8.3 The basic decomposition theorems

In this section it is discussed, in terms of the second fundamental form, when an
isometric immersion of a Riemannian product manifold into a space form must be an
extrinsic product of isometric immersions.

The second fundamental form of an isometric immersion f : M → Qm
c of a Rie-

mannian manifold M endowed with a net E = (Ei)i=1,...,r is said to be adapted to the
net if

αf (Ei, Ej) = 0 for 1 ≤ i 6= j ≤ r.

If M = Πr
i=1Mi is a product manifold and f : M → Rm is the extrinsic product

of immersions fi : Mi → Rmi , 1 ≤ i ≤ r, it follows from part (iv) of Proposition 8.3
that the second fundamental form of f is adapted to the product net of M . The next
result shows that extrinsic products of isometric immersions are characterized by this
property among isometric immersions of Riemannian products into Euclidean space.

Theorem 8.4. Let f : M → Rm be an isometric immersion of a Riemannian product
manifold M = Πr

i=1Mi whose second fundamental form is adapted to the product net
of M . Then f is an extrinsic product of isometric immersions.

Proof: There is no loss in generality in assuming that r = 2. Let E = (E1, E2) be the
product net of M . For all x, y ∈M,X1 ∈ E1(x) and X2 ∈ E2(y) we have

f∗X1 ⊥ f∗X2. (8.7)

To see this, write x = (x1, x2) and denote L = M1 × {x2} = τx1 (M1). For X̂ ∈ E2(x),
let X̄ = π2∗(x)X̂ ∈ Tx2M2. Set X̂(z) = τ z2∗ X̄ for any z = (z1, x2) ∈ L. Then X̂ is a
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parallel vector field along L with respect to (the pulled-back to L of) the Levi-Civita
connection of M . Set

ξ = f∗X̂ : L→ Rm.

The assumption on the second fundamental form of f gives

ξ∗(X) = αf (X, X̂) = 0

for all X ∈ X(L). Therefore ξ = f∗X̂ is constant, and (8.7) follows.
Define linear subspaces Rmi of Rm, 1 ≤ i ≤ 2, by

Rmi = span{f∗(x)Xi : x ∈M and Xi ∈ Ei(x)}.

By (8.7) the subspaces Rm1 and Rm2 are orthogonal. Consider the orthogonal decom-
position

Rm = Rm0 ⊕ Rm1 ⊕ Rm2

and let Pi : Rm → Rmi , 0 ≤ i ≤ 2, denote the orthogonal projections. Then

(Pi ◦ f)∗Xj = 0, 1 ≤ i 6= j ≤ 2,

whereas
(P0 ◦ f)∗Xj = 0, 1 ≤ j ≤ 2,

for any Xj ∈ Ej. Therefore the map Pi ◦ f , 1 ≤ i ≤ 2, is constant along the fibers
of the projection πi : M → Mi, whereas P0 ◦ f has a constant value v ∈ Rm0 . Fixed
x̄ = (x̄1, x̄2) ∈M , define fi : Mi → Rmi , 1 ≤ i ≤ 2, by

fi = Pi ◦ f ◦ τ x̄i .

Then fi is an isometric immersion such that

Pi ◦ f = fi ◦ πi, 1 ≤ i ≤ 2.

Hence

f =
2∑
i=0

Pi ◦ f = v + f1 ◦ π1 + f2 ◦ π2

and thus f is the extrinsic product of f1 and f2. �

Remark 8.5. It follows from the proof of Theorem 8.4 that the decomposition of an
isometric immersion f : M → Rm of a Riemannian product manifold M = Πr

i=1Mi as
an extrinsic product of isometric immersions fi : Mi → Rmi , 1 ≤ i ≤ r, is unique as
soon as fi is assumed to be substantial for all 1 ≤ i ≤ r.

Corollary 8.6. Let f : M → Sm be an isometric immersion of a Riemannian product
manifold M = Πr

i=1Mi whose second fundamental form is adapted to the product net
of M . Then f is an extrinsic product of isometric immersions.
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Proof: Applying Theorem 8.4 to f̃ = i ◦ f , where i : Sm → Rm+1 is the umbilical
inclusion, implies that there exist an orthogonal decomposition

Rm+1 = Πr
j=0Rmj

with Rm0 possibly trivial, isometric immersions f̃j : Mj → Rmj , 1 ≤ j ≤ r, and v ∈ Rm0

such that
f̃(x) = (v, f̃1(x1), . . . , f̃r(xr))

for all x ∈ M . Since f̃(M) ⊂ Sm ⊂ Rm+1, there exist rj > 0, 1 ≤ j ≤ r, such that
f̃j(Mj) ⊂ Smj−1(rj) ⊂ Rmj and

‖v‖2 +
r∑
j=1

r2
j = 1.

Defining fj : Mj → Smj−1(rj) by f̃j = ij ◦ fj, 1 ≤ j ≤ r, where ij : Smj−1(rj)→ Rmj is
the umbilical inclusion, we conclude that f is the extrinsic product of f1, . . . , fr. �

To state and prove the version of Theorem 8.4 for isometric immersions into
hyperbolic space, we first extend Theorem 8.4 to isometric immersions of Riemannian
products into Lorentzian space.

Theorem 8.7. Let f : M → Lm be an isometric immersion of a Riemannian product
manifold M = Πr

i=1Mi whose second fundamental form is adapted to the product net
of M . Then one of the following possibilities holds:

(i) There exist an orthogonal decomposition

Lm = Lm1 × Πr+1
i=2Rmi (8.8)

with Rmr+1 possibly trivial, a vector v ∈ Rmr+1 (in case Rmr+1 is nontrivial) and
substantial isometric immersions f1 : M1 → Lm1, fi : Mi → Rmi, 2 ≤ i ≤ r, such
that

f(x1, . . . , xr) = (f1(x1), . . . , fr(xr), v). (8.9)

(ii) There exist an orthogonal decomposition

Lm = Πr
i=1Rmi × Lmr+1 ,

substantial isometric immersions fi : Mi → Rmi, 1 ≤ i ≤ r, and v ∈ Lmr+1 such
that

f(x1, . . . , xr) = (f1(x1), . . . , fr(xr), v). (8.10)

(iii) There exist 1 ≤ s ≤ r, orthogonal decompositions

Lm1 = Πs
i=1Rmi × L2 and Lm = Lm1 × Πr+1

i=s+1Rmi (8.11)
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with Rmr+1 possibly trivial, a vector v ∈ Rmr+1 (in case Rmr+1 is nontrivial), a
function ϕ ∈ C∞(M1×· · ·×Ms), substantial isometric immersions fi : Mi → Rmi,
1 ≤ i ≤ r, and a pseudo-orthonormal basis w, w̄ of L2 with 〈w,w〉 = 0 = 〈w̄, w̄〉
and 〈w, w̄〉 = 1, and δ ∈ {0, 1} such that

f(x1, . . . , xr) = (g(x1, . . . , xs), fs+1(xs+1), . . . , fr(xr), v) (8.12)

where
g(x1, . . . , xs) = (f1(x1), . . . , fs(xs), ϕ(x1, . . . , xs)w + δw̄).

Proof: Let E = (E1, . . . , Er) be the product net of M . Define linear subspaces Wi of
Lm, 1 ≤ i ≤ r, by

Wi = span{f∗(x)Xi : x ∈M and Xi ∈ Ei(x)}.

Arguing as in the proof of Theorem 8.4, we see that the subspaces Wi are mutually
orthogonal. We distinguish two cases.

First suppose that all the Wi are nondegenerate subspaces of Lm. Let Wr+1 be a
(possibly trivial) subspace of Lm defined by requiring that

Lm = W1 ⊕ · · · ⊕Wr ⊕Wr+1

be an orthogonal sum decomposition. Let Pi : Lm → Wi denote the orthogonal projec-
tions for 1 ≤ i ≤ r+ 1. Since Wi is time-like for exactly one i ∈ {1, . . . , r+ 1}, we may
assume that either i = 1 or i = r + 1. Since W1, . . . ,Wr+1 are mutually orthogonal,

(Pi ◦ f)∗Xj = 0, 1 ≤ i 6= j ≤ r,

whereas
(Pr+1 ◦ f)∗Xj = 0, 1 ≤ j ≤ r,

for all Xj ∈ Γ(Ej). Therefore the map Pi ◦ f is constant along the fibers of the
projection πi : M → Mi for 1 ≤ i ≤ r, while Pr+1 ◦ f has a constant value v on M .
Fixed x̄ = (x̄1, . . . , x̄r) ∈M , define fi : Mi → Wi for 1 ≤ i ≤ r by

fi = Pi ◦ f ◦ τ x̄i .

Then fi is an isometric immersion such that

Pi ◦ f = fi ◦ πi, 1 ≤ i ≤ r.

Hence

f =
r+1∑
i=1

Pi ◦ f =
r∑
i=1

fi ◦ πi + v.

If W1 is time-like, writing W1 = Lm1 and Wi = Rmi for 2 ≤ i ≤ r + 1, we obtain
an orthogonal decomposition of Lm+1 as in (8.8) with respect to which f is given by
(8.9).
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If Wr+1 is time like, we can write Wi = Rmi for 1 ≤ i ≤ r and Wr+1 = Lmr+1 .
We obtain an orthogonal decomposition of Lm+1 as in (8.11) with respect to which f
is given by (8.10).

The second case to consider is when some of the Wi are degenerate subspaces of
Lm. In this case, without loss of generality, we may assume that there exists 1 ≤ s ≤ r
such that W1, . . . ,Ws are degenerate, while Ws+1, . . . ,Wr are nondegenerate, and thus
necessarily space-like if s < r. Then there exists a one-dimensional light-like subspace
L0 such that Wi ∩ W⊥

i = L0 for all 1 ≤ i ≤ s. Choose a distinct light-like line L1

orthogonal to Ws+1, . . . ,Wr. Set Ŵi = Wi ∩ L⊥1 , 1 ≤ i ≤ r, so that

Wi = Ŵi ⊕ L0, 1 ≤ i ≤ s, and Wi = Ŵi, s+ 1 ≤ i ≤ r.

Defining
Ŵr+1 = (L0 ⊕ Ŵ1 ⊕ · · · ⊕ Ŵr ⊕ L1)⊥,

it follows that Lm decomposes as

Lm = L0 ⊕ Ŵ1 ⊕ · · · ⊕ Ŵr ⊕ Ŵr+1 ⊕ L1.

Let P̂i : Lm → Ŵi, 1 ≤ i ≤ r + 1, be the orthogonal projection. Arguing as in the
preceding case, we see that the map P̂i ◦f is constant along the fibers of the projection
πi : M → Mi for 1 ≤ i ≤ r, the components of f in L1 and Ŵ r+1 are constant and
the component of f in L0 is constant along the fibers of the projection of M onto
M1 × . . . × Ms. Thus there exist isometric immersions fi : Mi → Ŵi, 1 ≤ i ≤ r,
ϕ ∈ C∞(M1 × · · · ×Ms), and vectors w ∈ L0, w̄ ∈ L1 and v ∈ Ŵr+1 (in case Ŵr+1 is
nontrivial) such that

f = ϕw +
r∑
i=1

fi ◦ πi + w̄ + v.

If w̄ 6= 0, we can assume that w has been chosen so that 〈w, w̄〉 = 1.
Now write Rmi = Ŵi for 1 ≤ i ≤ r+1 and L2 = L0⊕L1. We obtain an orthogonal

decomposition as in (8.11) with respect to which f is given by (8.12) for

g =
s∑
i=1

fi ◦ πi + ϕw + δw̄. �

Corollary 8.8. Let f : M → Hm be an isometric immersion of a Riemannian product
manifold M = Πr

i=1Mi whose second fundamental form is adapted to the product net
of M . Then either f is an extrinsic product given by (8.6) of substantial isometric
immersions

f1 : M1 → Hm1−1(r1) ⊂ Lm1 and fi : Mi → Smi−1(ri) ⊂ Rmi , 2 ≤ i ≤ r,

with respect to an orthogonal decomposition of Lm+1 as in (8.5), or f is the composition
of an extrinsic product of immersions into either Rn or Sn, n < m, with an umbilical
inclusion of either of these spaces into Hm.
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Proof: Apply Theorem 8.7 to f̃ = i◦f , where i : Hm → Lm+1 is the umbilical inclusion.
Assume first that the assertion in case (i) of Theorem 8.7 holds for f̃ . Namely, there
exist an orthogonal decomposition

Lm+1 = Lm1 × Πr+1
i=2Rmi

with Rmr+1 possibly trivial, substantial isometric immersions f̃1 : M1 → Lm1 , f̃i : Mi →
Rmi , 2 ≤ i ≤ r, and v ∈ Rmr+1 (in case Rmr+1 is nontrivial) such that

f̃(x1, . . . , xr) = (f̃1(x1), . . . , f̃r(xr), v).

From 〈f̃ , f̃〉 = −1 we obtain

r∑
i=1

〈f̃i ◦ πi, f̃i ◦ πi〉+ 〈v, v〉 = −1.

Thus each 〈f̃i, f̃i〉, 1 ≤ i ≤ r, is constant, and hence there exist isometric immersions
f1 : M1 → Hm1−1(r1) and fj : Mj → Smj−1(rj), 2 ≤ j ≤ r, such that

−r2
1 +

r∑
j=2

r2
j + 〈v, v〉 = −1

and f̃j = ij ◦ fj, 1 ≤ j ≤ r, where i1 : Hm1−1(r1) → Lm1 and ij : Smj−1(rj) → Rmj ,
2 ≤ j ≤ r, are umbilical inclusions. Therefore f is the extrinsic product of f1, . . . , fr.

Next suppose that f̃ satisfies the conclusion in part (ii) of Theorem 8.7. Thus
there exist an orthogonal decomposition

Lm+1 = Πr
i=1Rmi × Lmr+1 ,

substantial isometric immersions f̃i : Mi → Rmi , 1 ≤ i ≤ r, and v ∈ Lmr+1 such that

f̃(x1, . . . , xr) = (f̃1(x1), . . . , f̃r(xr), v). (8.13)

Using that 〈f̃ , f̃〉 = −1, it follows from (8.13) that 〈f̃i, f̃i〉 = r2
i is constant, with

r∑
i=1

r2
i + 〈v, v〉 = −1.

Thus f̃j(Mj) ⊂ Smj−1(rj) ⊂ Rmj , 1 ≤ j ≤ r, so we can write f̃j = ij ◦ fj, where
fj : Mj → Smj−1(rj), 1 ≤ j ≤ r, are isometric immersions and ij : Smj−1(rj)→ Rmj are
umbilical inclusions.

Denote Rn+1 = Πr
i=1Rmi and let f̄ : M → Sn ⊂ Rn+1 be given by

f̄(x1, . . . , xr) = (f̃1(x1), . . . , f̃r(xr)).

Then f̄ is the extrinsic product of f1, . . . , fr into Sn and f = i ◦ f̄ , where

i : Sn → Hm ⊂ Lm+1 = Rn+1 × Rmr+1
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is the umbilical inclusion given by

i(x) = (x, v).

Finally, suppose that f̃ satisfies the conclusion in part (iii) of Theorem 8.7. Thus
there exist 1 ≤ s ≤ r, orthogonal decompositions

Lm1 = Πs
i=1Rmi × L2 and Lm+1 = Lm1 × Πr+1

i=s+1Rmi

with Rmr+1 possibly trivial, a vector v ∈ Rmr+1 (in case Rmr+1 is nontrivial), ϕ ∈
C∞(M1 × · · · ×Ms), substantial isometric immersions fi : Mi → Rmi , 1 ≤ i ≤ r, a
pseudo-orthonormal basis w, w̄ of L2 with 〈w,w〉 = 0 = 〈w̄, w̄〉 and 〈w, w̄〉 = 1, and
δ ∈ {0, 1} such that

f̃(x1, . . . , xr) = (g(x1, . . . , xs), fs+1(xs+1), . . . , fr(xr), v)

where
g(x1, . . . , xs) = (f1(x1), . . . , fs(xs), ϕ(x1, . . . , xs)w + δw̄).

Since 〈f̃ , f̃〉 = −1, the case δ = 0 is ruled out and we obtain

2ϕ(x1, . . . , xs) +
r∑
i=1

〈fi(xi), fi(xi)〉+ 〈v, v〉 = −1

for all x = (x1, . . . , xr) ∈ M . In particular, 〈fi, fi〉 = r2
i is constant, that is, fi takes

values in Smi−1(ri), for s+ 1 ≤ i ≤ r. In summary,

f̃ =
r∑
i=1

fi ◦ πi + w̄ − 1

2
(

r∑
i=1

〈fi ◦ πi, fi ◦ πi〉+ r2)w + v (8.14)

where
r2 = 1 + 〈v, v〉.

Write Rn = Πr
i=1Rmi and let f̄ : M → Rn be the extrinsic product of f1, . . . , fr into Rn

given by
f̄(x1, . . . , xr) = (f1(x1), . . . , fr(xr)).

Then f = j ◦ f̄ , where j : Rn → Hm ⊂ Lm+1 = Rn × L2 × Rmr+1 is the umbilical
inclusion of Rn into Hm given by

j(x) = (x, w̄ − 1

2

(
‖x‖2 + r2

)
w, v). �

8.4 Local conditions for decomposability

In this section we describe sufficient conditions of local nature for the second
fundamental form of an isometric immersion of a Riemannian product manifold to be
adapted to its product net.
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8.4.1 Curvature conditions

The main result of this section implies that an isometric immersion of a Rieman-
nian product manifold Mn = Πk

i=0M
ni
i into Rn+k, with ni ≥ 2 for all 1 ≤ i ≤ k, is an

extrinsic product of hypersurface immersions if no Mni
i , 1 ≤ i ≤ k, contains an open

subset of flat points. The proof relies on the next result.

Proposition 8.9. Let f : Mn → Rn+k be an isometric immersion of a Riemannian
product Mn = Πk

i=0M
ni
i , with ni ≥ 2 for all 1 ≤ i ≤ k. If Mni

i is not flat at xi
for all 1 ≤ i ≤ k, then the second fundamental form is adapted to the product net
E = (Ei)i=0,...,k of Mn at x = (x0, x1, . . . , xk). Moreover, if n0 > 0 then Mn0

0 is flat at
x0 and E0(x) belongs to the relative nullity subspace of f at x.

Proof: We first prove the result when n0 = 0 and ni = 2 for 1 ≤ i ≤ n. At x ∈Mn, take
an orthonormal basis e1, . . . , e2k of TxM such that e1, e2 ∈ E1(x), . . . , e2k−1, e2k ∈ Ek(x).
Let ω1, . . . , ω2k denote the dual basis and Ki the sectional curvature of Mni

i at xi,
1 ≤ i ≤ k. Define the symmetric bilinear forms Bi, 1 ≤ i ≤ k, by

Bi =

{√
−Ki (ω

2i−1 ⊗ ω2i−1 + ω2i ⊗ ω2i) if Ki < 0√
Ki (ω

2i−1 ⊗ ω2i−1 − ω2i ⊗ ω2i) if Ki > 0.

Set B = B1 ⊕ · · · ⊕Bk : TxM × TxM → Rk and consider the symmetric bilinear form

β = α⊕B : TxM × TxM → NfM(x)⊕ Rk.

It follows from the Gauss equations and the curvature relations (8.4) that β is flat with
respect to the positive inner product on NfM(x)⊕ Rk that makes the decomposition
orthogonal and whose restriction to each factor is the standard inner product on it.

Since Ki 6= 0 for all 1 ≤ i ≤ k, the nullity subspace of the bilinear form β is trivial.
Then, by Theorem 5.2, there exists a basis X1, . . . , X2k of TxM that diagonalizes β. In
particular, the nullity subspace of each Bi, 1 ≤ i ≤ k, is spanned by a subset of this
basis. Since

Ei(x) = ∩j 6=iN(Bj),

also Ei(x) is spanned by a subset of this basis for 1 ≤ i ≤ k. Hence we can arrange
that X1, X2 ∈ E1(x), . . . , X2k−1, X2k ∈ Ek(x), and the result follows in this case.

To treat the general case, choose an orthonormal set of vectors e1, . . . , e2k ∈ TxM
such that e2j−1, e2j span a plane in Ej(x) with nonzero sectional curvature for all
1 ≤ j ≤ k. We assume without loss of generality that α(e2j, e2j) 6= 0, 1 ≤ j ≤ k. If
we restrict α to the subspace spanned by e1, . . . , e2k and apply the argument of the
preceding paragraph, we find that α(e2i, e2j) = 0 for 1 ≤ i 6= j ≤ k. Since the sectional
curvature of the two-plane spanned by e2i and e2j is zero when i 6= j, it follows from
the Gauss equation that

〈α(e2i, e2i), α(e2j, e2j)〉 = 0, 1 ≤ i 6= j ≤ k.
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Therefore the vectors α(e2j, e2j), 1 ≤ j ≤ k, form an orthogonal basis of NfM(x).
Similarly we can conclude that

〈α(e2i−1, e2i), α(e2j, e2j)〉 = 0 = 〈α(e2i−1, e2i−1), α(e2j, e2j)〉

for 1 ≤ i 6= j ≤ k, from which it follows that the normal vectors α(e2i−1, e2i) and
α(e2i−1, e2i−1) are scalar multiples of α(e2i, e2i). After a rotation of e2i−1 and e2i, we
can arrange that α(e2i−1, e2i) = 0, so that the normal vectors α(e2i−1, e2i−1), 1 ≤ i ≤ k,
also form a basis of the normal space.

If X ∈ Ei(x), 0 ≤ i ≤ k, and j 6= i, then the Gauss equation gives

〈α(X, e2j), α(e2r−1, e2r−1)〉 = 0, 1 ≤ r ≤ k.

Thus α(X, e2j) = 0, and hence

〈α(X,X), α(e2j, e2j)〉 = 〈α(X, e2j), α(X, e2j)〉 = 0 if i 6= j.

Therefore α(X,X) = 0 if i = 0, and α(X,X) is a scalar multiple of α(e2i, e2i) if
1 ≤ i ≤ k. If Y ∈ Ej(x), with 1 ≤ j ≤ k and j 6= i, this and the Gauss equation give

‖α(X, Y )‖2 = 〈α(X,X), α(Y, Y )〉 = 0.

Moreover, the fact that α(X,X) = 0 for all X ∈ E0(x) implies that E0(x) belongs to
the relative nullity subspace of f at x and that Mn0

0 is flat at x0. �

Theorem 8.10. Let f : Mn → Rn+k be an isometric immersion of a Riemannian
product manifold Mn = Πk

i=0M
ni
i . If the subset of points of Mni

i at which all sectional
curvatures vanish has empty interior for all 1 ≤ i ≤ k, then Mn0

0 is flat and f(M) is
an open subset of a n0-cylinder over an extrinsic product of hypersurface immersions.

Proof: The subset S ⊂Mn given by

S = {x = (x0, x1, . . . , xk) : Mni
i is not flat at xi for all 1 ≤ i ≤ k}

is dense on Mn and, by Proposition 8.9, at any point x = (x0, x1, . . . , xk) ∈ S the
second fundamental form of f is adapted to the product net E = (Ei)i=0,...,k of Mn,
Mn0

0 is flat at x0 and E0(x) belongs to the relative nullity subspace of f at x. Therefore
these conditions hold at any point of Mn. It follows from Corollary 7.5 that f is locally
a n0-cylinder over

g = f ◦ µx̄0 : M̄n−n0 = Πk
i=1M

ni
i → Rn−n0+k

where x̄0 ∈Mn0
0 is arbitrary and µx̄0 : Πk

i=1M
ni
i →Mn is the inclusion of Πk

i=1M
ni
i into

Mn given by
µx̄0(x1, . . . , xk) = (x̄0, x1, . . . , xk). (8.15)

Since µx̄0 is totally geodesic, by Exercise 1.6 the second fundamental forms of g
and f are related by

αg(X, Y ) = αf (µx̄0∗X,µx̄0∗Y )
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for all x̄ = (x1, . . . , xk) ∈ M̄n−n0 and X, Y ∈ Tx̄M̄ . Moreover, if Ē = (Ēi)i=1,...,k is
the product net of M̄ , then it is clear that µx̄0∗Ēi(x̄) = Ei(µx̄0(x̄)) for all 1 ≤ i ≤ k.
Therefore αg is adapted to the product structure of M̄n−n0 , and hence g is an extrinsic
product of hypersurface immersions by Theorem 8.4. �

In the case of Riemannian products with only two factors, a complete description
of their isometric immersions in space forms with codimension less than or equal to two
is given in the sequel without proof. Notice that, as a particular case of Theorem 8.10, it
follows that if f : Lp×Mn → Rp+n+1 is an isometric immersion of a Riemannian product
such that p+n ≥ 3 and the subset of points of, say, Mn, at which all sectional curvatures
vanish has empty interior, then f(Lp ×Mn) is an open subset of a p-cylinder over a
hypersurface h : Mn → Rn+1. In case the ambient space is the sphere or hyperbolic
space one has the following result.

Theorem 8.11. Let f : Lp ×Mn → Qp+n+1
c , c 6= 0, be an isometric immersion of

a Riemannian product manifold. If p + n ≥ 3 then f is an extrinsic product of local
isometries i1 : Lp → Qp

c1
and i2 : Mn → Qn

c2
, 1/c1 + 1/c2 = 1/c.

The case of codimension two is quite more involved, and can be regarded as a
first step towards generalizations of Theorem 8.10 to higher codimension.

Theorem 8.12. Let f : Lp × Mn → Rp+n+2 be an isometric immersion of a Rie-
mannian product. Assume that either Lp or Mn has dimension at least two and has
no open subsets where all sectional curvatures vanish. Then there exists an open
dense subset of Lp ×Mn each of whose points lies in an open product neighborhood
U = Lp0 ×Mn

0 ⊂ Lp ×Mn such that one of the following possibilities holds:

(i) The immersion f |U is an extrinsic product of isometric immersions h1 : Lp0 → Rp+k1

and h2 : Mn
0 → Rn+k2, k1 + k2 = 2.

Lp0 × Mn
0

h1










�

h2 f |U = h1 × h2

6 6

Rp+k1× Rn+k2 = Rp+n+2

(ii) The immersion f |U is a composition f |U = H ◦ g, where g is an extrinsic product
of isometric immersions h1 : Lp0 → Rp+k1 and h2 : Mn

0 → Rn+k2, k1 + k2 = 1, and
H : W → Rp+n+2 is an isometric immersion of an open subset W ⊂ Rp+n+1 that
contains g(U).

Lp0 × Mn
0

h1

- Rp+n+2

h2
�

f |U = H ◦ (h1 × h2)

6 6

PPPPPPPPPPPq

Rp+k1× Rn+k2⊃W
H



Chapter 8. Isometric immersions of Riemannian products 213

In the case of a nonflat ambient space one has the following result.

Theorem 8.13. Let f : Lp ×Mn → Qp+n+2
c , c 6= 0, be an isometric immersion of a

Riemannian product manifold such that either n ≥ 3 or p ≥ 3. Then there exists an
open dense subset of Lp×Mn each of whose points lies in an open product neighborhood
U = Lp0 ×Mn

0 ⊂ Lp ×Mn such that one of the following possibilities holds:

(i) The immersion f |U is the extrinsic product of isometric immersions h1 : Lp0 → Qp+k1
c1

and h2 : Mn
0 → Qn+k2

c2
, k1 + k2 = 1.

Lp0 × Mn
0

h1

�
��

�
��

�
��*

h2
f |U = φ ◦ (h1 × h2)

6 6

Qp+k1
c1
×Qn+k2

c2
-

�

φ Qp+n+2
c

(ii) The immersion f |U is a composition f |U = H ◦g, where g is an extrinsic product of
local isometries i1 : Lp0 → Qp

c1
and i2 : Mn

0 → Qn
c2

, and H : W → Qp+n+2
c is an isometric

immersion of an open subset W ⊂ Qp+n+1
c that contains g(U).

Lp0 ×Mn
0

i1

- Qp+n+2
c

i2

f |U = H ◦ φ ◦ (i1 × i2)

6 6

Qp
c1
×Qn

c2
- W ⊂ Qp+n+1

c

H
?

φ

�

As an example showing that for c 6= 0 the assumption that either n ≥ 3 or p ≥ 3
is indeed necessary, one may take any local isometric immersion of R3 into S5 that is
not an extrinsic product of a unit speed parametrization α : I → S1(r1) ⊂ R2 of an
open subset of a circle of radius r1 and any α×g : I×U → S1(r1)×S3(r2), r2

1 + r2
2 = 1,

where α : I → R2 is a of an open subset of a circle of radius r1 and any isometric
immersion g : U → S3(r2) of an open subset U ⊂ R2. Such immersions have been
discussed in Chapter 5.

8.4.2 Conditions on the s-nullities

Another decomposition theorem of local nature for isometric immersions of Rie-
mannian products is presented next, now under assumptions on the s-nullities of the
second fundamental form.

Theorem 8.14. Let f : Mn → Qn+p
c , 2p < n, be an isometric immersion of a Rie-

mannian product manifold Mn = Πk
i=1M

ni
i . If at any point of Mn the s-nullities of f

satisfy νs < n−2s, 1 ≤ s ≤ p, then f is an extrinsic product of isometric immersions.
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Proof: The proof relies on Lemma 8.15 below, which implies that the second funda-
mental form of f at any point of Mn is adapted to the product structure of Mn. The
result then follows from Theorem 8.4, Theorem 8.8 and Corollary 8.6. �

Let β : V × V → W be a symmetric bilinear form, where V and W are real
vector spaces of dimension n and p, respectively, equipped with inner products. The
multilinear map R : V × V × V × V → R defined by

R(x, y, z, w) = 〈β(x,w), β(y, z)〉 − 〈β(x, z), β(y, w)〉

has then the algebraic properties of the curvature tensor.

Lemma 8.15. Let V = V1 ⊕ V2 be an orthogonal splitting such that

R(x, y, z, u) = R(x, y, u, v) = R(x, u, v, w) = 0

for all x, y, z ∈ V1 and u, v, w ∈ V2. If n > 2p and the s-nullities of β satisfy νs < n−2s
for 1 ≤ s ≤ p, then β(x, y) = 0 for all x ∈ V1 and y ∈ V2.

Proof: Let S ⊂ W denote the subspace

S = span{β(x, y) : x ∈ V1 and y ∈ V2}.

For each x ∈ V1, define a linear map Bx : V2 → S by

Bx(y) = β(x, y).

Fix x ∈ V1 such that Bx has maximal rank, i.e.,

rankBx ≥ rankBy

for all y ∈ V1. Thus D = kerBx ⊂ V2 satisfies dimD ≤ dim kerBy for all y ∈ V1.
We first argue that

D ⊂ kerBy for all y ∈ V1. (8.16)

Consider an orthogonal splitting V2 = D ⊕ E, and let e1, . . . , e` be an orthonormal
basis of E. From R(x, y, v, ej) = 0 we obtain

〈Bxej, Byv〉 = 〈Bxv,Byej〉 = 0, 1 ≤ j ≤ `, (8.17)

for all v ∈ D and y ∈ V1.
The rank of Bx+ty is at most ` for all t ∈ R. Thus the vectors Bx+tyv = tByv,

Bx+tyej, 1 ≤ j ≤ `, are linearly dependent. Hence the Gramm determinant of these
vectors is an identically zero polynomial in t. By (8.17) the term of lowest order is
t2‖Byv‖2G, where G is the Gramm determinant of the linearly independent vectors
Bxej, 1 ≤ j ≤ `. It follows that Byv = 0 for all y ∈ V1 and v ∈ D, and this is (8.16).
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Next, we prove that

β(u, v)−
∑̀
i,j=1

〈u, ei〉〈v, ej〉β(ei, ej) ∈ S⊥ (8.18)

for all u, v ∈ V2. From (8.16) we obtain

β(y, v) =
∑̀
j=1

〈v, ej〉β(y, ej)

for all y ∈ V1. Then R(y, u, w, v) = 0 yields

〈β(u, v), β(y, w)〉 =
∑̀
j=1

〈v, ej〉〈β(y, ej), β(u,w)〉

for all y ∈ V1 and u, v, w ∈ V2. In particular,

〈β(w, u), β(y, ej)〉 =
∑̀
i=1

〈u, ei〉〈β(y, ei), β(ej, w)〉.

Hence

〈β(u, v), β(y, w)〉 =
∑̀
i,j=1

〈u, ei〉〈v, ej〉〈β(y, ei), β(ej, w)〉.

Using
〈β(y, ei), β(ej, w)〉 = 〈β(y, w), β(ei, ej)〉

we obtain

〈β(u, v)−
∑̀
i,j=1

〈u, ei〉〈v, ej〉β(ei, ej), β(y, w)〉 = 0

for all y ∈ V1 and u, v, w ∈ V2, and this is (8.18).

By (8.16) we have β(u, y) = 0 if u ∈ D and y ∈ V1, and (8.18) implies that
βS(u, v) = 0 if u ∈ D and v ∈ V2. Therefore

βS(u, e) = 0 if u ∈ D and e ∈ V.

Suppose that s = dimS 6= 0. Choose vectors xj ∈ Vj, j = 1, 2, such that Bxj : Vk → S,
j 6= k, has maximal rank. It follows from the above that

βS(b, e) = 0

for all b ∈ kerBx1 ⊕ kerBx2 and e ∈ V . Hence

νs ≥ dim kerBx1 + dim kerBx2 ≥ n− 2s,

and this contradicts our assumption on the s-nullities. �
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8.5 Global conditions for decomposability

This section describes conditions of a global nature under which an isometric
immersion f : Mn → Rn+k of a Riemannian product Mn = Πk

i=1M
ni
i must neces-

sarily be an extrinsic product of hypersurface immersions. Namely, it is shown that
this is the case whenever each Mni

i , 1 ≤ i ≤ k, is complete, nonflat and does not
have a “flat strip”, that is, does not contain any open subset isometric to I × Rni−1

where I ⊂ R is an interval. In particular, this implies that any isometric immersion
f : Mn = Πk

i=1M
ni
i → Rn+k of a compact Riemannian product is an extrinsic product

of hypersurface immersions.

The proof will require several preliminary steps. The first one is the following
generalization of the Chern-Kuiper inequality.

Theorem 8.16. Let f : Mn → Rn+p be an isometric immersion and let Γ(x) be its
nullity subspace at x ∈Mn. If Γ⊥(x) splits as an orthogonal sum of nontrivial subspaces

Γ⊥(x) = T1 ⊕ · · · ⊕ T`

that are invariant by all curvature endomorphisms R(X, Y ), X, Y ∈ TxM , then

ν(x) ≤ µ(x) ≤ ν(x) + p− `.

Proof: Choose unit vectors Yj ∈ Tj, 1 ≤ j ≤ `, and define

S = (Γ(x) ∩∆⊥(x))⊕ span{Y1, . . . , Y`}.

Observe that R(Yi, Yj) = 0 if i 6= j, because

〈R(Yi, Yj)X,Z〉 = 〈R(X,Z)Yi, Yj〉 = 0

for all X,Z ∈ TxM . Thus R(X, Y ) = 0 for all X, Y ∈ S, and

dimS = µ(x)− ν(x) + `.

To conclude the proof, it suffices to show that if S ⊂ TxM is a subspace such
that S ∩∆(x) = 0 and R(X, Y ) = 0 for all X, Y ∈ S then dimS ≤ p. To see this, it
suffices to prove that there exists Z ∈ TxM such that the linear map BZ : S → NfM(x)
defined by

BZ = α(Z, ·)|S
is injective. Assume otherwise. Let Z ∈ TxM be such that the subspace BZ(S) has
maximal dimension, and let 0 6= Y ∈ S be such that BZY = 0. Since Y 6∈ ∆(x), there
exists W ∈ TxM such that α(Y,W ) 6= 0. From R(X, Y ) = 0 we obtain

〈BZX,α(Y,W )〉 = 〈BZY, α(X,W )〉 = 0

for all X ∈ S. Thus 0 6= α(Y,W ) ⊥ BZ(S). In particular, the vector

α(Z + tW, Y ) = tα(W,Y ) ∈ BZ+tW (S)
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is perpendicular to BZ(S). Hence, for small t > 0, the dimension of BZ+tW (S) exceeds
that of BZ(S), which is a contradiction. �

The above result provides the following estimate of the index of relative nullity
of an isometric immersion of a Riemannian product into Euclidean space.

Corollary 8.17. Let f : Mn → Rn+p be an isometric immersion of a Riemannian
product Mn = Πk

i=1M
ni
i . Let ` be the number of factors Mni

i at x = (x1, . . . , xk) ∈Mn

that have a nonzero sectional curvature at xi. Then

ν(x) ≤ µ(x) ≤ ν(x) + p− `.

The following consequence of Corollary 8.17 will play a key role in the proof of
the main result in this section.

Corollary 8.18. Let f : Mn → Rn+k be an isometric immersion of a Riemannian
product Mn = Πk

i=1M
ni
i . If the second fundamental form of f is not adapted to the

product net of Mn at x = (x1, . . . , xk) ∈Mn, then

µ(x) ≥ ν(x) ≥ µ(x)− r(x) ≥ r(x) > 0 (8.19)

where r(x) denotes the number of factors Mni
i that are flat at xi.

Proof: If the second fundamental form of f is not adapted to the product net of Mn

at x = (x1, . . . , xk) ∈Mn, then at least one factor Mni
i is flat at xi by Proposition 8.9.

Thus r(x) > 0. Moreover, µ(x) ≥ 2r(x), hence µ(x) − r(x) ≥ r(x). Finally, the first
two inequalities in (8.19) follow from Corollary 8.17. �

The next tool in the proof of Theorem 8.23 below is the following intrinsic version
of Theorem 7.7.

Proposition 8.19. Let U be an open subset of a complete Riemannian manifold Mn

where the index of nullity µ = s is constant. Then the distribution of nullity Γ in
U is integrable and its leaves are totally geodesic submanifolds of Mn. Moreover, if
σ : [0, a] → Mn is a geodesic such that σ([0, a)) is contained in a leaf of Γ in U then
also µ(σ(a)) = s.

Proof: The second Bianchi identity

(∇XR)Y,ZV + (∇ZR)X,Y V + (∇YR)Z,XV = 0 (8.20)

implies that
R(Y, Z)∇XV = 0

for all X, V ∈ Γ(Γ) and Y, Z ∈ X(M). Thus Γ is totally geodesic.
For the proof of the second part, take an orthonormal frame Y1, . . . , Yn−s spanning

Γ⊥ on a neighborhood of σ([0, a)) in U where the vector fields are parallel along σ, and
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let X ∈ Γ(Γ) be a unit vector field such that X = σ′ and ∇YjX = 0, 1 ≤ j ≤ n − s,
along σ. To see that µ(σ(a)) > s is not possible, take a parallel vector Z along σ such
that Z(σ(a)) ∈ Γ(σ(a)). Applying (8.20) to X, Y = Yi, Z = Yj, 1 ≤ i 6= j ≤ n− s, and
V = Z implies that along σ we have

∇σ′R(Yi, Yj)Z = 0,

hence Z(σ(0)) ∈ Γ(σ(0)). �

Consider an isometric immersion f : Mn → Rm of a Riemannian product manifold
Mn = Πk

i=1Mi whose product net E = (Ei)i=1,...,k. At x = (x1, . . . , xk) ∈ Mn denote
Γi(x) = τxi ∗Γi(xi) where Γi(xi) is the nullity space of Mi at xi. Since the curvature
operator R(X, Y ) vanishes when X ∈ Ei(x) and Y ∈ Ej(x), 1 ≤ i 6= j ≤ k, then

Γi(x) = Γ(x) ∩ Ei(x) and ⊕ki=1 Γi(x) = ⊕ki=1πiΓ(x) = Γ(x)

where πi : TxM → Ei(x) denotes the orthogonal projection.
Let ∆i(x) = τxi ∗∆i(xi), where ∆i(xi) is the relative nullity subspace of f ◦ τxi at

xi ∈ Mi. If X ∈ Ei(x) and Y ∈ Ej(x), 1 ≤ i 6= j ≤ k, it follows from the Gauss
equation that α(X, Y ) = 0 whenever α(X,X) = 0. This implies that

∆i(x) = ∆(x) ∩ Ei(x)

where ∆(x) is the relative nullity subspace of f at x. But in this case we can only
assert that

⊕ki=1 ∆i(x) ⊂ ∆(x) ⊂ ⊕ki=1πi∆(x) ⊂ Γ(x) (8.21)

with equality holding at the first inclusion if and only if it holds at the second one.
The third inclusion follows from ∆(x) ⊂ Γ(x) and πiΓ(x) ⊂ Γ(x).

The relative nullity subspace ∆(x) at a point x ∈ Mn is said to conform to the
product structure of Mn if equality holds in the first (hence the second) inclusion of
(8.21).

Clearly, if the second fundamental form α is adapted to the product net at x then
∆(x) conforms to the product structure of Mn at x.

Proposition 8.20. Let f : Mn → Rm be an isometric immersion of a Riemannian
product manifold Mn = Πk

i=1M
ni
i . Let U be an open subset of Mn1

1 (x) = τx1 (M1) at
x ∈ Mn such that the subspaces ∆1(y) have the same dimension for all y ∈ U . Let σ
be a unit speed geodesic with σ(0) = x such that σ(s) ∈ U and σ′(s) ∈ ∆1(σ(s)) for
0 ≤ s < a. If the second fundamental form of f satisfies

α(π1X, πjX)(σ(a)) = 0, 2 ≤ j ≤ k,

for any X ∈ Tσ(a)M then the same holds at x.
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Proof: Choose an orthonormal tangent frame e1, . . . , en on a neighborhood of σ([0, a])
in Mn such that ei is parallel along σ and ei(σ(s)) ∈ E1(σ(s) for all 1 ≤ i ≤ n1 and
any s ∈ [0, a]. Moreover, assume that e1 = σ′ along σ and let ξ be any unit normal
vector field parallel along σ in the normal connection. The Codazzi equation along σ
yields

∇e1Aξej + Aξ∇eje1 = 0, 2 ≤ j ≤ n1.

For any r ≥ n1+1, along σ we obtain the system of ordinary linear differential equations

e1〈Aξej, er〉+

n1∑
i=1

〈∇eje1, ei〉〈Aξei, er〉 = 0, 2 ≤ j ≤ n1,

and the claim follows from the uniqueness of solutions of such a system with a given
initial condition. �

A similar argument gives the following result.

Proposition 8.21. Let f : Mn → Rm be an isometric immersion of a Riemannian
product manifold Mn = Πk

i=1Mi. Let x ∈ Mn and let U be an open subset of M1(x)
that contains x and has a neighborhood W in Mn such that

α(π1X, πjX) = 0, 2 ≤ j ≤ k,

for all y ∈ W and X ∈ TyM . Let σ be a unit speed geodesic with σ(0) = x such that
σ(s) ∈ U and σ′(s) ∈ ∆1(σ(s)) for 0 ≤ s < a. If the second fundamental form is
adapted to the product net of Mn at σ(a), then it is also adapted to the product net of
Mn at x.

The following is the last result needed for the proof of Theorem 8.23.

Proposition 8.22. Let f : Mn → Rn+k be an isometric immersion of a complete
Riemannian product manifold Mn = Πk

i=1M
ni
i . Then the relative nullity spaces conform

to the product structure of Mn, unless one of the factors Mni
i is everywhere flat.

Proof: Assume that there are points x ∈ Mn at which the relative nullity subspaces
do not conform to the product structure of Mn, that is, at which ∆(x) is a proper
subset of ⊕ki=1πi∆(x). Let V ⊂ Mn be the open subset consisting of all such points
and let W ⊂ Mn be the open subset of points where the second fundamental form of
f is not adapted to the product net of Mn. Since V ⊂ W then (8.19) holds on V . Let
V1 ⊂ V be the subset where ν reaches its minimum. Then the subset V0 ⊂ V1 where µ
is minimum is an open set on which both ν and µ are constant and positive.

Take x ∈ V0 and a geodesic σ such that σ(0) = x, σ′(0) ∈ ∆(x) and σ[0, b) ⊂ V0.
Thus σ[0, b) is contained in a leaf of relative nullity in V0. Since both ∆ and the
distributions Ei, 1 ≤ i ≤ k, of the product net E = (Ei)i=1,...,k of Mn are parallel along
σ|[0,b], if ∆(x) does not conform to the product structure at x then the same holds for
∆(σ(b)). Thus σ(b) ∈ V . Moreover, by Theorem 7.7 and Proposition 8.19, ν and µ do
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not change at σ(b), hence σ(b) ∈ V0. It follows that σ does not leave V0, and therefore
the leaf of ∆ through x is complete. It remains to show that this can only happen if
one of the factors is everywhere flat.

Let r = r(x) be the number of factors Mni
i that are flat at xi. By Corollary 8.18,

ν(x) ≥ µ(x)− r(x) ≥ r(x) > 0.

Reorder the factors so that the first r are flat at x. By (8.21) we have ⊕ri=1πi∆(x) ⊂
Γ(x). Moreover, since ⊕ri=1πi∆(x) is strictly larger than ∆(x), by the preceding in-
equality its dimension is at least µ(x)− r+ 1. Thus its codimension in Γ(x) is at most
r − 1. Since Γ(x) = ⊕ki=1πiΓ(x), the codimension of ⊕ri=1πi∆(x) in ⊕ri=1πiΓ(x) is at
most r − 1. Because we have ordered the factors in such a way that the latter is all of
⊕ri=1πiTxM , we conclude that there must exist 1 ≤ i ≤ r such that πi∆(x) = πiTxM ,
and we may assume that i = 1.

Take any X ∈ π1TxM . Then there exists Y ⊥ π1TxM such that Z = X + Y ∈
∆(x). Let σ = σ1 × · · · × σk be the complete geodesic in Mn such that σ(0) = x and
σ′(0) = Z. Since the leaf of ∆ through x is complete then σ lies entirely in V0. The
distribution Γ(σ(s)) is parallel along σ, thus π1Tσ(s)M ⊂ Γ(σ(s)) holds for any value
of s since it holds at x. But then M1 is flat at σ1(s) for any s. Since X is arbitrary
and σ1 is a complete geodesic with σ1(0) = x1 and σ′1(0) = X, it follows that M1 is
everywhere flat. �

We are now in a position to state and prove the main result of this section.

Theorem 8.23. Let Mn1
1 , . . . ,Mnk

k be complete nonflat Riemannian manifolds such
that no Mni

i contains an open subset isometric to I × Rni−1, where I ⊂ R is an open
interval. Then any isometric immersion f : Mn → Rn+k of the Riemannian product
manifold Mn = Πk

i=1M
ni
i is an extrinsic product of hypersurface immersions.

Proof: Let f : Mn → Rn+k be an isometric immersion of the Riemannian product
Mn = Πk

i=1M
ni
i , where Mni

i is complete and nonflat for all 1 ≤ i ≤ k. Assuming that f
is not an extrinsic product of hypersurfaces, we will show that some Mni

i must contain
an open subset isometric to I × Rni−1.

By Theorem 8.4, the open subset V ⊂Mn of points where the second fundamental
form of f is not adapted to the product net of Mn is nonempty. If x = (x1, . . . , xk) ∈ V
and r(x) denotes the number of factors Mni

i that are flat at xi, then

µ(x) ≥ ν(x) ≥ r(x) > 0

by Corollary 8.18.
Let U be a connected component of V where ν reaches its minimum. The relative

nullity spaces have constant dimension on U and conform to the product structure of
Mn by Proposition 8.22. Hence the subspaces ∆i have constant dimension along U for
any 1 ≤ i ≤ k, because the dimension of each ∆i does not increase in a neighborhood
of a point, and since ⊕ri=1∆i(x) = ∆(x), if one dimension decreases another has to
increase.
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Now, for any point x = (x1, . . . , xk) ∈ U the codimension of ∆(x) in Γ(x) is at
most r = r(x) by (8.19). Ordering the factors so that the first r factors Mni

i are flat at
xi, it follows that the sum of the codimensions of πi∆i(x) in Ei(x) = πiTxM , 1 ≤ i ≤ r,
is at most r. Therefore for some 1 ≤ i ≤ r, say i = 1, the dimension of ∆1(x) = π1∆(x)
is at least n1 − 1. We conclude that U carries a distribution ∆1 of dimension either
n1 − 1 or n1 and that each ∆1(x) = τx1 ∗∆1(x1), where ∆1(x1) is the relative nullity
subspace of f ◦ τx1 at x1 ∈ Mn1

1 . It follows from Proposition 1.18 and the fact that τx1
is totally geodesic for all x ∈ Mn that ∆1 is integrable and that its leaves are totally
geodesic in U .

Suppose first that the second fundamental form of f satisfies

α(π1X, πjX) = 0, 2 ≤ j ≤ k, (8.22)

for all x ∈ U and X ∈ TxM . For a given y ∈ U , set S = M1(y) ∩ U . For any x ∈ S
and any geodesic tangent to ∆1 with σ(0) = x such that σ([0, b)) lies in S, we have
σ(b) ∈ V by Proposition 8.21. But since ∆1 ⊂ ∆, it follows from Theorem 7.7 that
ν does not change at σ(b), so σ(b) ∈ S by the definition of U . Thus the leaves of the
distribution ∆1 on S are complete.

Now suppose that the second fundamental form of f does not satisfy condition
(8.22) at some y ∈ U . Define S to be subset of points of M1(y) ∩ U that condition is
not satisfied. By Proposition 8.20, for any geodesic tangent to ∆1 with σ(0) = x such
that σ([0, b)) lies in S, we have σ(b) ∈ V . As before, σ(b) ∈ U , and hence σ(b) ∈ S by
the definition of S. Again the leaves of the distribution ∆1 on S are complete.

In any case, it has been shown that M1(x) contains a nonempty open subset
where the leaves of the relative nullity spaces of f |M1(x) have dimension n1− 1 and are
complete. It remains to show that for any connected component of S the leaves are
are carried into parallel (n1− 1)- dimensional parallel affine subspaces. But for that it
is sufficient to check that the proof of Lemma 7.16 works in this case. �

Corollary 8.24. Let Mn1
1 , . . . ,Mnk

k be compact nonflat Riemannian manifolds. Then
any isometric immersion f : Mn → Rn+k of the Riemannian product manifold Mn =
Πk
i=1M

ni
i is an extrinsic product of hypersurface immersions.

It was proved in [7], by means of an example for the simplest case of a product
of only two factors, that Theorem 8.23 is no longer true if some factor contains a flat
strip. A complete understanding of the geometric situation in this case is achieved by
the following result stated without proof.

Theorem 8.25. Let f : Mn → Rn+2 be an isometric immersion of a Riemannian
product manifold Mn = Mn1

1 ×Mn2
2 of complete nonflat Riemannian manifolds. Then

there is an open dense subset each of whose points lies in an open product neighborhood
U = U1 × U2, with Uj ⊂ M

nj
j , 1 ≤ j ≤ 2, such that one of the following possibilities

holds:

(i) f |U is an extrinsic product of immersions.



222 8.6. Notes

(ii) Each Uj is isometric to Ij×Rnj−1 and f is a cylinder over an isometric immersion
g : I1 × I2 ⊂ R2 → R4.

(iii) One Uj is isometric to Ij × Rnj−1 for some 1 ≤ j ≤ 2 and f |U is a cylinder
over an isometric immersion f̃ : Ui × Ij → Rni+3, 1 ≤ i 6= j ≤ 2, which is
a composition f̃ = h ◦ g of a cylinder g : Ui × Ij → Rni+2 over an isometric
immersion k : Ui → Rni+1 with an isometric immersion h : V → Rni+3 of an
open subset V ⊂ Rni+2 containing g(Ui × Ij).

8.6 Notes

The basic decomposition Theorem 8.4 for isometric immersions of Riemannian
products into Euclidean space was proved by Moore [252]. Its versions for isometric
immersions of Riemannian products into the sphere and the hyperbolic space were
obtained by Molzan [251]. The extension of Theorem 8.4 for isometric immersions
of Riemannian products into Lorentzian space, namely, Theorem 8.7, on which relies
our proof of Corollary 8.8, does not seem to have already appeared in the literature.
It will also be used in Chapter 9 in the proof of the generalization of Theorem 8.4
for conformal immersions of Riemannian products into Euclidean space due to Tojeiro
[330].

The local Theorem 8.10 for isometric immersions into Euclidean space, as well
as Corollary 8.24 for compact Riemannian products, were proved by Moore [252]. The
results on isometric immersions with codimension at most two, namely Theorems 8.11,
8.12 and 8.13, have been taken from Dajczer-Tojeiro [144]. The local Theorem 8.14 is
due to Dajczer-Vlachos [151].

Most of the results in Section 8.5, including Theorem 8.23 for complete Rie-
mannian products, are due to Alexander-Maltz [7]. Theorem 8.25 was obtained by
Barbosa-Dajczer-Tojeiro [28].

The classification of Einstein hypersurfaces of space forms in Exercise 8.4 is due to
Fialkow [179], whereas that of hypersurfaces with parallel Ricci tensor in Exercise 8.5
was obtained by Reckziegel [298]. Exercise 8.7 was taken from Ejiri [166].

8.7 Exercises

Exercise 8.1. Let Mn be a Riemannian manifold and let Φ ∈ Γ(End(TM)) be a
parallel symmetric tensor on Mn, that is,

(∇XΦ)Y = ∇XΦY − Φ∇XY = 0

for all X, Y ∈ X(M).

(i) Show that the eigenvalues λ1, . . . , λk of Φ are constant on Mn and that the
corresponding eigenbundles E1, . . . , Ek are parallel.
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(ii) Conclude that there exists locally (globally, if Mn is simply connected and com-
plete) a product representation ψ : Πk

i=1Mi → Mn of E = (Ei)i=1,...,k which is an
isometry with respect to a Riemannian product metric on Πk

i=1Mi.

Hint for (i): Let λ1, . . . , λk be the eigenvalues of Φ at x ∈ Mn. Given any y ∈ Mn,
let γ be a smooth curve on Mn joining x to y. For each 1 ≤ i ≤ k, choose ei ∈ TxM
such that Φei = λiei and denote by Ei the parallel transport of ei along γ and by X
the tangent vector to γ. Then

∇X(ΦEi) = (∇XΦ)Ei + Φ(∇XEi) = 0

and
∇X(λiEi) = λi∇XEi = 0.

By the uniqueness of parallel transport along γ it follows that ΦEi = λiEi at y.

Exercise 8.2. Let f : Mn → Qn+1
c be a hypersurface whose shape operator A satisfies

R(X, Y )A = ∇X∇YA−∇Y∇XA−∇[X,Y ]A = 0

for all X, Y ∈ X(M) (in particular if ∇A = 0). Show that the principal curvatures
λ1, . . . , λn of f satisfy

(λiλj + c)(λi − λj) = 0

for all 1 ≤ i, j ≤ n, and conclude that f has at most two distinct principal curvatures
at any point.

Hint: Let x ∈Mn be arbitrary and let e1, . . . , en be an orthonormal basis of TxM such
that Aei = λiei for all 1 ≤ i ≤ n. For each λ, denote Eλ = ker(A−λI). Since RA = 0,
the endomorphisms R(X, Y )A and A commute for all X, Y ∈ TxM . In particular,

λjR(ei, ej)ej = R(ei, ej)(Aej)

= AR(ei, ej)ej.

Thus R(ei, ej)ej ∈ Eλj , and hence

〈R(ei, ej)ej, ei〉 = 0

whenever λi 6= λj. On the other hand, the Gauss equation

R(ei, ej) = (λiλj + c)(ei ∧ ej)

gives
〈R(ei, ej)ej, ei〉 = λiλj + c.

Exercise 8.3. Let f : Mn → Qn+1
c be a nonumbilical hypersurface with parallel shape

operator. Show that either c = 0 and f(M) is an open subset of a cylinder over an
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umbilical isometric immersion g : Qk
c̃ → Rk+1 with c̃ > 0 and 1 ≤ k ≤ n − 1, or c 6= 0

and f(M) is an open subset of the image of an extrinsic product of identity maps

id1 : Qn1
c1
→ Qn1

c1
and id2 : Qn2

c2
→ Qn2

c2
,

with n1 + n2 = n and 1/c1 + 1/c2 = 1/c.

Hint: Use Exercises 8.1 and 8.2 together with Theorem 8.4 for c = 0, and Corollaries 8.6
and 8.8 for c 6= 0.

Exercise 8.4. Let f : Mn → Qn+1
c , n ≥ 3, be an isometric immersion of an Einstein

manifold with Ric = ρ〈 , 〉. Show that

(i) if ρ > (n−1)c, then f is umbilical, and hence Mn has constant sectional curvature
c̃ = ρ/(n− 1).

(ii) if ρ = (n− 1)c, then f has index of relative nullity ν ≥ n− 1, and hence Mn has
constant sectional curvature c.

(iii) if ρ < (n − 1)c, then c > 0, n ≥ 4, ρ = (n − 2)c and f(M) is an open subset of
the image of an extrinsic product of identity maps

id1 : Skc1 → Skc1 and id2 : Sn−kc2
→ Sn−kc2

, 2 ≤ k ≤ n− 2,

with

c1 =
n− 2

k − 1
c and c2 =

n− 2

n− k − 1
c. (8.23)

Hint: Argue in a way similar to that suggested by the hint of Exercise 3.11. First use
(3.7) to show that the principal curvatures λ1, . . . , λn of f satisfy

λ2
j − rλj + ρ− (n− 1)c = 0, 1 ≤ j ≤ n,

where r = nH. If ρ = (n− 1)c, conclude that at most one principal curvature does not
vanish. If ρ > (n−1)c, show that assuming f to have two distinct principal curvatures
at some point leads to a contradiction. If ρ < (n− 1)c, write

λ1 = · · · = λp = ν and λp+1 = · · · = λn = µ

for some 1 ≤ p ≤ n, with µ 6= ν everywhere, and show that

(p− 1)ν2 + (n− p− 1)(ρ− (n− 1)c) = 0,

which implies that p > 1, p < n− 1 and

ν2 = −n− p− 1

p− 1
(ρ− (n− 1)c).

Conclude that n ≥ 4, that ν, µ and p are all constant on Mn, and that both Eν and
Eµ are parallel distributions on Mn. At any x ∈ Mn, take X ∈ Eν(x) and Y ∈ Eµ(x)



Chapter 8. Isometric immersions of Riemannian products 225

and show that the sectional curvature K(X, Y ) of Mn along the plane spanned by X
and Y satisfies

0 = K(X, Y ) = νµ+ c = ρ− (n− 2)c.

Now apply Theorem 8.2 and Corollary 8.6 to conclude that Mn is locally isometric to
Skc1×Sn−kc2

, with 2 ≤ k ≤ n−2 and c1, c2 as in (8.23), and that f is locally the extrinsic
product of the identity maps id1 : Skc1 → Skc1 and id2 : Sn−kc2

→ Sn−kc2
. Finally, make use

of Exercise 1.20 for the global conclusion.

Exercise 8.5. Let f : Mn → Qn+1
c be a hypersurface with parallel Ricci tensor that is

neither Einstein nor a hypersurface with parallel second fundamental form. Show that
c = 0 and that f(M) is an open subset of a cylinder over a surface g : M2

c̃ → R3 with
constant Gaussian curvature.

Hint: First use Exercise 8.1 to show that the eigenvalues ρ1, . . . , ρk of the endomorphism
T ∈ Γ(End(TM)) of Mn associated to the Ricci tensor Ric of Mn are constant and
that the eigenbundle Ei = ker(T − ρiI) is parallel for 1 ≤ i ≤ k. Observe also that
k ≥ 2 by the assumption that Mn is not an Einstein manifold. Now use (3.7) to show
that, if Λ(x) denotes the set of principal curvatures of f at x, then for each λ ∈ Λ(x)
the number

σλ = (n− 1)c− (λ− nH(x))λ

is an eigenvalue of T . Thus Λ(x) = ∪ki=1Λi(x), with

Λi(x) = {λ ∈ Λ(x) : σλ = ρi},

and
Ei(x) = ⊕λ∈Λi(x)Eλ

where Eλ = ker(A − λI), and hence the second fundamental form of f is adapted
to the net E = (Ei)i=1,...,k. Now use the local de Rham Theorem 8.2 together with
Theorem 8.4 for c = 0 and Corollaries 8.6 and 8.8 for c 6= 0 to conclude that there
exists locally a product representation ψ : M1 × · · · × Mk → M of E = (Ei)i=1,...,k,
which is an isometry with respect to a Riemannian product metric on M1 × · · · ×Mk,
such that f ◦ψ is an extrinsic product of isometric immersions f1, . . . , fk of the factors
M1, . . . ,Mk.

If c 6= 0, observe that, by dimension reasons, each fi is actually a local isometry,
and show that this implies f to have parallel second fundamental form, in contradic-
tion with the assumption. If c = 0, note that exactly one of f1, . . . , fk, say, f1, has
codimension one, while the others are local isometries. Argue that this implies that
k = 2, λ = 0 is a principal curvature of f with multiplicity n − 2, and that f1 is
a nonumbilical isometric immersion f1 : M2

c̃ → R3 of a two-dimensional Riemannian
manifold of constant Gaussian curvature c̃ = ρ1.

Exercise 8.6. Let f : Mn → Hn+1
c be an isoparametric hypersurface. Show that

f(M) is an open subset of the image of the standard isometric immersion of Skc1×Hn−k
c2

into Hn+1
c for some 0 ≤ k ≤ n, where 1/c1 + 1/c2 = 1/c.
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Exercise 8.7. Let f : Mn1
1 ×Mn2

2 → Qm
c , with c ≤ 0 and n1, n2 ≥ 2, be a minimal

isometric immersion. Show that c = 0 and that f is an extrinsic product of minimal
isometric immersions.

Hint: At x = (x1, x2) ∈ M = Mn1
1 ×Mn2

2 , consider orthonormal bases u1, . . . , un1 of
Tx1M1 and v1, . . . , vn2 of Tx2M2. Denoting also ui = τx1∗ui ∈ TxM , 1 ≤ i ≤ n1, and
vj = τx2∗vj ∈ TxM , 1 ≤ j ≤ n2, the Gauss equation for f gives

0 = 〈R(ui, vj)vj, ui〉 = c+ 〈α(ui, ui), α(vj, vj)〉 − ‖α(ui, vj)‖2.

Sum in both indices and use the minimality condition to obtain

n1n2c = ‖
∑
i

α(ui, ui)‖2 +
∑
i,j

‖α(ui, vj)‖2

= ‖
∑
j

α(vj, vj)‖2 +
∑
i,j

‖α(ui, vj)‖2,

and then conclude the proof using Theorem 8.4.



Chapter 9

Conformal immersions

In this chapter we initiate the study of conformal immersions. Our approach is
based on the fact that, to any conformal immersion f : Mn → Rm of a Riemannian
manifold Mn into Euclidean space, one can naturally associate an isometric immersion
F : Mn → Vm+1 ⊂ Lm+2 into the light-cone Vm+1 of Lorentzian space Lm+2, called its
isometric light-cone representative.

The starting point is the fact that Rm can be isometrically embedded into (the
upper half Vm+1

+ of) Vm+1, giving rise to a model of Euclidean space as a hypersurface
of Vm+1. In particular, this is a very convenient setting for dealing with Moebius geo-
metric notions, one main reason being that Moebius transformations of Euclidean space
are linearized in this model. Namely, they are given by linear orthogonal transforma-
tions of Lm+2 that preserve Vm+1

+ . Another reason is that spheres and affine subspaces
of codimension k in Rm have a neat description in terms of k-dimensional space-like
subspaces in Lm+2. In particular, the space of oriented hyperspheres of Rm can be
naturally identified with the de Sitter space Sm+1

1,1 ⊂ Lm+2. Moreover, orthogonality
between spheres and affine subspaces is easily handled in this model, for it corresponds
to orthogonality between the corresponding space-like subspaces.

We provide an elementary and self-contained account of the above facts. They
are first applied to study envelopes of congruences of spheres in Euclidean space and
their relation to Dupin principal normal vector fields. A conformal version of the
Gauss parametrization is then discussed, which allows to parametrize a Euclidean
hypersurface that envelops a k-parameter congruence of hyperspheres in terms of the
locus of their centers and their radii.

We proceed by showing that the classical theorem by Liouville on the classification
of conformal maps between open subsets of Euclidean space of dimension m ≥ 3 can be
derived as a consequence of the isometric rigidity of the light-cone hypersurface model
of Rm. We provide a short and direct proof of the latter fact, thus yielding a simple
proof of Liouville’s theorem.

We then derive a Fundamental theorem of submanifolds within the context of
Moebius geometry. It implies that a Euclidean submanifold is completely determined,
up to Moebius transformations of the ambient space, by the so-called Moebius metric,
Moebius second fundamental form, Blaschke tensor, Moebius form and the normal
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connection of the submanifold.
Our main interest is on the study of conformal deformations of Euclidean sub-

manifolds, which will be pursued in subsequent chapters. Here, after defining the
conformal versions of the s-nullities introduced in Section 2.2.2, we present a confor-
mal counterpart of Theorem 4.23 on the isometric rigidity of Euclidean submanifolds
of codimension at most five. It provides sufficient conditions in terms of the conformal
s-nullities for a Euclidean submanifold with codimension at most four to be confor-
mally rigid, and builds on the fact that conformal congruence between Euclidean sub-
manifolds turns out to be equivalent to isometric congruence between their isometric
light-cone representatives.

Finally, we present a conformal version of Moore’s decomposition Theorem 8.4,
which gives a complete description of all conformal immersions of a Riemannian prod-
uct of dimension n ≥ 3 into Euclidean space whose second fundamental forms are
adapted to the product net of the manifold. This yields, in particular, a classification
of Euclidean submanifolds that carry a Dupin principal normal with umbilical conul-
lity, a special case of which will be needed in our proof of Cartan’s theorem on the
classification of conformally deformable Euclidean hypersurfaces in Chapter 17.

9.1 The paraboloid model

Let Lm+2 be the (m + 2)-dimensional Lorentzian space with the metric induced
by the inner product

〈v, w〉 = −v0w0 + v1w1 + · · ·+ vm+1wm+1

for v = (v0, . . . , vm+1) and w = (w0, . . . , wm+1). The set of light-like vectors

Vm+1 = {v ∈ Lm+2 : 〈v, v〉 = 0, v 6= 0}

is called the light cone of Lm+2. Notice that the submanifold Vm+1 has two connected
components and inherits a degenerate metric from Lm+2.

For any given w ∈ Vm+1, the intersection

Em = Emw = {v ∈ Vm+1 : 〈v, w〉 = 1}

of Vm+1 with the affine hyperplane

{u ∈ Lm+2 : 〈u,w〉 = 1}

is a model of the m-dimensional Euclidean space. To see this, fix v ∈ Em and a linear
isometry

C : Rm → (span{v, w})⊥ ⊂ Lm+2.

Then the map Ψ = Ψv,w,C : Rm → Lm+2, given by

Ψ(x) = v + Cx− 1

2
‖x‖2w, (9.1)
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is an isometric embedding such that Ψ(Rm) = Em. That Ψ is an isometric immersion
follows from

Ψ∗(x)X = CX − 〈X, x〉w (9.2)

for all x ∈ Rm and X ∈ TxRm = Rm, where 〈 , 〉 is also the inner product of Rm.

We call (v, w, C) as above an admissible triple. Note that if (v, w, C) and (v̄, w̄, C̄)
are admissible triples, then the linear map in Lm+2 given by

Tv = v̄, Tw = w̄ and T ◦ C = C̄

belongs to O1(m + 2), that is, it is orthogonal with respect to the inner product in
Lm+2, and satisfies

T ◦Ψv,w,C = Ψv̄,w̄,C̄ .

The isometric immersion Ψ: Rm → Vm+1 shares with any isometric immersion of
a Riemannian manifold into the light cone the following property.

Proposition 9.1. Let f : Mn → Vm+1 ⊂ Lm+2 be an isometric immersion of a
Riemannian manifold. Then the position vector field f is a light-like parallel normal
vector field such that

〈αf (X, Y ), f〉 = −〈X, Y 〉 (9.3)

for all X, Y ∈ X(M).

Proof: Differentiating 〈f, f〉 = 0 we see that f is a normal vector field. The remaining
assertions follow from

∇̃Xf = f∗X,

where ∇̃ denotes the connection in Lm+2. �

The normal bundle of the isometric embedding Ψ: Rm → Vm+1 ⊂ Lm+2 given by
(9.1) is spanned by the position vector field Ψ and the constant vector field w, that is,

NΨRm = span{Ψ, w}.

Differentiating 〈Ψ, w〉 = 1 twice gives

〈αΨ(X, Y ), w〉 = 0 (9.4)

for all X, Y ∈ X(Rm). Thus, by (9.3) and (9.4) we have

αΨ(X, Y ) = 〈αΨ(X, Y ),Ψ〉w + 〈αΨ(X, Y ), w〉Ψ
= −〈X, Y 〉w (9.5)

for all X, Y ∈ X(Rm).

Any nonflat space form Qm
c also has a hypersurface of Vm+1 as a model. In fact,

fix z ∈ Lm+2 with 〈z, z〉 = −1/c and a linear isometry

B : Rm+1
µ → {z}⊥ ⊂ Lm+2,
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where µ ∈ {0, 1} and Rm+1
µ is either Rm+1 or Lm+1 according to whether c > 0 or c < 0,

respectively. The isometric embedding TB,z : Qm
c → Lm+2 defined by

x ∈ Qm
c ⊂ Rm+1

µ 7→ z +Bx (9.6)

has as image the intersection of Vm+1 with the affine hyperplane

{u ∈ Lm+2 : 〈u, z〉 = −1/c}

if c > 0, and one of the two branches of this intersection if c < 0.

9.2 The space of Euclidean hyperspheres

Hyperspheres in Euclidean space Rm have a neat description in its model Em.
Let S ⊂ Rm be a hypersphere with (constant) mean curvature h with respect to a unit
normal vector field N . Differentiating the map ρ : S → Lm+2 given by

ρ(x) = Ψ∗(x)N(x) + hΨ(x)

and using (9.5), we obtain

ρ∗X = Ψ∗∇̄XN + hΨ∗X

= Ψ∗(−hX) + hΨ∗X

= 0

where ∇̄ is the derivative of Rm. Hence ρ(S) = {z} for some unit space-like vector
z ∈ Lm+2 satisfying 〈Ψ(x), z〉 = 0 for all x ∈ S. It follows that

Ψ(S) = Em ∩ {z}⊥,

and from now on we write S = Em ∩ {z}⊥ for short. Observe that S is an affine
hyperplane if and only if

0 = h = 〈z, w〉.

Note also that changing the unit normal vector field N by −N , and hence the corre-
sponding mean curvature h, makes the unit space-like vector z change its sign.

In summary, unit space-like vectors in Lm+2 are in one-to-one correspondence
with oriented hyperspheres or affine hyperplanes of Rm. Hence the space of oriented
hyperspheres and affine hyperplanes of Rm is naturally identified with the de Sitter
space

Sm+1
1,1 = {u ∈ Lm+2 : 〈u, u〉 = 1}.

Let S = Em ∩ {z}⊥ be a hypersphere with (Euclidean) center x0 and radius r,
oriented by its inward pointing unit normal vector field

x ∈ S 7→ N(x) =
1

r
(x0 − x)
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with corresponding mean curvature h = 1/r. Using (9.2), it follows easily that the
associated unit space-like vector

z = Ψ∗(x)N(x) + hΨ(x), (9.7)

for any x ∈ S, is given by

z =
1

r
Ψ(x0) +

r

2
w. (9.8)

On the other hand, if S = Em∩{z}⊥ is an affine hyperplane oriented by a unit normal
vector N , then z = Ψ∗(x)N , x ∈ S, is given by

z = CN − cw,

where c ∈ R is the oriented distance from S to the origin in Rm. Hence the space of
(oriented) affine hyperplanes in Rm is identified with the image Sm+1

1,1 ∩ {w}⊥ of the

embedding φ : Sm−1 × R→ Sm+1
1,1 defined by

φ(x, t) = Cx− tw,

with φ(x, t) representing the affine hyperplane with unit normal vector x and oriented
distance t ∈ R to the origin in Rm.

The relative position of two hyperspheres has a simple description in this model.
Given hyperspheres or affine hyperplanes

Si = Em ∩ {zi}⊥, 1 ≤ i ≤ 2,

then they intersect along an (m − 2)-dimensional sphere or affine subspace, have a
unique common point (or are two parallel affine hyperplanes) or do not intersect if
and only if the subspace V spanned by z1 and z2 is space-like, degenerate or time-like,
respectively. In the first case, if N1

x and N2
x are the unit normal vectors of S1 and S2,

respectively, at x ∈ S1 ∩ S2, then

〈N1
x , N

2
x〉 = 〈z1, z2〉.

In particular, S1 and S2 intersect orthogonally if and only if 〈z1, z2〉 = 0.
We also see that any (m − 2)-dimensional sphere or affine subspace is given by

Em ∩ V ⊥ for some two-dimensional space-like subspace V ⊂ Lm+2, affine subspaces
being characterized by the fact that w ∈ V ⊥. More generally, the space of spheres
and affine subspaces of codimension k is naturally identified in this way with the
Grassmannian of k-dimensional space-like subspaces of Lm+2.

9.3 Envelopes of congruences of hyperspheres

Given a smooth map h : Mn → Rm and a positive function r ∈ C∞(M), the
family of hyperspheres

x ∈Mn 7→ S(h(x), r(x))
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centered at h(x) ∈ Rm with radius r(x) is said to be a congruence of hyperspheres.

By the discussion in the preceding section, if Ψ = Ψv,w,C : Rm → Lm+2 is the
isometric embedding onto

Em = Emw = {u ∈ Vm+1 : 〈u,w〉 = 1} ⊂ Lm+2

given by (9.1) in terms of w ∈ Vm+1, v ∈ Em and a linear isometry C : Rm → {v, w}⊥,
then the congruence of hyperspheres S(h(x), r(x)), x ∈Mn, can be identified with the
map S : Mn → Sm+1

1,1 ⊂ Lm+2 defined by

S(x) =
1

r(x)
Ψ(h(x)) +

r(x)

2
w. (9.9)

The congruence of hyperspheres S(h(x), r(x)), x ∈ Mn, is said to be a k-parameter
congruence of hyperspheres if the map S has rank k everywhere. Since

S∗X =
1

r(x)
Ψ∗h∗X −

X(r)

r2(x)
Ψ(h(x)) +

X(r)

2
w (9.10)

for all x ∈Mn and X ∈ TxM , this is equivalent to requiring that kerh∗(x) ∩ ker r∗(x)
have dimension n− k for all x ∈ Mn. From now on, a map S : Mn → Sm+1

1,1 of rank k
will be called itself a k-parameter congruence of hyperspheres in Rm.

In a similar way, a map S : Mn → Sm+1
1,1 ∩ {w}⊥ of rank k is called a k-parameter

congruence of affine hyperplanes. One can always write such a map as

S(x) = C(i ◦ g)(x)− γ(x)w (9.11)

where g : Mn → Sm−1 is a smooth map, i : Sm−1 → Rm is the inclusion and γ ∈ C∞(M).
Hence S having rank k is equivalent to ker g∗∩ker γ∗ having dimension n−k everywhere.
Notice that S(x) represents the affine hyperplane in Rm having (i ◦ g)(x) as a unit
normal vector and γ(x) as its oriented distance to the origin in Rm.

An immersion f : Mn → Rm is said to envelop the congruence of hyperspheres
determined by h : Mn → Rm and r ∈ C∞(M) if

f(x) ∈ S(h(x), r(x)) and f∗TxM ⊂ Tf(x)S(h(x), r(x)),

that is, if
‖f(x)− h(x)‖2 = r2(x) and 〈f∗X, f(x)− h(x)〉 = 0 (9.12)

for all x ∈Mn and X ∈ TxM .
Notice that (9.12) implies that

〈h∗X, f(x)− h(x)〉 = −rX(r)

for all x ∈Mn and X ∈ TxM . Thus

kerh∗(x) ⊂ ker r∗(x),
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and hence
kerh∗(x) ∩ ker r∗(x) = kerh∗(x)

for all x ∈Mn.
Accordingly, an immersion f : Mn → Rm is said to envelop the congruence of

affine hyperplanes determined by g : Mn → Sm−1 and γ ∈ C∞(M) if

〈f(x), i(g(x))〉 = γ(x) and 〈f∗X, i(g(x))〉 = 0 (9.13)

for all x ∈Mn and X ∈ TxM .
Similarly, it follows from (9.13) that

ker g∗(x) ∩ ker γ∗(x) = ker g∗(x)

for all x ∈Mn.

Proposition 9.2. An immersion f : Mn → Rm envelops a congruence of hyperspheres
S : Mn → Sm+1

1,1 (respectively, affine hyperplanes S : Mn → Sm+1
1,1 ∩{w}⊥) if and only if

〈(Ψ ◦ f)(x), S(x)〉 = 0 and 〈(Ψ ◦ f)∗X,S(x)〉 = 0 (9.14)

for all x ∈Mn and X ∈ TxM .

Proof: Using (9.1) and (9.2), it is easily checked that if f : Mn → Rm is an immersion
and S : Mn → Sm+1

1,1 (respectively, S : Mn → Sm+1
1,1 ∩ {w}⊥) is a congruence of hyper-

spheres (respectively, affine hyperplanes), then the equations in (9.14) are equivalent
to those in (9.12) (respectively, (9.13)). �

According to Proposition 9.2, if an immersion f : Mn → Rm envelops a congru-
ence of hyperspheres S : Mn → Sm+1

1,1 , then S can be regarded as a unit space-like
normal vector field along Ψ ◦ f orthogonal to the light-like position vector field Ψ ◦ f .

Note also that (9.14) implies that

〈S∗X, (Ψ ◦ f)(x)〉 = 0

for all x ∈ Mn and X ∈ TxM . Therefore, if S is an immersion, then Ψ ◦ f can be
seen as a light-like normal vector field along S. In particular, an (m − 1)-parameter
congruence of hyperspheres S : Mm−1 → Sm+1

1,1 in Rm can have at most two envelopes.
Moreover, it has no envelopes if its induced metric is time-like, and it has two distinct
envelopes if and only if its induced metric is Riemannian.

Let e0, e1, . . . , em+1 be a pseudo-orthonormal basis of Lm+2 with e0 = v and
em+1 = −(1/2)w. Observe that 〈e0, em+1〉 = −1/2. Then we may write the isometric
immersion Ψ: Mn → Lm+2 with respect to this basis as

Ψ(x) = (1, x, ‖x‖2)
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for all x ∈ Rm. Thus the congruence of hyperspheres S : Mn → Sm+1
1,1 , given by (9.9)

in terms of the map h : Mn → Rm and r ∈ C∞(M), can be written as

S =
1

r
(1, h, ‖h‖2 − r2). (9.15)

Notice that h and r can be recovered from S = (S0, . . . , Sm+1) by

h = r(S1, . . . , Sm) and r = 1/S0. (9.16)

Lemma 9.3. The map S : Mn → Sm+1
1,1 ⊂ Lm+2 given by (9.15) is an immersion with

Riemannian induced metric if and only if h is an immersion and the gradient of r with
respect to the metric induced by h satisfies ‖grad r‖ < 1.

Proof: From (9.10) we obtain

〈S∗X,S∗X〉 =
1

r2
(〈h∗X, h∗X〉 − (X(r))2)

for all X ∈ X(M). It follows that S is an immersion with Riemannian induced metric
if and only if h is an immersion and

〈h∗X, h∗X〉 > (X(r))2

for all X ∈ X(M). If h is an immersion, the preceding inequality is trivially satisfied
if 〈X, grad r〉 = 0, and for X = grad r it reduces to ‖grad r‖ < 1 with respect to the
metric induced by h. �

Proposition 9.4. If a hypersurface f : Mn → Rn+1 envelops a k-parameter congru-
ence of hyperspheres S : Mn → Sn+2

1,1 , 1 ≤ k ≤ n− 1, then f has a principal curvature
λ such that kerS∗(x) ⊂ Eλ(x) for all x ∈ Mn, with kerS∗(x) = Eλ(x) for all x in an
open dense subset of Mn, on which λ is constant along Eλ.

Conversely, any hypersurface f : Mn → Rn+1 that carries a Dupin principal cur-
vature of multiplicity n− k envelops a k-parameter congruence of hyperspheres.

Proof: Let the smooth map h : Mn → Rn+1 and r ∈ C∞(M), r > 0, be such that
(9.12) holds and kerh∗(x) = kerh∗(x) ∩ ker r∗(x) has rank n − k for all x ∈ Mn. It
follows from (9.12) that η ∈ Γ(f ∗TRn+1), defined by

η(x) =
1

r(x)
(h(x)− f(x))

for all x ∈Mn, is a unit normal vector field to f . If T ∈ kerh∗(x), then

f∗A
f
ηT = −∇̃Tη

=
T (r)

r2(x)
(h(x)− f(x))− 1

r(x)
(h∗T − f∗T )

=
1

r(x)
f∗T. (9.17)
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Therefore λ = 1/r is a principal curvature of f such that kerh∗(x) ⊂ Eλ(x) for all
x ∈ Mn. To complete the proof of the direct statement, it suffices to show that λ
cannot have constant multiplicity greater than n − k on any open subset U ⊂ Mn.
Assume otherwise, and let T ∈ Eλ(x) for x ∈ U . Since λ is constant on U along Eλ by
Proposition 1.22, it follows from (9.17) that T ∈ kerh∗(x), a contradiction.

Conversely, let f : Mn → Rn+1 be a hypersurface that carries a Dupin principal
curvature λ of multiplicity n − k with respect to a unit normal vector field N . By
Proposition 1.22, the map h : Mn → Rn+1 given by

h(x) = f(x) +
1

λ(x)
N(x)

and the function r = 1/λ determine a congruence of hyperspheres S : Mn→Sn+2
1,1 that

is enveloped by f . Moreover,

Eλ(x) ⊂ kerh∗(x) ∩ ker r∗(x) = kerS∗(x)

for all x ∈ Mn. On the other hand, given x ∈ Mn and T ∈ kerh∗(x) ∩ ker r∗(x), the
proof of the direct statement has shown that T ∈ Eλ(x). Therefore S has rank k. �

Proposition 9.5. A hypersurface f : Mn → Rn+1 envelops a k-parameter congruence
of affine hyperplanes S : Mn→Sn+2

1,1 ∩ {w}⊥, 1 ≤ k ≤ n− 1, if and only if it carries a
relative nullity distribution ∆ of rank n− k. Moreover, the subbundle kerS∗ coincides
with ∆.

Proof: Let the smooth map g : Mn → Sn and γ ∈ C∞(M) be such that

ker g∗(x) = ker g∗(x) ∩ ker γ∗(x) = kerS∗(x)

has rank k for all x ∈ Mn and (9.13) holds. Then η = i ◦ g is a unit normal vector
field to f , and if T ∈ ker g∗(x), then AfηT = 0. On the other hand, if AfηT = 0,
then T ∈ ker g∗(x) = kerS∗(x), as follows by differentiating (9.13). Thus kerS∗ is the
relative nullity distribution of f .

Conversely, if f : Mn → Rn+1 carries a relative nullity distribution ∆ of rank
n− k, then the Gauss map g : Mn → Sn of f and its support function γ = 〈f, (i ◦ g)〉,
where i : Sn → Rn+1 is the inclusion map, determine a k-parameter congruence of affine
hyperplanes that is enveloped by f . �

9.3.1 The conformal Gauss parametrization

Let f : Mn → Rn+1 be an orientable hypersurface carrying a nowhere vanishing
Dupin principal curvature λ with constant multiplicity n − k with respect to a unit
normal vector field N . By Proposition 9.4, the hypersurface f envelops a k-parameter
congruence of hyperspheres. Namely, the principal curvature λ and the map

h = f +
1

λ
N
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are constant along the leaves of the eigenbundle Eλ, and f envelops the k-parameter
congruence of hyperspheres determined by h and 1/λ.

Let π : Mn → Lk be the projection onto the quotient space of leaves of Eλ. Let
g : Lk → Rn+1 and r ∈ C∞(L) be defined by

h = g ◦ π and λ−1 = r ◦ π.

Next we show how to recover f in terms of g and r.

Using that

f(x) = h(x)− 1

λ(x)
N(x)

= g(y)− r(y)N(x) (9.18)

for all x ∈Mn and y = π(x), we obtain

0 = 〈f∗Y,N〉
= 〈h∗Y − Y (λ−1)N − λ−1N∗Y,N〉
= 〈g∗π∗Y,N〉 − π∗(Y )(r)

= 〈N − g∗grad r, g∗π∗Y 〉

for all Y ∈ TxM . Thus the tangent component NT (x) to g of N(x) at y is

NT (x) = g∗grad r(y). (9.19)

Let ϕ : Mn → N1
gL be the map into the unit normal bundle of g given by

ϕ(x) = (y, u), y = π(x),

where

u =
1√

1− ‖grad r(y)‖2
N⊥(x).

It is easily checked that ϕ∗ is everywhere injective, hence ϕ is a local diffeomorphism
onto an open subset U ⊂ N1

gL. In fact, the map ϕ is injective, and thus a global
diffeomorphism, if n − k ≥ 2 and the leaves of Eλ are assumed to be complete, and
hence compact. For if ϕ(x) = ϕ(z), then π(x) = π(z) and N⊥(x) = N⊥(z), which
imply that N(x) = N(z), and hence f(x) = f(z) by (9.18). Since the restriction f |σ of
f to any leaf σ of Eλ is umbilical, compactness of σ implies that f |σ is a covering map
of σ onto a round sphere Sn−k, and hence a diffeomorphism because Sn−k is simply
connected if n− k ≥ 2. It follows that x = z.

Denoting by θ a local (global, if n − k ≥ 2 and the leaves of Eλ are complete)
inverse of ϕ, we conclude from (9.18) and (9.19) that

f ◦ θ(y, u) = g(y)− r(y)g∗grad r(y)− r(y)
√

1− ‖grad r‖2 u (9.20)

for all (y, u) ∈ U . This map is called the conformal Gauss parametrization of f .

We have thus proved the converse statement of the following theorem.
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Theorem 9.6. Let g : V k → Rn+1, 1 ≤ k ≤ n − 1, be an isometric immersion
and let r ∈ C∞(V ) be a positive function such that ‖grad r‖ < 1. Then the map
φ : N1

gV → Rn+1, defined by

φ(y, u) = g(y)− r(y)g∗grad r(y)− r(y)
√

1− ‖grad r‖2 u, (9.21)

parametrizes, on the open subset of regular points, a hypersurface that carries a Dupin
principal curvature of multiplicity n− k.

Conversely, if f : Mn → Rn+1 is an orientable hypersurface with a nowhere van-
ishing Dupin principal curvature λ of multiplicity n−k, then there exist locally (globally,
if n−k ≥ 2 and the leaves of Eλ are complete) an isometric immersion g : V k → Rn+1,
a positive function r ∈ C∞(V ) with ‖grad r‖ < 1, and a diffeomorphism θ : U → Mn

of an open subset U ⊂ N1
gV such that f ◦ θ is given by (9.20).

Proof: Define a unit vector field N ∈ Γ(φ∗TRn+1) by

N(y, u) = g∗grad r(y) +
√

1− ‖grad r‖2 u.

Then
φ(y, u) = g(y)− r(y)N(y, u)

for all (y, u) ∈ N1
gV . Differentiating φ with respect to a vertical vector W at (y, u)

gives
φ∗W = −rN∗W. (9.22)

On the other hand, any non-vertical tangent vector to N1
gV at (y, u) can be written

as ζ∗X for some X ∈ TyV and some local section of N1
gV with ζ(y) = u on an open

neighborhood of y. We have

φ∗ζ∗X = g∗X −X(r)N − rN∗ζ∗X. (9.23)

Using that N is a unit vector field, it follows from (9.22) and (9.23) that

〈φ∗W,N〉 = 0 = 〈φ∗ζ∗X,N〉

for any vertical vector W at (y, u) and any X ∈ TyV . Thus N is normal to φ along
the open subset of its regular points. Moreover, it follows from (9.22) that λ = 1/r
is a principal curvature of φ and that the vertical subspaces of N1V belong to the
eigenspaces correspondent to λ. Furthermore, from (9.23) we obtain

rφ∗(A
φ
N − λI)ζ∗X = X(r)N − g∗X

for any X ∈ X(V ). Hence the vertical subbundle of N1
gV is precisely the eigenbundle

of φ correspondent to λ. Therefore λ is a Dupin principal curvature of multiplicity
n− k. �

The last result of this section gives a necessary and sufficient condition for a
k-parameter congruence of hyperspheres of Rn+1, k < n, to be enveloped by an
n-dimensional hypersurface.
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Corollary 9.7. A k-parameter congruence of hyperspheres of Rn+1, 2 ≤ k ≤ n − 1,
determined by an immersion s : V k → Sn+2

1,1 ⊂ Ln+3, is enveloped by an n-dimensional
hypersurface of Rn+1 if and only if the metric induced by s is Riemannian.

Proof: If a k-parameter congruence of hyperspheres of Rn+1 is determined by an im-
mersion s : V k → Sn+2

1,1 ⊂ Ln+3 with Riemannian induced metric, by Lemma 9.3 the
pair (g, r) associated with it is such that g is an immersion and the gradient of r in the
metric induced by g satisfies ‖∇gr‖ < 1. Hence it is enveloped by the hypersurface
parametrized as in (9.21) by means of (g, r).

Conversely, if a k-parameter congruence of hyperspheres of Rn+1 determined by
an immersion s : V k → Sn+2

1,1 ⊂ Ln+3 is enveloped by a hypersurface f : Mn → Rn+1,
then f carries a Dupin principal curvature of multiplicity n − k. Hence f can be
parametrized as in (9.21) in terms of the pair (g, r) associated to s. By Theorem 9.6,
the map g is an immersion and ‖∇gr‖ < 1, hence the metric induced by s is Riemannian
by Lemma 9.3. �

9.3.2 Envelopes and Dupin principal normal vector fields

As pointed out at the end of Section 9.2, the space of spheres and affine sub-
spaces of codimension s in Rm is naturally identified with the Grassmannian Gs,m+2

of s-dimensional space-like subspaces of Lm+2. Therefore, a congruence of (m − s)-
dimensional spheres in Rm can be defined as a smooth map S : Mn → Gs,m+2. Al-
ternatively, it may be given by an s-tuple of smooth maps Si : M

n → Sm+1
1,1 ⊂ Lm+2,

1 ≤ i ≤ s, with
〈Si(x), Sj(x)〉 = 0

for all x ∈Mn and 1 ≤ i 6= j ≤ s, where 〈 , 〉 stands for the inner product of Lm+2. In
this case, the (m− s)-dimensional sphere in Rm determined by S(x) is the intersection
of the hyperspheres determined by S1(x), . . . , Ss(x). Such an s-tuple will be referred
to in the sequel as an orthogonal s-tuple of smooth maps Si : M

n → Sm+1
1,1 ⊂ Lm+2,

1 ≤ i ≤ s.
The congruence of (m − s)-dimensional spheres in Rm determined by the or-

thogonal s-tuple of smooth maps Si : M
n → Sm+1

1,1 ⊂ Lm+2, 1 ≤ i ≤ s, is said to be a
k-parameter congruence of (m−s)-dimensional spheres in Rm if ker (S1)∗∩· · ·∩ker (Ss)∗
has rank n− k everywhere.

An immersion f : Mn → Rm envelops the congruence of (m − s)-dimensional
spheres in Rm determined by the orthogonal s-tuple of smooth maps Si : M

n → Sm+1
1,1 ⊂

Lm+2, 1 ≤ i ≤ s, if it envelops Si for all 1 ≤ i ≤ s.

We have the following extension of Proposition 9.4.

Proposition 9.8. If an immersion f : Mn → Rm envelops a (n − q)-parameter con-
gruence of n-dimensional spheres determined by the orthogonal (m−n)-tuple of smooth
maps

Si : M
n → Sm+1

1,1 ⊂ Lm+2, 1 ≤ i ≤ m− n,
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then it carries a principal normal vector field η such that

D(x) = ker (S1)∗(x) ∩ · · · ∩ ker (Sm−n)∗(x) ⊂ Eη(x)

for all x ∈Mn, with D(x) = Eη(x) for all x in an open dense subset of Mn, on which
η is a Dupin principal normal vector field of multiplicity q.

Conversely, any simply connected submanifold f : Mn → Rm that carries a Dupin
principal normal vector field of multiplicity q envelops a (n− q)-parameter congruence
of n-dimensional spheres.

Proof: First we prove the converse statement. Let f : Mn → Rm be a simply connected
submanifold that carries a Dupin principal normal vector field η with multiplicity q.
It follows from (1.29) that the subbundle {η}⊥ of NfM is parallel with respect to the
normal connection along Eη. Moreover, by the Ricci equation,

〈R⊥(T, S)ξ, µ〉 = 0

for all T, S ∈ Γ(Eη) and ξ, µ ∈ Γ({η}⊥). Since Mn is simply connected, there exists an
orthonormal frame ξ1, . . . , ξm−n−1 of {η}⊥ such that

∇⊥T ξi = 0

for all T ∈ Γ(Eη) and 1 ≤ i ≤ m− n− 1. For each 1 ≤ i ≤ m− n− 1, write ξi = i ◦ gi,
with gi : M

n → Sm−1, and let Si : M
n → Sm+1

1,1 be the congruence of affine hyperplanes
in Rm given by (9.11) in terms of gi and γi = 〈f, ξi〉 ∈ C∞(M). From

〈f, ξi〉 = γi and 〈f∗X, ξi〉 = 0

for all X ∈ TxM , it follows that Si is enveloped by f , and since AfξiT = 0 = ∇⊥T ξi for
all T ∈ Eη, then Eη ⊂ ker(ξi)∗ = ker(gi)∗ = ker(Si)∗.

Now let Sm−n : Mn → Sm+1
1,1 be the congruence of hyperspheres in Rm given by

(9.9) in terms of the smooth map h : Mn → Rm defined by

h = f +
1

‖η‖2
η

and r = 1/‖η‖ ∈ C∞(M). Then (9.12) holds for h and r, hence f envelops Sm−n.
Moreover, Eη(x) ⊂ kerh∗(x) = ker(Sm−n)∗(x) for all x ∈Mn by Proposition 1.22.

Therefore we have an orthogonal (m − n)-tuple of congruences of hyperspheres
S1, . . . , Sm−n, all of which are enveloped by f . Consequently, it defines a congruence
of n-dimensional spheres that is enveloped by f , with Eη(x) ⊂ D(x) for all x ∈ Mn.
The opposite inclusion will be shown next in the proof of the direct statement.

So assume that f envelops the (n − q)-parameter congruence of n-dimensional
spheres determined by the orthogonal (m−n)-tuple of smooth maps Si : M

n → Sm+1
1,1 ⊂

Lm+2, 1 ≤ i ≤ m− n. Thus

D(x) = ker (S1)∗(x) ∩ · · · ∩ ker (Sm−n)∗(x)



240 9.3. Envelopes of congruences of spheres

has dimension q for all x ∈ Mn. We may assume that Si is a congruence of affine
hyperplanes determined by smooth maps gi : M

n → Sm−1 and γi ∈ C∞(M) for all
1 ≤ i ≤ m − n − 1, and that Sm−n is a congruence of hyperspheres determined by a
smooth map h : Mn → Rm and r ∈ C∞(M), r > 0.

Since f envelops Sm−n, it follows that (9.12) holds for h : Mn → Rm and r ∈
C∞(M). Therefore η ∈ Γ(f ∗TRm), defined by

η(x) =
1

r2(x)
(h(x)− f(x)),

is a normal vector field along f . We prove next that η is a principal normal vector field
such that D(x) ⊂ Eη(x) for all x ∈Mn and ∇⊥T η = 0 for all T ∈ D(x).

Given T ∈ D(x), from T ∈ ker(Sm−n)∗(x) = kerh∗(x) = kerh∗(x) ∩ ker r∗(x) we
obtain

−f∗AfηT +∇⊥T η = ∇̃Tη

= T (1/r2)(h(x)− f(x)) +
1

r2(x)
(h∗T − f∗T )

= − 1

r2(x)
f∗T

= −‖η‖2f∗T,

which implies that
AfηT = ‖η‖2T and ∇⊥T η = 0.

On the other hand, since f envelops Si, 1 ≤ i ≤ m − n − 1, by (9.13) the maps
ξi = i ◦ gi : Mn → Rm and γi ∈ C∞(M), where i : Sm−1 → Rm is the inclusion, satisfy

〈f(x), ξi(x)〉 = γi(x) and 〈f∗X, ξi(x)〉 = 0

for all x ∈ Mn, X ∈ TxM and 1 ≤ i ≤ m − n − 1. In particular, ξi is a unit normal
vector field along f . Moreover,

〈ξi(x), ξj(x)〉 = 0 = 〈ξi(x), η(x)〉 = 0

for all x ∈ Mn and 1 ≤ i 6= j ≤ m− n− 1, because Si : M
n → Sm+1

1,1 ⊂ Lm+2, 1 ≤ i ≤
m − n, form an orthogonal (m − n)-tuple of smooth maps. Thus ξ1, . . . , ξm−n−1 is an
orthonormal frame of {η}⊥ ⊂ NfM . Since T ∈ ker(Si)∗(x) = ker(gi)∗(x) = ker(ξi)∗(x),

1 ≤ i ≤ m − n − 1, then AfξiT = 0. It follows that D(x) ⊂ Eη(x) for all x ∈ Mn and

that ∇⊥T η = 0 for all T ∈ D(x).
To complete the proof of the direct statement, it suffices to show that η cannot

have constant multiplicity greater than q on any open subset U ⊂Mn. Indeed, if oth-
erwise and T ∈ Eη(x) for x ∈ U , since η is parallel along Eλ on U by Proposition 1.22,
then T ∈ kerh∗(x) by (9.17), a contradiction. �
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9.4 The light-cone representative

Two Riemannian metrics 〈 , 〉 and 〈 , 〉′ on a manifold Mn are conformal if there
exists a positive function ϕ ∈ C∞(M) such that

〈 , 〉′ = ϕ2〈 , 〉.

The function ϕ is called the conformal factor of 〈 , 〉′ with respect to 〈 , 〉. A conformal
structure on Mn is an equivalence class of conformal Riemannian metrics. Clearly,
every Riemannian manifold has a canonical conformal structure determined by its
metric.

Given an immersion f : Mn → M̄m between differentiable manifolds, since con-
formal metrics on M̄m are pulled-back by f to conformal metrics on Mn, a conformal
structure on M̄m induces a conformal structure on Mn, the conformal structure on
Mn induced by f . If Mn is already endowed with a conformal structure, the map f
is said to be conformal if such conformal structure coincides with that induced by f .
In particular, if Mn and M̄m are Riemannian manifolds, then f is conformal if its
induced metric 〈 , 〉f is conformal to the Riemannian metric 〈 , 〉 of Mn, and we call
the conformal factor of 〈 , 〉f with respect to 〈 , 〉 the conformal factor of f .

Let f : Mn → Vm+1 be an immersion of a differentiable manifold Mn into the
light-cone. Given a positive function µ ∈ C∞(M), the map h : Mn → Vm+1 given by
h = µf is also an immersion, and the induced metrics 〈 , 〉f and 〈 , 〉h are related by

〈 , 〉h = µ2〈 , 〉f .

This follows from
h∗(X) = X(µ)f + µf∗(X),

bearing in mind that the position vector f is a light-like normal vector field.
The next result summarizes some consequences of this simple but useful obser-

vation. We follow the notations of the first section, and assume that a triple (v, w, C)
has been fixed with w0 < 0, so that Em ⊂ Vm+1

+ , the upper half of Vm+1. Let
Π: Vm+1

+ rRw → Em denote the projection onto Em given by

Π(u) =
u

〈u,w〉
,

where Rw = {tw : t < 0}.

Proposition 9.9. Let Mn be a Riemannian manifold. Then the following assertions
hold:

(i) Any conformal immersion f : Mn → Rm with conformal factor ϕ ∈ C∞(M) gives
rise to an isometric immersion I(f) : Mn → Vm+1

+ given by

I(f) =
1

ϕ
Ψ ◦ f.
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(ii) Any isometric immersion F : Mn → Vm+1
+ r Rw gives rise to a conformal im-

mersion C(F ) : Mn → Rm given by

Ψ ◦ C(F ) = Π ◦ F,

whose conformal factor is 1/〈F,w〉.

(iii) For any conformal immersion f : Mn → Rm and for any isometric immersion
F : Mn → Vm+1

+ rRw one has

C(I(f)) = f and I(C(F )) = F.

We call I(f) : Mn → Vm+1
+ the isometric light-cone representative of the con-

formal immersion f : Mn → Rm, and write Iv,w,C(f) when we need to emphasize the
dependence on the triple (v, w, C).

Examples 9.10. (i) The isometric embedding TB,z : Qm
c → Vm+1 defined by (9.6)

gives rise to a conformal diffeomorphism of Qm
c (minus one point if c > 0) onto Rm.

(ii) Fix an orthogonal decomposition Lm+2 = V ⊕ W , with V time-like, and linear
isometries C : Lk+1 → V and D : Rm−k+1 → W . Define an isometric immersion

LC,D : Hk
−c × Sm−kc → Vm+1 ⊂ Lm+2

by
(X, Y ) 7→ CX +DY.

The map Θ: Hk
−c × Sm−kc → Rm given by

Θ = C(LC,D) (9.24)

defines a conformal diffeomorphism onto the complement of the (k − 1)-dimensional
sphere that is mapped onto Em ∩ V by the isometry Ψ: Rm → Em.

Next we compute C(T ◦Ψ) for some special elements T in O1(m+2). A similarity
of Rm with ratio λ ∈ (0,+∞) is a map L : Rm → Rm such that

‖Lx− Ly‖ = λ‖x− y‖

for all x, y ∈ Rn.

Proposition 9.11. The following holds:

(i) If R ∈ O1(m+ 2) is the reflection

R(u) = u− 2〈u, z〉z

with respect to the hyperplane in Lm+2 orthogonal to a unit space-like vector z,
with 〈z, w〉 6= 0, then

C(R ◦Ψ) = I (9.25)

is the inversion with respect to the hypersphere S = Em ∩ {z}⊥.
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(ii) If G ∈ O1(m+ 2) satisfies G(w) = λw for some λ ∈ (0,+∞), then

C(G ◦Ψ) = L (9.26)

is a similarity of ratio λ. Conversely, for any similarity L of ratio λ ∈ (0,+∞)
there exists G ∈ O1(m + 2) satisfying G(w) = λw such that (9.26) holds. In
particular, isometries of Rm correspond in this way to the elements of O1(m+ 2)
that fix w.

Proof: (i) Writing z as in (9.8) in terms of the center x0 and radius r of S = Em∩{z}⊥,
a straightforward computation yields

R ◦Ψ(x) = Ψ(x)− 2〈Ψ(x), z〉z

=
‖x− x0‖2

r2
(v + C(I(x))− (1/2)‖I(x)‖2w)

=
‖x− x0‖2

r2
Ψ(I(x))

where

I(x) = x0 +
r2

‖x− x0‖2
(x− x0), x 6= x0,

is the inversion with respect to S. Thus Π ◦R ◦Ψ = Ψ ◦ I, which gives (9.25).

(ii) If G ∈ O1(m+ 2) satisfies G(w) = λw for some λ ∈ (0,+∞), then

〈G ◦Ψ, w〉 = 〈G ◦Ψ,
1

λ
Gw〉

=
1

λ
〈G ◦Ψ, Gw〉

=
1

λ
〈Ψ, w〉

=
1

λ
·

Therefore L = C(G ◦Ψ) is given by

Ψ ◦ L = Π ◦G ◦Ψ = λG ◦Ψ,

and hence L is a similarity of ratio λ.
For the converse, we use that any similarity L of Rm of ratio λ is given by

L(x) = λB(x) + x0

for some x0 ∈ Rm and B ∈ O(m). Define

v̄ =
1

λ
(v + Cx0 − (1/2)‖x0‖2w)
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and w̄ = λw. Then v̄, w̄ ∈ Vn+1 and 〈v̄, w̄〉 = 1. Moreover, C̄ : Rm → Lm+2 given by

C̄(x) = CB(x)− 〈B(x), x0〉w

is a linear isometry onto {v̄, w̄}⊥; hence (v̄, w̄, C̄) is an admissible triple. Now let
G ∈ O1(m+ 2) be defined by

G(v) = v̄, G(w) = w̄ and G ◦ C = C̄.

It is easily checked that

Ψ(L(x)) = v + C(L(x))− 1

2
‖L(x)‖2w

= λG(Ψ(x)),

which is equivalent to (9.26). �

Let O+
1 (m+ 2) denote the set of elements of O1(m+ 2) that preserve Vm+1

+ .

Corollary 9.12. For any T ∈ O+
1 (m + 2) there exists a composition I ◦ L of a

similarity L and an inversion I with respect to a hypersphere of unit radius (possibly
with I replaced by the identity map) such that

C(T ◦Ψ) = I ◦ L. (9.27)

Proof: Define (v̄, w̄, C̄) by

v̄ = T (v), w̄ = T (w) and C̄ = T ◦ C.

If w̄ = λw for some λ ∈ (0,+∞), the statement (with I replaced by the identity map)
follows from part (ii) of Proposition 9.11. Otherwise, consider the reflection

R(u) = u− 2〈u, z〉z

determined by the unit space-like vector

z =
1

〈w̄, w〉
w̄ +

1

2
w,

and let G ∈ O1(m+ 2) be given by

G(w) = R(w̄) = −1

2
〈w̄, w〉w, G(v) = R(v̄) and G ◦ C = R ◦ C̄.

Then R ◦ G takes w to w̄, v to v̄ and R ◦ G ◦ C = C̄, hence R ◦ G = T . By part
(i) of Proposition 9.11, the map C(R ◦ Ψ) = I is an inversion with respect to the
hypersphere of unit radius S = Em ∩ {z}⊥, whereas C(G ◦ Ψ) = L is a similarity of
ratio λ = −(1/2)〈w̄, w〉 by part (ii) of Proposition 9.11. Then, from

Π ◦ T ◦Ψ = Π ◦R ◦G ◦Ψ

= Π ◦R ◦Ψ ◦ L
= Ψ ◦ I ◦ L,

we obtain (9.27). �
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9.5 Rigidity of the paraboloid model

In Theorem 16.1 we will prove a general rigidity theorem for hypersurfaces of the
light-cone. Here we give a short proof of the rigidity of the (restriction to any open
subset U ⊂ Rm of the) isometric embedding Ψ: Rm → Vm+1.

Theorem 9.13. Let F : U → Vm+1 ⊂ Lm+2 be an isometric immersion of a connected
open subset U ⊂ Rm, m ≥ 3. Then F = Ψv̄,w̄,C̄ |U for some admissible triple (v̄, w̄, C̄).

Proof: We first prove that
αF (X, Y ) = 0

for all x ∈ U and X, Y ∈ TxU = Rm with 〈X, Y 〉 = 0. Extend X, Y to constant vector
fields on Rm. By Proposition 9.1,

∇̃Y F∗X = αF (X, Y ) = ωX(Y )F

for some one-form ωX on the intersection H ∩ U of U with the affine hyperplane H

through x orthogonal to X. Let R̃ denotes the curvature tensor of Lm+2. Then

0 = R̃(Y, Z)F∗X

= ∇̃Y ∇̃ZF∗X − ∇̃Z∇̃Y F∗X − ∇̃[Y,Z]F∗X

= dωX(Y, Z)F + ωX(Z)F∗Y − ωX(Y )F∗Z

for all Y, Z ∈ {X}⊥. Since m ≥ 3, we can take Y, Z linearly independent. Then the
vector fields F , F∗Z and F∗Y are also linearly independent because F is an immersion
and the position vector F is a nonzero normal vector field. Thus the preceding equation
implies that ωX is identically zero.

It follows that F is umbilic (see Exercise 1.21), that is, there exists w̄ ∈ Γ(NFU)
such that

αF (X, Y ) = −〈X, Y 〉w̄ (9.28)

for all x ∈ U and X, Y ∈ TxU = Rm. From the Gauss equation of F , we see that w̄ is
a light-like vector field. Now (9.3) and (9.28) yield

〈X, Y 〉〈w̄, F 〉 = −〈αF (X, Y ), F 〉
= 〈X, Y 〉

for all X, Y ∈ Rn, thus 〈w̄, F 〉 = 1 everywhere. We show next that w̄ is in fact a
constant vector field. First, ∇̃Xw̄ has no tangent component, for AFw̄ = 0. On the
other hand, its normal component is

〈∇̃Xw̄, F 〉w̄ + 〈∇̃Xw̄, w̄〉F = 0,

as follows by differentiating 〈w̄, w̄〉 = 0 and 〈w̄, F 〉 = 1. Then, writing Ψ = Ψv,w,C |U
for short, we have a vector bundle isometry τ : NΨU → NFU , given by τ(Ψ) = F and
τ(w) = w̄, that preserves second fundamental forms, because of (9.5) and (9.28), and
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normal connections, for {Ψ, w} and {F, w̄} are parallel frames. By Theorem 1.25, there
exists T ∈ O1(m+ 2) such that

F = T ◦Ψ = Ψv̄,w̄,C̄ |U ,

where v̄ = Tv, w̄ = Tw and C̄ = T ◦ C. �

If an admissible triple (v, w, C) has been fixed, by Theorem 9.13 any isometric
immersion F : U → Vm+1 is given by F = T ◦Ψv,w,C |U for some T ∈ O1(m+ 2).

As a consequence of Theorem 9.13, we now prove that conformal transformations
of Rm, m ≥ 3, that is, conformal maps f : U → Rm defined on connected open subsets
U ⊂ Rm, are given in its paraboloid model by the elements of O+

1 (m+ 2).

Corollary 9.14. For any conformal map f : U → Rm, m ≥ 3, on a connected open
subset U ⊂ Rm there exists T ∈ O+

1 (m+ 2) such that f = C(T ◦Ψ)|U .

Proof: Let F = I(f) : U → Vm+1
+ be the isometric light-cone representative of f . From

Theorem 9.13 we see that F = T ◦Ψ|U for some T ∈ O+
1 (m+ 2). Then

f = C(F ) = C(T ◦Ψ)|U ,

as we wished. �

We can now derive from Corollary 9.14 the classical theorem of Liouville on
conformal maps on connected open subsets of Rm, m ≥ 3.

Corollary 9.15. If f : U → Rm, m ≥ 3, is a conformal map on a connected open
subset U ⊂ Rm, then there exist a similarity L and an inversion I with respect to
a hypersphere of unit radius (possibly with I replaced by the identity map) such that
f = I ◦ L.

Proof: By Corollary 9.14, there exists T ∈ O+
1 (m+ 2) such that f = C(T ◦Ψ)|U . The

statement now follows from Corollary 9.12. �

Remark 9.16. In Exercise 9.4, the reader is asked to prove that, conversely, Corol-
lary 9.15 implies Corollary 9.14, and that this, in turn, implies Theorem 9.13. In
summary, Liouville’s theorem is equivalent to the rigidity of the paraboloid model of
Rm as a hypersurface of the light-cone Vm+1.

9.6 The second fundamental form of the light-cone

representative

The next result computes the relation between the second fundamental forms and
normal connections of a conformal immersion f : Mn → Rm and its isometric light-cone
representative I(f) : Mn → Vm+1

+ ⊂ Lm+2.



Chapter 9. Conformal immersions 247

Proposition 9.17. Let f : Mn → Rm be a conformal immersion with conformal
factor ϕ ∈ C∞(M) and let F = I(f) : Mn → Vm+1

+ ⊂ Lm+2 be its isometric light-cone
representative. Then the following assertions hold:

(i) The map φ : Γ(NfM)→ Γ(NFM) given by

φ(ξ) = Ψ∗ξ +HξΨ ◦ f (9.29)

where Hξ = 〈Hf , ξ〉, defines a vector bundle isometry of NfM onto a subbundle
V of NFM , which is parallel with respect to the normal connection on NfM and
the connection on V induced from the normal connection on NFM .

(ii) The Lorentzian plane bundle V ⊥ has the position vector F and the vector field

ζ = −Ψ∗(f∗gradϕ−1 + ϕHf )− ϕ

2
(‖grad ϕ−1‖2 + ‖Hf‖2)Ψ ◦ f + ϕw (9.30)

as a pseudo-orthonormal frame, with

〈F, F 〉 = 0 = 〈ζ, ζ〉 and 〈F, ζ〉 = 1. (9.31)

Here grad and ‖ ‖ are calculated with respect to the metric 〈 , 〉 of Mn.

(iii) The second fundamental form of F splits, according to the orthogonal decompo-
sition NFM = V ⊕ V ⊥, as

αF (X, Y ) = φ(βf (X, Y ))− ψ(X, Y )F − 〈X, Y 〉ζ, (9.32)

where

βf (X, Y ) =
1

ϕ
(αf (X, Y )− 〈X, Y 〉fHf ) (9.33)

and

ψ(X, Y ) = ϕ〈βf (X, Y ),Hf〉+
ϕ2

2
(‖gradϕ−1‖2 + ‖Hf‖2)〈X, Y 〉

− ϕHessϕ−1(X, Y ) (9.34)

for all X, Y ∈ X(M). Here 〈 , 〉f = ϕ2〈 , 〉 stands for the metric induced by f and
Hess for the Hessian with respect to 〈 , 〉.

(iv) The vector field ζ satisfies

F∇⊥Xζ = −ϕφ(f∇⊥XHf + βf (X, gradϕ−1)). (9.35)

Proof: (i) Differentiating F = ϕ−1Ψ ◦ f gives

F∗X = X(ϕ−1)Ψ ◦ f + ϕ−1(Ψ ◦ f)∗X

for all X ∈ X(M). Therefore
〈φ(ξ), F∗X〉 = 0
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for all X ∈ X(M) and ξ ∈ Γ(NfM). Hence φ(ξ) ∈ Γ(NFM) for all ξ ∈ Γ(NfM). Since
Ψ is an isometric immersion and the position vector Ψ is a light-like normal vector field
along Ψ, it follows that

〈φ(ξ), φ(η)〉 = 〈ξ, η〉

for all ξ, η ∈ Γ(NfM). Hence φ defines a vector bundle isometry of NfM onto a
subbundle V of NFM . To prove that φ is parallel with respect to the normal connection
on NfM and the connection on V induced from the normal connection on NFM , we
have to show that

〈F∇⊥Xφ(ξ), φ(η)〉 = 〈f∇⊥Xξ, η〉 (9.36)

for all ξ, η ∈ Γ(NfM). Differentiating (9.29) with respect to the connection ∇̄ of Lm+2,
using the Gauss formula of Ψ and (9.5) we obtain

∇̄Xφ(ξ) = Ψ∗(−f∗AfξX +Hξf∗X +f ∇⊥Xξ) +X(Hξ)(Ψ ◦ f), (9.37)

and (9.36) follows.

(ii) It is easily checked that F, ζ ∈ Γ(V ⊥) and that conditions (9.31) hold.

(iii) We compute
αF (X, Y ) = ∇̄Y F∗X − F∗∇YX,

where ∇ is the Levi-Civita connection of Mn with respect to 〈 , 〉. We have

∇̄Y F∗X = Y X(ϕ−1)Ψ ◦ f +X(ϕ−1)(Ψ ◦ f)∗Y + Y (ϕ−1)(Ψ ◦ f)∗X

− ϕ〈X, Y 〉w + ϕ−1Ψ∗f∗∇̃YX + ϕ−1Ψ∗α
f (X, Y )

= Y X(ϕ−1)Ψ ◦ f − ϕ〈X, Y 〉w + ϕ−1Ψ∗α
f (X, Y )

+ Ψ∗f∗(X(ϕ−1)Y + Y (ϕ−1)X + ϕ−1∇̃YX),

where ∇̃ is the Levi-Civita connection of the metric induced by f . On the other hand,

F∗∇YX = (∇YX)(ϕ−1)Ψ ◦ f + ϕ−1Ψ∗f∗∇YX.

Using the formula (see Exercise 9.1)

∇YX = ∇̃YX + ϕ(X(ϕ−1)Y + Y (ϕ−1)X − 〈X, Y 〉 gradϕ−1),

we obtain

αF (X, Y ) = Ψ∗(〈X, Y 〉f∗gradϕ−1 +ϕ−1αf (X, Y )) + Hessϕ−1(X, Y )Ψ ◦ f −ϕ〈X, Y 〉w.

In particular,

〈αF (X, Y ), ζ〉 =
ϕ2

2
(‖Hf‖2−‖gradϕ−1‖2)〈X, Y 〉−〈αf (X, Y ),Hf〉+ϕHessϕ−1(X, Y ),

which is the opposite of the expression on the right-hand side of (9.34).



Chapter 9. Conformal immersions 249

A straightforward computation now gives

(αF (X, Y ))V = αF (X, Y )− 〈αF (X, Y ), ζ〉F − 〈αF (X, Y ), F 〉ζ
= αF (X, Y )− ϕ−1〈αF (X, Y ), ζ〉Ψ ◦ f + 〈X, Y 〉ζ
= φ(βf (X, Y ))

where βf is given by (9.33), and (9.32) follows.

(iv) From (9.37) we obtain

〈∇̄Xφ(ξ), ζ〉 = 〈AfξX, gradϕ−1〉f + ϕX(Hξ)− ϕ〈f∇⊥Xξ,Hf〉 −Hξ〈X, gradϕ−1〉f
= ϕ〈f∇⊥XHf + βf (X, gradϕ−1), ξ〉
= ϕ〈φ(f∇⊥XHf + βf (X, gradϕ−1)), φ(ξ)〉,

and (9.35) follows. �

9.7 Conformal congruence of submanifolds

Two immersions f, g : Mn → Rm are said to be conformally congruent if g = τ ◦f
for some conformal transformation τ of Rm. A conformal immersion f : Mn → Rm is
called conformally rigid if any other conformal immersion g : Mn → Rm is conformally
congruent to f .

A basic tool for proving conformal rigidity of a Euclidean submanifold is the
following result, which reduces the problem to proving the isometric rigidity of its
isometric light-cone representative.

Proposition 9.18. Two conformal immersions f, g : Mn → Rm are conformally
congruent if and only if their isometric light-cone representatives I(f), I(g) : Mn →
Vm+1

+ ⊂ Lm+2 are isometrically congruent.

Proof: Assume first that I(f) = T ◦ I(g) for some T ∈ O1(m+ 2). Then T = C(T ◦Ψ)
is well defined and

f = C(T ◦ I(g)) = C(T ◦Ψ) ◦ g = T ◦ g.

Conversely, if f = T ◦ g for a conformal diffeomorphism of Rm, then I(T) = T ◦Ψ
for some T ∈ O+

1 (m+ 2) by Theorem 9.13. Then

I(f) = I(T ◦ g) = ϕ−1
T◦gΨ ◦ T ◦ g

= (ϕT ◦ g)−1ϕ−1
g Ψ ◦ T ◦ g

= ϕ−1
g I(T) ◦ g

= ϕ−1
g T ◦Ψ ◦ g

= T ◦ I(g),
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where ϕg, ϕT and ϕT◦g are the conformal factors of g, T and T ◦ g, respectively. �

Let f : Mn → Rm be an isometric immersion. The traceless second fundamental
form γf : X(M)× X(M)→ Γ(NfM) of f is defined by

γf (X, Y ) = αf (X, Y )− 〈X, Y 〉Hf . (9.38)

Its norm, given at each x ∈Mn by

‖γf (x)‖2 =
n∑

i,j=1

‖γf (x)(Xi, Xj)‖2,

where X1, . . . , Xn is an orthonormal basis of TxM , vanishes precisely at the umbilical
points of f . We leave to the reader to check, using Exercise 9.2, that the metric on the
subset M0 ⊂Mn of nonumbilical points of f , defined by

〈X, Y 〉∗ = ρ2〈X, Y 〉

with
ρ = ρf =

√
n/(n− 1) ‖γf‖,

is invariant under conformal changes of the metric on the ambient space. Thus it is an
invariant representative of the induced conformal structure on Mn.

The metric 〈 , 〉∗ is called the Moebius metric of Mn determined by f . The map
F : M0 → Vm+1 ⊂ Lm+2 defined by

F = ρΨ ◦ f

is called the Moebius representative of f .

Proposition 9.19. Two immersions f, g : Mn → Rm free of umbilic points are confor-
mally congruent if and only if their Moebius representatives F,G : Mn → Vm+1

+ ⊂ Lm+2

are isometrically congruent.

Proof: If f, g : Mn → Rm are conformally congruent, then their Moebius metrics co-
incide by the above discussion. Let 〈 , 〉∗ denote their common Moebius metric, and
endow Mn with 〈 , 〉∗. Then f and g become conformal immersions with conformal
factors ρ−1

f and ρ−1
g , respectively. Hence the Moebius representatives F and G of f

and g, respectively, coincide with their isometric light-cone representatives. It follows
from Proposition 9.18 that F and G are isometrically congruent.

Conversely, assume that F and G are isometrically congruent. Then, in partic-
ular, they induce the same metric on Mn, that is, the Moebius metrics of f and g
coincide. As before, if 〈 , 〉∗ is this common metric and Mn is endowed with 〈 , 〉∗, then
f and g become conformal immersions with conformal factors ρ−1

f and ρ−1
g , respec-

tively, and their Moebius representatives F and G, respectively, coincide with their
isometric light-cone representatives. By the converse statement of Proposition 9.18,
the immersions f and g are conformally congruent. �
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9.8 A Fundamental theorem in Moebius geometry

In this section it is shown that a submanifold f : Mn → Rm that is free of
umbilic points is completely determined, up to conformal transformations of Rm, by
the Moebius metric on Mn determined by f , its normal connection and its Moebius
second fundamental form defined below.

Let f : Mn → Rm be an isometric immersion free of umbilic points and let
F : Mn → Vm+1 ⊂ Lm+2 be its Moebius representative. As shown previously, the
map φ : Γ(NfM)→ Γ(NFM) given by (9.29) defines a vector bundle isometry of NfM
onto a subbundle V of NFM , which is parallel with respect to the normal connection
on NfM and the connection on V induced from the normal connection on NFM . The
subbundle V of NFM is called the Moebius normal bundle of f .

Let ζ = ζf be the vector field defined by (9.30) with ϕ = ρ−1, that is,

ζ = −Ψ∗(f∗grad ∗ρ+ ρ−1Hf )− 1

2ρ
(‖grad ∗ ρ‖2

∗ + ‖Hf‖2
∗)Ψ ◦ f +

1

ρ
w.

Here and in the sequel, a subscript or superscript “ ∗ ” refers to the Moebius metric
〈 , 〉∗. The vector fields F and ζ form a pseudo-orthonormal frame of the Lorentzian
normal plane bundle L2 = V ⊥ such that

〈F, F 〉 = 0 = 〈ζ, ζ〉 and 〈F, ζ〉 = 1.

The Moebius second fundamental form of f : Mn → Rm is the symmetric section
β = βf of Hom2(TM, TM ;NfM) defined by

β(X, Y ) = ρ (αf (X, Y )− 〈X, Y 〉Hf )

for all X, Y ∈ X(M).

By Proposition 9.17, the V -component of the second fundamental form αF of F
is given by

αFV = φ ◦ β.

The Moebius third fundamental form IIIβ ∈ Γ(T ∗M ⊗T ∗M) associated with β is
defined by

IIIβ(X, Y ) =
n∑
i=1

〈β(X,Xi), β(Y,Xi)〉

where X1, . . . , Xn is an orthonormal frame with respect to the Moebius metric.
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Notice that the norm of β with respect to the Moebius metric satisfies

‖β‖2
∗ = tr IIIβ

=
n∑

i,j=1

〈β(Xi, Xj), β(Xi, Xj)〉

=
n∑

i,j=1

1

ρ2
〈γf (X̃i, X̃j), γ

f (X̃i, X̃j)〉

=
n− 1

n
(9.39)

where γf is the traceless second fundamental form of f and X̃i = ρXi, 1 ≤ i ≤ n,
hence X̃1, . . . , X̃n is an orthonormal frame with respect to the metric induced by f .

The Blaschke tensor ψ = ψf of f is the symmetric bilinear form given by

ψ(X, Y ) =
1

ρ
〈β(X, Y ),Hf〉+

1

2ρ2
(‖grad ∗ρ‖2

∗ + ‖Hf‖2
∗)〈X, Y 〉∗ −

1

ρ
Hess ∗ρ(X, Y )

for all X, Y ∈ X(M). The Moebius form ω = ωf ∈ Γ(T ∗M ⊗NfM) of f is the normal
bundle valued one-form defined by

ω(X) = −1

ρ
(∇⊥XHf + β(X, grad ∗ρ))

where the gradient is computed with respect to the Moebius metric.

By Proposition 9.17,

ψ(X, Y ) = −〈αF (X, Y ), ζ〉

and
φ(ω(X)) = F∇⊥Xζ (9.40)

for all X, Y ∈ X(M).

Proposition 9.20. The Blaschke tensor is given in terms of the Moebius metric and
the Moebius third fundamental form by

(n− 2)ψ(X, Y ) = Ric∗(X, Y ) + IIIβ(X, Y )− n2s∗ + 1

2n
〈X, Y 〉∗ (9.41)

for all X, Y ∈ X(M). In particular,

trψ =
n2s∗ + 1

2n
=
n

2
〈HF ,HF 〉. (9.42)
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Proof: By Proposition 9.17, the second fundamental form of F is given by

αF (X, Y ) = φ(β(X, Y ))− ψ(X, Y )F − 〈X, Y 〉∗ζ (9.43)

for all X, Y ∈ X(M). Taking traces in the preceding equation gives

nHF = −trψF − nζ. (9.44)

In particular,
n〈HF ,HF 〉 = 2trψ. (9.45)

On the other hand, from (3.4) we obtain

Ric∗(X, Y ) = n〈αF (X, Y ),HF 〉 −
n∑
i=1

〈β(X,Xi), β(Y,Xi)〉 − 2ψ(X, Y ). (9.46)

Thus

Ric∗(X) =
1

n− 1
Ric∗(X,X)

=
n

n− 1
〈αF (X,X),HF 〉 − 1

n− 1

n∑
i=1

〈β(X,Xi), β(X,Xi)〉 −
2

n− 1
ψ(X,X).

Using (9.39) we obtain

s∗ =
1

n

n∑
j=1

Ric∗(Xj)

=
n

n− 1
〈HF ,HF 〉 − 1

n(n− 1)

n∑
i,j=1

〈β(Xi, Xj), β(Xi, Xj)〉 −
2

n(n− 1)
trψ

=
n

n− 1
〈HF ,HF 〉 − 1

n2
− 2

n(n− 1)
trψ. (9.47)

Now (9.42) follows from (9.45) and (9.47). Substituting in (9.46) and using (9.43) and
(9.44) yield (9.41). �

Proposition 9.21. The following relations hold:

(i) The conformal Gauss equation

〈R∗(X, Y )Z,W 〉∗ = 〈β(X,W ), β(Y, Z)〉 − 〈β(X,Z), β(Y,W )〉
+ ψ(X,W )〈Y, Z〉∗ + ψ(Y, Z)〈X,W 〉∗

− ψ(X,Z)〈Y,W 〉∗ − ψ(Y,W )〈X,Z〉∗ (9.48)

for all X, Y, Z,W ∈ X(M).
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(ii) The conformal Codazzi equations

(f∇⊥Xβ)(Y, Z)− (f∇⊥Y β)(X,Z) = ω((X ∧ Y )Z) (9.49)

and

(∇Xψ)(Y, Z)− (∇Y ψ)(X,Z) = 〈ω(X), β(Y, Z)〉 − 〈ω(Y ), β(X,Z)〉 (9.50)

for all X, Y, Z ∈ X(M).

(ii) The conformal Ricci equations

dω(X, Y ) = β(X, ψ̂Y )− β(Y, ψ̂X) (9.51)

and
〈R⊥(X, Y )ξ, η〉 = 〈[Bξ, Bη]X, Y 〉∗ (9.52)

for all X, Y ∈ X(M) and ξ, η ∈ Γ(NfM), with ψ̂, Bξ ∈ Γ(End(TM)) given by

〈ψ̂X, Y 〉∗ = ψ(X, Y ) and 〈BξX, Y 〉∗ = 〈β(X, Y ), ξ〉.

Proof: The Gauss equation for F and

αF (X, Y ) = φ(β(X, Y ))− ψ(X, Y )F − 〈X, Y 〉∗ζ

give (9.48). Using (9.36) and (9.40) we obtain

F∇⊥XαF (Y, Z) = φ(f∇⊥Xβ(Y, Z))− 〈ω(X), β(Y, Z)〉F −Xψ(Y, Z)F

−X〈Y, Z〉ζ − 〈Y, Z〉F∇⊥Xζ

for all X, Y, Z ∈ X(M). Therefore the V -component of the Codazzi equation

(F∇⊥XαF )(Y, Z) = (F∇⊥Y αF )(X,Z)

gives (9.49), whereas the F -component yields (9.50). Finally, the Ricci equation

R⊥(X, Y )ζ = αF (X,AFζ Y )− αF (AFζ X, Y )

of F yields (9.51), and (9.52) is equivalent to the Ricci equation of f . �

Theorem 9.22. (Fundamental theorem of submanifolds in Moebius geometry)
Existence: Let (Mn, 〈 , 〉) be a simply connected Riemannian manifold, let E be a Rie-
mannian vector bundle of rank p over Mn with compatible connection ∇E and curvature
tensor RE, and let βE be a symmetric section of Hom2(TM, TM ;E) such that

tr βE = 0 and ‖βE‖ =
√

(n− 1)/n.
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For each ξ ∈ Γ(E), define BE
ξ ∈ Γ(End(TM)) by

〈BE
ξX, Y 〉 = 〈βE(X, Y ), ξ〉.

Assume that there exist ψ ∈ Γ(T ∗M⊗T ∗M) and ω ∈ Γ(T ∗M⊗E) such that Eqs. (9.48)
to (9.52) are satisfied for all ξ, η ∈ Γ(E). Then there exist an immersion f : Mn →
Rn+p. free of umbilic points and a vector bundle isometry φE : E→ NfM such that 〈 , 〉
is the Moebius metric on Mn determined by f ,

βf = φE ◦ βE, ψf = ψ, ωf = φE ◦ ω and f∇⊥φE = φE∇E.

Uniqueness: Let f, g : Mn → Rm be immersions free of umbilic points that determine
the same Moebius metric on the manifold Mn. Suppose further that there exists a
vector bundle isometry T : NfM → NgM such that

T f∇⊥ = g∇⊥T and T ◦ βf = βg.

Then there exists a conformal transformation τ of Rm such that τ ◦ f = g.

Proof: First we prove existence. Let M×L2 be the trivial Lorentzian plane bundle over
Mn endowed with its canonical connection and choose a parallel pseudo-orthonormal
frame e1, e2 of M ×L2 with 〈e1, e2〉 = 1. Let Ẽ be the Whitney sum of E with M ×L2

endowed with the compatible connection ∇Ẽ given by

∇Ẽ
Xξ = ∇E

Xξ − 〈ω(X), ξ〉e2, ∇Ẽ
Xe1 = 0 and ∇Ẽ

Xe2 = ω(X).

Define a symmetric section αẼ of Hom2(TM, TM ; Ẽ) by

αẼ(X, Y ) = βE(X, Y )− ψ(X, Y )e1 − 〈X, Y 〉e2

for all X, Y ∈ X(M). Define AẼ
ξ ∈ Γ(End(TM)) for ξ ∈ Γ(E) by

〈AẼ
ξX, Y 〉 = 〈αẼ(X, Y ), ξ〉

and set
AẼ
e1

= −I and AẼ
e2

= −ψ̂.
It follows from (9.48) that the Gauss equation for an isometric immersion of Mn into
Ln+p+2 is satisfied. The Codazzi equation follows from (9.49) and (9.50), whereas the
Ricci equation is a consequence of (9.51) and (9.52).

By the Fundamental theorem of submanifolds, there exist an isometric immersion
F : Mn → Ln+p+2 and a parallel vector bundle isometry Φ: Ẽ→ NFM such that

αF = Φ ◦ αẼ and F∇⊥Φ = Φ∇Ẽ.

Set h = F − Φ(e1). From ∇Ẽe1 = 0 and AẼ
e1

= −I we obtain

h∗X = F∗X + F∗A
F
Φ(e1)X

= 0
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for any X ∈ X(M). Thus h is a constant vector in Ln+p+2, which we may assume to
be 0. Thus F = Φ(e1) takes values in Vn+p+1, and we may write

F = ϕ−1Ψ ◦ f

for some ϕ ∈ C∞(M) and some map f : Mn → Rn+p, which is necessarily conformal
with conformal factor ϕ.

On one hand,

αF (X, Y ) = Φ(αẼ(X, Y ))

= Φ(βE(X, Y ))− ψ(X, Y )F − 〈X, Y 〉Φ(e2).

Since tr βE = 0, it follows that

nHF = trψF − nΦ(e2).

On the other hand,

αF (X, Y ) = φf (βf (X, Y ))− ψf (X, Y )F − 〈X, Y 〉ζf .

Thus
nHF = −trψfF − nζf .

In particular,

trψ =
n

2
〈HF ,HF 〉 = trψf .

Hence ζf = Φ(e2), and therefore

φf ◦ βf = Φ ◦ βE and ψ = ψf . (9.53)

Define φE : E→ NfM by
Φ|E = φf ◦ φE.

Then
βf = φE ◦ βE

by the first equation in (9.53). Moreover,

φf (ωf (X)) =F ∇⊥ζf
=F ∇⊥Φ(e2)

= Φ∇Ẽe2

= Φω(X)

= φf (φEω(X))

for all X ∈ X(M). Hence ωf = φE ◦ ω.
It remains to show that 〈 , 〉 is the Moebius metric of f , or equivalently, that

ϕ−1 = ρf =
√
n/(n− 1) ‖γf‖
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where γf is the traceless second fundamental form of f given by (9.38).
Let IIIβf ∈ Hom2(TM, TM ;NfM) be defined by

IIIβf (X, Y ) =
n∑
i=1

〈βf (X,Xi), β
f (Y,Xi)〉

for all X, Y ∈ X(M), where X1, . . . , Xn is an orthonormal frame with respect to 〈 , 〉.
The norm of βf with respect to 〈 , 〉 satisfies

‖βf‖2 = tr IIIfβ

=
n∑

i,j=1

〈βf (Xi, Xj), β
f (Xi, Xj)〉

=
n∑

i,j=1

ϕ2〈γf (X̃i, X̃j), γ
f (X̃i, X̃j)〉

=
n− 1

n
ϕ2ρ2

f (9.54)

where X̃i = ϕ−1Xi, 1 ≤ i ≤ n. Hence X̃1, . . . , X̃n is an orthonormal frame with respect
to the metric induced by f . Since ‖βE‖2 = (n − 1)/n by assumption, it follows from
(9.54) that ρf = ϕ−1, as wished.

Now we prove uniqueness. Let F,G : Mn → Vm+1
+ ⊂ Lm+2 be the Moebius represen-

tatives of f and g. Let φf : NfM → Vf and φg : NgM → Vg be the vector bundle
isometries of Nf and NgM onto the Moebius normal bundles of f and g, respectively.
Then Φ: NFM → NGM , defined by

Φ ◦ φf = φg ◦ T, Φ(F ) = G and Φ(ζf ) = ζg,

is also a vector bundle isometry. By assumption,

g∇⊥Xβg(Y, Z) = g∇⊥XT(βf (Y, Z))

= T f∇⊥Xβf (Y, Z)

for all X, Y, Z ∈ X(M). On the other hand, by (9.49) we have

ωg((X ∧ Y )Z) = (g∇⊥Xβg)(Y, Z)− (g∇⊥Y βg)(X,Z)

= T((f∇⊥Xβf )(Y, Z)− (f∇⊥Y βf )(X,Z))

= T(ωf ((X ∧ Y )Z))

for all X, Y, Z ∈ X(M). Hence ωg = T ◦ ωf . It follows that

G∇⊥XΦ(φf (ξ)) = G∇⊥Xφg(T(ξ))

= φg(g∇⊥XT(ξ))− 〈ωg(X),T(ξ)〉G

= φg(T(f∇⊥Xξ))− 〈T(ωf (X)),T(ξ)〉Φ(F )

= Φ(φf (f∇⊥Xξ)− 〈ωf (X), ξ〉F )

= Φ F∇⊥Xφf (ξ)
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and

G∇⊥XΦ(ζf ) = G∇⊥Xζg
= φg(ωg(X))

= φg(T(ωf (X)))

= Φ(φf (ωf (X)))

= Φ(F∇⊥Xζf ).

Hence Φ is parallel with respect to the normal connections of F and G. Moreover,
the Moebius third fundamental forms IIIfβ and IIIgβ coincide by the assumption on the
Moebius second fundamental forms of f and g. Hence ψg = ψf by (9.41), and therefore

αG(X, Y ) = φg(βg(X, Y ))− ψg(X, Y )G− 〈X, Y 〉ζg
= φg(T(βf (X, Y )))− ψf (X, Y )Φ(F )− 〈X, Y 〉Φ(ζf )

= Φ(φf (βf (X, Y )))− ψf (X, Y )Φ(F )− 〈X, Y 〉Φ(ζf )

= Φ(αF (X, Y )).

Hence Φ also preserves the second fundamental forms of F and G. Thus F and G are
congruent by the uniqueness part of Theorem 1.25, and hence f and g are conformally
congruent by Proposition 9.19. �

For a hypersurface f, g : Mn → Rn+1, the statement of Theorem 9.22 simplifies
considerably in terms of the Moebius shape operator of f with respect to a unit normal
vector field N , defined by

Sf = ρ−1
f (AfN −H

fI).

Corollary 9.23. (Fundamental theorem of hypersurfaces in Moebius geometry)
(i) Existence: Let (Mn, 〈 , 〉) be a simply connected Riemannian manifold and let B ∈
Γ(End(TM)) be a symmetric tensor such that

trB = 0 and ‖B‖ =
√

(n− 1)/n.

Assume that there exist a symmetric tensor ψ̂ ∈ Γ(End(TM)) and ω ∈ Γ(T ∗M) such
that

R(X, Y ) = BX ∧BY + ψ̂X ∧ Y +X ∧ ψ̂Y,
(∇XB)Y − (∇YB)X = ω(X)Y − ω(Y )X,

(∇Xψ̂)Y − (∇Y ψ̂)X = ω(X)BY − ω(Y )BX

and
dω(X, Y ) = 〈[ψ̂, B]X, Y 〉

for all X, Y ∈ X(M). Then there exist a hypersurface f : Mn → Rn+1 free of umbilic
points such that 〈 , 〉 is the Moebius metric on Mn determined by f and B is the Moebius
shape operator with respect to one of the smooth unit normal vector fields along f .
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(ii) Uniqueness: Let f, g : Mn → Rn+1 be immersions free of umbilic points that deter-
mine the same Moebius metric on Mn. Assume that, for each x ∈ Mn, the Moebius
shape operators SfN and Sgφ(N) of f and g at x with respect to N and φ(N), where

N ∈ NfM(x) is a unit vector and φ : NfM → NgM is one of the two possible vector
bundle isometries, coincide. Then there exists a conformal transformation τ of Rn such
that τ ◦ f = g.

9.9 Conformal rigidity of Euclidean submanifolds

This section provides a conformal version of Theorem 4.23, giving sufficient con-
ditions for a conformal immersion f : Mn → Rn+p, with p ≤ 4 and n > 2p + 2, to be
conformally rigid, in terms of the conformal s-nullities defined next.

The conformal s-nullity νcs(x), 1 ≤ s ≤ p, of an immersion f : Mn → Rn+p at
x ∈Mn is defined as

νcs(x) = max{dimN(αfUs(x)− 〈 , 〉ζ) : U s ⊂ NfM(x) and ζ ∈ Us}

where 〈 , 〉 stands for the metric on Mn induced by f .

In other words, νcs(x) is the maximal dimension of a subspace W ⊂ TxM for which
there exist an s-dimensional subspace U s ⊂ NfM(x) and a normal vector ζ ∈ U s such
that

Aξ|W = 〈ξ, ζ〉I

for all ξ ∈ U s. In this way, the conformal s-nullity is a natural extension of the maximal
multiplicity of the principal curvatures of a hypersurface. It follows easily from part
(i) of Exercise 9.2 that νcs is invariant under conformal changes of the metric of the
ambient space.

Theorem 9.24. A conformal immersion f : Mn → Rn+p, with p ≤ 4 and n > 2p+ 2,
is conformally rigid if νcs(x) ≤ n− 2s− 1 for all x ∈Mn and all 1 ≤ s ≤ p.

Proof: Endow Mn with the metric induced by f . Let g : Mn → Rn+p be a conformal
immersion and let

G = I(g) = ϕ−1
g (Ψ ◦ g) : Mn → Vn+p+1 ⊂ Ln+p+2

be its isometric light-cone representative. Thus the position vector G is a light-like
normal vector field along G that satisfies

〈αG( , ), G〉 = −〈 , 〉, (9.55)

and the normal bundle of G splits orthogonally as

NGM = Ψ∗NgM ⊕ L2,
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where L2 is a Lorentzian plane bundle having G as a section. Hence there exist unique
sections ξ and η of L2 such that

G = ξ + η

with
〈ξ, ξ〉 = −1, 〈ξ, η〉 = 0 and 〈η, η〉 = 1.

At x ∈ Mn, endow the vector space W = NfM ⊕ NGM with the inner product
of signature (p+ 1, p+ 1) given by

〈〈 , 〉〉NfM⊕NGM = 〈 , 〉NfM − 〈 , 〉NGM .

Then the bilinear form

β = αf ⊕ αG : TxM × TxM → W

is flat by the Gauss equations of f and G. Moreover, N(β) = {0} by (9.55). It follows
from Lemma 4.20 that S(β) is degenerate, that is, the isotropic vector subspace

Ω = S(β) ∩ S(β)⊥

is nontrivial. We claim that Ω has rank p+ 1, that is, that β is null.
Since 〈〈 , 〉〉 is positive definite on W1 = NfM ⊕ span{ξ} and negative definite on

W2 = Ψ∗NgM ⊕ span{η}, the orthogonal projections P1 : W → W1 and P2 : W → W2

map Ω isomorphically onto P1(Ω) and P2(Ω), respectively.

We consider separately the two possible cases:

Case ξ 6∈ P1Ω. This is equivalent to requiring the orthogonal projection Π1 : W → NfM
to map Ω isomorphically onto Π1(Ω). In this case, we have the orthogonal splittings

NfM = Γf ⊕ Γ⊥f and NGM = ΓG ⊕ ΓG
⊥,

where Γ⊥f = Π1(Ω) and Γ⊥G is the image Π2(Ω) of Ω by the orthogonal projection

Π2 : W → NGM , and an isometry L : Γ⊥f → Γ⊥G such that

L ◦ Π1 = Π2, αG
ΓG
⊥ = L ◦ αf

Γ⊥f

and
Ω = {(γ,Lγ) : γ ∈ Γ⊥f } ⊂ Γ⊥f ⊕ Γ⊥G.

Define β̂ : TxM × TxM → Γf ⊕ ΓG by

β̂ = αfΓf ⊕ α
G
ΓG

and a vector subspace V ⊂ TxM by V = N(β̂).
Let δ be the orthogonal projection of the position vector G onto Γ⊥G. We have

−〈T,X〉 = 〈αG(T,X), G〉
= 〈αG(T,X), δ〉
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for T ∈ V and X ∈ TxM . In particular, this implies that δ 6= 0. The vector γ ∈ Γ⊥f
defined by γ = −L−1(δ) then satisfies Afγ |V = I.

Now set U = Γf ⊕ span{γ}. We have

(αf (T,X)− 〈T,X〉γ)U = 0

for all T ∈ V and X ∈ TxM . If dim Ω = r, then s = dimU = p− r + 1 and

dimV ≥ n− (p− r)− (p+ 2− r)
= n− 2s

> n− 2s− 1.

This is a contradiction with the hypothesis that νsc ≤ n− 2s− 1.

Case ξ ∈ P1Ω. Let ζ ∈ Ω be such that ξ = P1(ζ). Then ζ is an isotropic vector in
S(αG)⊥. Since G 6∈ S(αG)⊥ by (9.55), the vectors ζ and G are linearly independent,
hence we can assume that 〈ζ,G〉 = 1. Therefore, setting S = span{G, ζ}, we obtain

αS(X, Y ) = −〈X, Y 〉ζ

for all X, Y ∈ TxM . Moreover, we have orthogonal splittings

NfM = Γf ⊕ Γ⊥f and S⊥ = ΓG ⊕ ΓG
⊥,

where Γ⊥f = P1(Ω)∩NfM and ΓG
⊥ = P2(Ω)∩ S⊥, and an isometry L : Γ⊥f → Γ⊥G such

that
L ◦ P1 = P2, αG

ΓG
⊥ = L ◦ αf

Γ⊥f

and
Ω = {(γ,Lγ) : γ ∈ Γ⊥f } ⊕ span{ζ} ⊂ Γ⊥f ⊕ Γ⊥G ⊕ span{ζ}.

Define β̂ : TM × TM → Γf ⊕ ΓG by

β̂ = αfΓf ⊕ α
G
ΓG
.

Then β̂ is flat and S(β̂) is nondegenerate. Denote s = dim Γf . Then

dimN(αΓf ) ≥ dim ker β̂

≥ n− 2s

> n− (2s+ 1).

This is a contradiction with the hypothesis that νsc ≤ n− 2s− 1, and proves the claim.
Since Ω has rank p+ 1, we always have ξ ∈ P1(Ω), and arguing as in the second

case we see that there exists an isotropic vector ζ ∈ S(αG)⊥ with 〈ζ,G〉 = 1 and an
isometry L : NfM → S such that αGS = L ◦ αf . Hence

αG = L ◦ αf − 〈 , 〉ζ. (9.56)
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Now consider F = Ψ ◦ f : Mn → Vn+p+1 ⊂ Ln+p+2. The normal bundle NFM of F
splits orthogonally as

NFM = Ψ∗NfM ⊕ L2,

where L2 is a Lorentzian plane bundle having F as a section. The second fundamental
form of F splits accordingly as

αF = Ψ∗ ◦ αf − 〈 , 〉ρ (9.57)

where ρ, F is a pseudo-orthonormal frame of L2 with 〈ρ, ρ〉 = 0 and 〈ρ, F 〉 = 1. Define
a vector bundle isometry τ : NFM → NGM by

τ(F ) = G, τ(ρ) = ζ and τ ◦Ψ∗ = L.

Then αG = τ ◦αF by (9.56) and (9.57). Since Lemma 4.16 holds in the Lorentzian case,
τ preserves the normal connections. Hence F and G are congruent by the Fundamental
theorem of submanifolds, and the proof now follows from Proposition 9.18. �

Corollary 9.25. A conformal immersion f : Mn → Rn+1, n ≥ 5, is conformally rigid
if f has no principal curvature with multiplicity greater than n− 3 at any point of Mn.

9.10 Conformal immersions of products

In this section we prove a conformal version of the decomposition Theorem 8.4
on isometric immersions of Riemannian products.

Theorem 9.26. Let f : Mn → Rm, n ≥ 3, be a conformal immersion of a Riemannian
product Mn = Πr

i=1M
ni
i . If the second fundamental form of f is adapted to the product

net of Mn, then one of the following possibilities holds:

(i) There exist an extrinsic product f̃ : Mn → Rm of isometric immersions, a homo-
thety of Rm and an inversion I in Rm with respect to a sphere of unit radius such
that

f = I ◦H ◦ f̃ .

(ii) After possibly relabeling factors, there exist a substantial isometric immersion
f1 : M1 → Hk

−c and an extrinsic product f̃ : Πr
i=2Mi → Sm−kc of isometric immer-

sions such that
f = Θ ◦ (f1 × f̃)

where Θ: Hk
−c × Sm−kc → Rm is the conformal diffeomorphism in Examples 9.10.

(iii) There exist an extrinsic product f̃ : Mn → Smc of isometric immersions and a
conformal diffeomorphism τ : Smc → Rm (with one point of Smc removed) such
that

f = τ ◦ f̃ .
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Proof: Let F = Iv,w,C(f) : Mn → Vm+1 ⊂ Lm+2 be the isometric light-cone representa-
tive of f and let E = (Ei)i=1,...,r be the product net of Mn. We first prove the following
fact.

Lemma 9.27. The second fundamental form of F is adapted to E.

Proof: It suffices to consider the case r = 2, and then, relabeling the factors if necessary,
we may assume that n1 ≥ 2. Fixed x = (x1, x2) ∈ Mn and X̂ ∈ E2(x), denote
L = Mn1

1 × {x2}, let X̄ = π2∗(x)(X̂) ∈ Tx2M2 and, for any y ∈ L, let X̂(y) be the
unique vector in E2(y) that projects to X̄ by π2∗(y). Then X̂ is a parallel vector field
along L with respect to the induced connection on j∗TM , where j : L → Mn is the
inclusion. Hence, denoting by ∇̃ the connection of Lm+2, we have

∇̃XF∗X̂ = αF (X, X̂) = ω(X)F

with
ω(X) = ϕHess ϕ−1(X, X̂)

for any X ∈ X(L), where the second equality follows from (9.32) and the assumption
that the second fundamental form of f is adapted to E. Therefore

0 = R̃(X, Y )F∗X̂

= ∇̃Y ∇̃XF∗X̂ − ∇̃X∇̃Y F∗X̂ − ∇̃[X,Y ]F∗X̂

= dω(X, Y )F + ω(X)F∗Y − ω(Y )F∗X

for all X, Y ∈ X(L), where R̃ is the curvature tensor of Lm+2. Choosing X, Y linearly
independent, the vector fields F , F∗X and F∗Y are also linearly independent, because
F is an immersion and the position vector F is a nonzero normal vector field. Hence
the preceding equation implies that ω vanishes. Thus

αF (X, X̂) = 0

for all X ∈ X(L). �

In view of Lemma 9.27, we can apply Theorem 8.7 to F . Assume first that the
assertion in case (i) of that result holds for F . Namely, there exist an orthogonal
decomposition

Lm+2 = Lm1 × Πr+1
i=2Rmi

with Rmr+1 possibly trivial, a vector v̄ ∈ Rmr+1 (in case Rmr+1 is nontrivial) and sub-
stantial isometric immersions F1 : M1 → Lm1 and Fi : Mi → Rmi , 2 ≤ i ≤ r, such
that

F (x1, . . . , xr) = (F1(x1), . . . , Fr(xr), v̄). (9.58)

From (9.58) and 〈F, F 〉 = 0 we obtain

r∑
i=1

〈Fi ◦ πi, Fi ◦ πi〉+ 〈v̄, v̄〉 = 0.
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It follows that 〈Fi, Fi〉 is constant for 1 ≤ i ≤ r, say,

〈F1, F1〉 = −r2
1 and 〈Fi, Fi〉 = r2

i , 2 ≤ i ≤ r,

with

r2
1 =

r∑
i=2

r2
i + 〈v̄, v̄〉. (9.59)

Hence there exist isometric immersions f1 : M1 → Hm1−1(r1) and fj : Mj → Smj−1(rj),
2 ≤ j ≤ r, such that

Fj = ij ◦ fj, 1 ≤ j ≤ r,

where i1 : Hm1−1(r1) → Lm1 and ij : Smj−1(rj) → Rmj , 2 ≤ j ≤ r, are umbilical
inclusions. Set k = m1 − 1, c = 1/r2

1 and define f̃ : Πr
i=2Mi → Rm−m1+2 by

f̃(x2, . . . , xr) = (f2(x2), . . . , fr(xr), v̄)

for all (x2, . . . , xr) ∈ Πr
i=2Mi. In view of (9.59), the map f̃ is the extrinsic product of

f2, . . . , fr into Sm−kc . We conclude that

f = C(F ) = Θ ◦ (f1 × f̃)

where Θ: Hk
−c×Sm−kc → Rm is the conformal diffeomorphism defined in Examples 9.10.

Thus f is as in part (ii) of the statement.
Now suppose that F is given as in part (ii) of Theorem 8.7. Thus there exist an

orthogonal decomposition

Lm+2 = Πr
i=1Rmi × Lmr+1 , (9.60)

a vector v̄ ∈ Lmr+1 , and substantial isometric immersions Fi : Mi → Rmi , 1 ≤ i ≤ r,
such that

F (x1, . . . , xr) = (F1(x1), . . . , Fr(xr), v̄). (9.61)

Using that 〈F, F 〉 = 0, it follows from (9.61) that 〈Fi, Fi〉 = r2
i , 1 ≤ i ≤ r, with

r∑
i=1

r2
i + 〈v̄, v̄〉 = 0.

Denote

Rmr+1−1 = span{v̄}⊥ ⊂ Lmr+1 , Rm+1 = Πr
i=1Rmi × Rmr+1−1 ⊂ Lm+2

and write Fj = ij ◦ fj, where fj : Mj → Smj−1(rj) is an isometric immersion and
ij : Smj−1(rj) → Rmj is an umbilical inclusion for 1 ≤ j ≤ r. Then (9.61) can be
written as

F = TB,v̄ ◦ f̃ ,
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where TB,v̄ : Smc → Lm+2 is given by (9.6) for c = −〈v̄, v̄〉−1 and the inclusion map
B : Rm+1 = span{v̄}⊥ → Lm+2, and f̃ : Mn → Smc ⊂ Rm+1 is the extrinsic product of
f1, . . . , fr given by

f̃(x1, . . . , xr) = (F1(x1), . . . , Fr(xr), 0).

Therefore
f = C(F ) = τ ◦ f̃

where τ = C(TB,v̄), that is, f is the composition of an extrinsic product of immersions
into Smc with a conformal diffeomorphism of Smc (minus one point) onto Rm.

Finally, suppose that F satisfies the conclusion in part (iii) of Theorem 8.7. In
this case, there exist 1 ≤ s ≤ r, orthogonal decompositions

Lm1 = Πs
i=1Rmi × L2 and Lm+2 = Lm1 × Πr+1

i=s+1Rmi ,

with Rmr+1 possibly trivial, a vector v̄ ∈ Rmr+1 (in case Rmr+1 is nontrivial), a function
ϕ ∈ C∞(M1 × · · · ×Ms), substantial isometric immersions fi : Mi → Rmi , 1 ≤ i ≤ r,
a pseudo-orthonormal basis ζ, ζ̄ of L2 with 〈ζ, ζ〉 = 0 = 〈ζ̄ , ζ̄〉 and 〈ζ, ζ̄〉 = 1, and
δ ∈ {0, 1} such that

F (x1, . . . , xr) = (g(x1, . . . , xs), fs+1(xs+1), . . . , fr(xr), v̄),

where
g(x1, . . . , xs) = (f1(x1), . . . , fs(xs), ϕ(x1, . . . , xs)ζ + δζ̄).

Since 〈F, F 〉 = 0, the case δ = 0 is ruled out and we obtain

2ϕ+
r∑
i=1

〈fi ◦ πi, fi ◦ πi〉+ 〈v̄, v̄〉 = 0.

In particular, 〈fi, fi〉 = r2
i is constant for s + 1 ≤ i ≤ r, that is, fi takes values in

Smi−1(ri) for s+ 1 ≤ i ≤ r, and we can write

F =
r∑
j=1

fj ◦ πj + ζ̄ − 1

2
(

r∑
j=1

〈fj ◦ πj, fj ◦ πj〉+ 〈v̄, v̄〉)ζ + v̄.

Let Ψ = Ψv,w,C and let T ∈ O1(m+ 2) be defined by

Tw = ζ, Tv = ζ̄

and by requiring that T ◦ C be an isometry of Rm onto Πr+1
i=1Rmi . Then

F = T ◦Ψ ◦ f̃ ,

where f̃ : Mn → Rm = Πr+1
i=1Rmi is the extrinsic product of f1, . . . , fr given by

f̃(x1, . . . , xr) = (f1(x1), . . . , fr(xr), v̄).

It follows from Proposition 9.12 that there exist a similarity L and an inversion I with
respect to a hypersphere of unit radius such that

f = C(F ) = C(T ◦Ψ ◦ f̃) = C(T ◦Ψ) ◦ f̃ = I ◦ L ◦ f̃ . �
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Remark 9.28. Had we not required the isometric immersion f1 : M1 → Hk
−c in part

(ii) of the statement of Theorem 9.26 to be substantial, then any conformal immersion
f : Mn → Rm as in part (iii) could also be given as in part (ii).

Indeed, for such a conformal immersion f , its isometric light-cone representative
F : Mn → Vm+1 ⊂ Lm+2 is given by (9.61) with respect to an orthogonal decomposition
as in (9.60), with 〈Fi, Fi〉 = r2

i , 1 ≤ i ≤ r, and

r∑
i=1

r2
i + 〈v̄, v̄〉 = 0.

Then one can write f as in part (ii) of the statement in different ways. For instance,
choose any 1 ≤ i ≤ r, say, i = 1, write

Lk+1 = Rm1 ⊕ Lmr+1

and define F̃1 : M1 → Lk+1 by

F̃1(x1) = (F1(x1), v̄).

Notice that F̃1(M1) ⊂ Hk(r̃1), where

r̃2
1 = −r2

1 − 〈v̄, v̄〉

=
r∑
i=2

r2
i .

Thus we have an orthogonal decomposition

Lm+2 = Lk+1 × Πr
i=2Rmi

with respect to which F decomposes as

F (x1, . . . , xr) = (F̃1(x1), F2(x2), . . . , Fr(xr)).

Moreover, there are isometric immersions f̃1 : M1 → Hk(r̃1), fj : Mj → Smj−1(rj),
2 ≤ j ≤ r, such that

F̃1 = i1 ◦ f̃1 and Fj = ij ◦ fj, 2 ≤ j ≤ r,

where i1 : Hk(r̃1)→ Lk+1 and ij : Smj−1(rj)→ Rmj , 2 ≤ j ≤ r, are umbilical inclusions.
Set c = 1/r̃1

2 and let f̃ : Πr
i=2Mi → Rm−k+1 be defined by

f̃(x2, . . . , xr) = (f2(x2), . . . , fr(xr))

for all (x2, . . . , xr) ∈ Πr
i=2Mi. The map f̃ is then the extrinsic product of f2, . . . , fr

into Sm−kc , and
f = C(F ) = Θ ◦ (f̃1 × f̃).
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Theorem 9.26 in case n = m gives a classification of all conformal representations
of Euclidean space of dimension n ≥ 3 as a Riemannian product, that is, all conformal
maps of a Riemannian product of dimension n ≥ 3 into Rn.

Corollary 9.29. Let f : Mn = Πr
i=1M

ni
i → Rn, n ≥ 3, be a conformal map. Then

one of the following possibilities holds:

(i) There exist an isometry Φ: Πr
i=1Rni → Rn, local isometries fi : M

ni
i → Rni, an

inversion I with respect to a sphere of unit radius and a homothety H in Rn such
that

f = I ◦H ◦ Φ ◦ (f1 × · · · × fk).

(ii) r = 2 and, after relabeling the factors if necessary, there exist local isometries
f1 : Mn1

1 → Hn1
−c and f2 : Mn2

2 → Sn2
c such that

f = Θ ◦ (f1 × f2).

Remark 9.30. Notice that Corollary 9.29 reduces to Corollary 9.15 when r = n.

When applying Theorem 9.26, one often needs first to show that a given Rie-
mannian manifold is conformal to a Riemannian product. More precisely, given an
orthogonal net E = (Ei)i=1,...,r on a Riemannian manifold, one must show that there
exists, at least locally, a product representation ψ : Πr

i=1Mi → U of E that is conformal
with respect to a Riemannian product metric on Πr

i=1Mi. To state a criterion for this
to hold one needs the following notion of a conformal product net on a Riemannian
manifold.

An orthogonal net E = (Ei)i=1,...,r on a Riemannian manifold is a conformal
product net if

Ei and E⊥i are umbilical and 〈∇X⊥i
ηi, Xi〉 = 〈∇XiHi, X⊥i〉

for all Xi ∈ Γ(Ei) and X⊥i ∈ Γ(E⊥i ), 1 ≤ i ≤ r, where Hi and ηi are the mean curvature
vector fields of Ei and E⊥i , respectively.

Proposition 9.31. On a connected and simply connected product manifold M =
Πr
i=1Mi the product net E = (Ei)i=1,...,r is a conformal product net with respect to a

Riemannian metric 〈 , 〉∼ on M if and only if 〈 , 〉∼ is conformal to a Riemannian
product metric.

We will not give the proof of Proposition 9.31, nor that of the following conformal
version of the local de Rham’s Theorem. A reference where both proofs can be found
is provided in the Notes to this chapter.

Theorem 9.32. If a Riemannian manifold Mn carries a conformal product net
E = (Ei)i=1,...,r, then there exists locally a product representation ψ : Πr

i=1Mi → Mn

of E which is conformal with respect to a Riemannian product metric on Πr
i=1Mi.
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The next consequence of Theorem 9.26 will be needed in the classification of
conformally deformable hypersurfaces given in Chapter 17.

Corollary 9.33. Let f : Mn → Rm be an isometric immersion that carries a Dupin
principal normal vector field η with multiplicity k. Assume that E⊥η is an umbilical
distribution. If k = n− 1, suppose further that the integral curves of E⊥η are extrinsic
circles of Mn. Then f(M) is, up to a conformal transformation of Rm, an open subset
of a submanifold of one of the following types:

(i) A k-cylinder.

(ii) A (k − 1)-cylinder over an isometric immersion G : Mn−k+1 → Rm−k+1 which is
itself a cone over an isometric immersion g : Mn−k → Sm−k.

(iii) A rotation submanifold over an isometric immersion h : Mn−k → Rm−k.

Proof: Since η is a Dupin principal normal vector field, the distribution Eη is spherical
by Proposition 1.22. On the other hand, by Exercise 1.32 and the assumption for
the case k = n − 1, also E⊥η is spherical. Thus (Eη, E

⊥
η ) is a conformal product

net. By Theorem 9.32, for each x ∈ Mn there exists a local product representation
φ : M1×M2 → W of (Eη, E

⊥
η ) onto an open neighborhood W of x which is a conformal

diffeomorphism with respect to a product metric on M1×M2. Applying Theorem 9.26
to f ◦ φ implies that one of the following possibilities holds:

(a) There exist an orthogonal decomposition Rm = Rs × Rm−s, a conformal trans-
formation T of Rm and isometric immersions g : M1 → Rs and h : M2 → Rm−s

such that
f ◦ φ = T ◦ Φ ◦ (g × h).

(b) There exist isometric immersions h : M1 → Hm−s and g : M2 → Ss such that

f ◦ φ = Θ ◦ (h× g),

where Θ: Hm−s × Ss → Rm is the conformal diffeomorphism in Examples 9.10.

Moreover, since f carries a Dupin principal normal vector field η with multiplicity
k, we can assume that either (a) or (b) holds with s = k and g = id, or that (b) holds
with m − s = k and h = id. Each of these possibilities implies that f(W ) is an open
subset of a submanifold of one the three types in the statement. The proof now follows
by applying Exercise 1.20 to the class of submanifolds that are of one of those three
types. �

9.11 Notes

The conformal (Moebius) geometry of submanifolds has been of great interest to
differential geometers since the end of the nineteenth century. We refer the reader to
books [4] and [220] for an account of several aspects of the subject.
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The observation that, in the absence of umbilic points, there is a unique metric in
the conformal class on the submanifold with respect to which the trace free second fun-
damental form has a given constant length goes back to Fialkow [180]. This observation
allowed him to give a treatment of generic conformal submanifold geometry in purely
Riemannian terms. Our treatment of the conformal Bonnet theorem in terms of the
Moebius metric, Moebius second fundamental form, Moebius one-form and Blaschke
tensor of a submanifold is based on the paper by Wang [342], where those concepts
were introduced and the uniqueness assertion on hypersurfaces in Corollary 9.23 was
proven. The existence and uniqueness Theorem 9.22 on immersions of arbitrary di-
mension and codimension can be regarded as the counterpart of Theorem 1.10 within
the context of Moebius geometry.

A more general approach to the conformal Bonnet theorem, building upon the
fundamental work by Cartan [68], was developed by Burstall-Calderbank [45], which
in particular avoids the restriction on the umbilic points. Also see [45] for an account
of previous conformal versions of the Gauss-Codazzi-Ricci equations and of the Bonnet
theorem, where the corresponding references may be found.

The discussion in Section 9.5 on the equivalence between the rigidity of the
paraboloid model of Euclidean space and Liouville’s theorem on conformal mappings
on open subsets of Euclidean space of dimension n ≥ 3 is based on Tojeiro [333].

Theorem 9.24 on the conformal rigidity of Euclidean submanifolds was obtained
by do Carmo-Dajczer in [59], where the notion of the conformal s-nullities of a confor-
mal immersion was introduced. Corollary 9.25 was proved by Cartan [65] as part of
his classification of conformally deformable hypersurfaces of dimension n ≥ 5 of Rn+1,
which will be discussed in Chapter 17.

Theorem 9.26 on conformal immersions of Riemannian products into Euclidean
space and Theorem 9.32 on the conformal version of the local de Rham Theorem
were obtained by Tojeiro [330], [332], respectively. Corollary 9.33 was first proved by
Dajczer–Tojeiro [141] with different arguments.

The conformal version given in Exercise 9.8 of Tompkin’s Corollary 4.12 is due
to Moore [257].

The study of conformal submanifold geometry will be pursued further in Chapters
16 and 17, which will be devoted to two important families of Euclidean submanifolds
that are invariant under Moebius transformations, namely, conformally flat submani-
folds of dimension n ≥ 3 and hypersurfaces of dimension n ≥ 5 that admit nontrivial
conformal deformations.

Another remarkable Moebius invariant family of Euclidean submanifolds consists
of the so-called Wintgen ideal submanifolds. They arise in connection with the following
pointwise inequality relating intrinsic and extrinsic invariants of a submanifold of a
space form. Let f : Mn → Qn+p

c be an isometric immersion of a Riemannian manifold.
At any point x ∈ Mn, let s(x) denote the scalar curvature of Mn at x and let sN(x)
be given by

n(n− 1)sN(x) = ‖R⊥(x)‖ = 2(
∑

1≤i<j≤n
1≤r<s≤p

〈R⊥(Xi, Xj)ξr, ξs〉2)1/2
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where X1, . . . , Xn and ξ1, . . . , ξp are orthonormal bases of TxM and NfM(x), respec-
tively. It was shown independently by Ge-Tang [199] and Lu [239], after work by several
authors on special cases, that the inequality

s(x) ≤ c+ ‖H(x)‖2 − sN(x)

holds at any x ∈Mn. For n = 2 = p and c = 0, it reduces to the inequality

K(x) + |KN(x)| ≤ ‖H(x)‖2

between the Gaussian curvature K(x), the absolute value of the normal curvature
KN(x) and the length of the mean curvature vector H(x) at x. This particular case of
the inequality was proved by Wintgen [345], and for this reason, isometric immersions
f : Mn → Qm

c for which the equality in the general inequality is attained at any point
became known as Wintgen ideal submanifolds.

One class of Wintgen ideal submanifolds consists of minimal isometric immer-
sions f : Mn → Rm with index of relative nullity ν = n − 2, which have been studied
by Dajczer-Florit [97] and, more generally, of the compositions of minimal isometric
immersions f : Mn → Qm

c with index of relative nullity ν = n − 2 with a confor-
mal diffeomorphism between Qm

c and Rm. Other trivial examples of Wintgen ideal
submanifolds are the umbilical ones.

Wintgen ideal submanifolds f : Mn → Rn+2, n ≥ 3, that are free of minimal
and umbilic points were classified by Dajczer-Tojeiro [146] as follows. Start with a
simply connected minimal surface g : M2 → Rn+2, oriented by a global conformal
diffeomorphism onto either the complex plane or the unit disk. Then consider its
conjugate minimal surface h : M2 → Rn+2, each of whose components with respect to
this global parameter is the harmonic conjugate of the corresponding component of g.
Equivalently, h∗ = g∗ ◦ J , where J is the complex structure on M2 compatible with
its orientation. Now decompose the position vector of h in its tangent and normal
components with respect to g, that is,

h = g∗h
T + hN .

Finally, on the complement of the subset of isolated points of M where hN vanishes,
let Λ1 be the unit bundle of the vector subbundle Λ of the normal bundle of g that is
orthogonal to hN .

It was shown in [146] that the restriction of the map φ : Λ1 → Rn+2, defined by

φ(y, w) = g(y) + g∗Jh
T (y) + ‖hN(y)‖w,

to the subset of its regular points, parametrizes an n-dimensional Wintgen ideal sub-
manifold of Rn+2. Conversely, any Wintgen ideal submanifold f : Mn → Rn+2, n ≥ 3,
free of umbilical and minimal points, can be parameterized in this way.

Wintgen ideal surfaces f : M2 → R4 are precisely the surfaces in R4 whose ellipses
of curvature

E(x) = {α(X,X) : X ∈ TxM and ‖X‖ = 1}
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at all points x ∈M2 are circles, and are also known as superconformal surfaces. In this
case, it was shown in [147] that if g and h are conjugate minimal surfaces as before, Ĵ+

and Ĵ− are the two possible complex structures on NgM and J+, J− are the complex
structures on g∗TR4 given by

J± ◦ g∗ = g∗ ◦ J and J±|T⊥g M = Ĵ±

then each of the maps φ± : M2 → R4 defined by

φ± = g + J±h

parametrizes, at regular points, a superconformal surface. Conversely, any simply
connected superconformal surface that is free of minimal and umbilical points can be
constructed in this way.

We point out that an alternative description of n-dimensional Wintgen ideal
submanifolds of Rn+2, n ≥ 3, was given by Li-Ma-Wang-Xie [237]. It is an open
problem to classify Wintgen ideal submanifolds of arbitrary codimension. We refer to
Xie-Li-Ma-Wang [351] and the references therein for significant contributions in this
direction.

9.12 Exercises

Exercise 9.1. Let g1 and g2 be conformal (pseudo)-Riemannian metrics on a differ-
entiable manifold Mn and let λ ∈ C∞(M) be the conformal factor of g2 with respect
to g1, that is, λ is a positive smooth function such that g2 = λ2g1. Show that the
Levi-Civita connections ∇1 and ∇2 of g1 and g2, respectively, are related by

∇2
XY = ∇1

XY +
1

λ
(Y (λ)X +X(λ)Y − g1(X, Y )grad 1λ)

for all X, Y ∈ X(M).

Exercise 9.2. Let f : Mn → M̃m be an immersion and let g1 and g2 be conformal
metrics on M̃m. Denote fj = f : (Mn, f ∗gj)→ (M̃m, gj), 1 ≤ j ≤ 2.

(i) Show that the second fundamental forms of f1 and f2 are related by

αf2(X, Y ) = αf1(X, Y )− 1

λ
g1(X, Y )(grad 1λ)⊥

for all x ∈Mn and X, Y ∈ TxM , where λ ∈ C∞(M̃) is the conformal factor of g2

with respect to g1 and grad 1λ denotes the gradient of λ with respect to g1.

(ii) If η is a principal normal vector of f1 at x ∈Mn, conclude that

η − 1

λ
(grad 1λ)⊥

is a principal normal vector of f2 at x.
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(iii) Show that the normal connections f1 and f2 are related by

∇2⊥
X ξ = ∇1⊥

X ξ +
X(λ)

λ
ξ

for all X ∈ X(M) and ξ ∈ Γ(NfM).

(iv) Show that the normal curvature tensors R⊥1 and R⊥2 of f1 and f2, respectively,
are related by

R⊥1 (X, Y )ξ = R⊥2 (X, Y )ξ

for all x ∈Mn, X, Y ∈ TxM and ξ ∈ NfM(x).

Exercise 9.3. Let f, g : Mn → Rm be immersions with the same generalized Gauss
map, that is, there exists Φ ∈ Γ(End(TM)) such that g∗ = f∗ ◦ Φ (see Exercise 1.25).
Assume, in addition, that f and g are conformal, that is, there exists φ ∈ C∞(M) such
that the metrics induced by f and g are related by

〈 , 〉g = e2φ〈 , 〉f .

(i) Show that the tensor T ∈ Γ(End(TM)) defined by T = e−φΦ is orthogonal and
that the pair (T, φ) satisfies the differential equation

(∇XT )Y = 〈Y, gradφ〉TX − 〈X, Y 〉Tgradφ

and the condition
αf (X,TY ) = αf (TX, Y )

for all X, Y ∈ X(M).

(ii) Show that, conversely, if f : Mn → Rm is an isometric immersion of a simply
connected Riemannian manifold, then any pair (T, φ) satisfying the two preceding
conditions gives rise to a conformal immersion g : Mn → Rm with the same Gauss
map as f .

Hint: Use Exercises 1.25 and 9.1.

Exercise 9.4. Prove that Corollary 9.15 implies Corollary 9.14, and that this, in turn,
implies Theorem 9.13.

Exercise 9.5. Let f : Mn → Rn+1, n ≥ 2, be a cyclide of Dupin of characteristic
(m,n − m), that is, f has two distinct principal curvatures of multiplicities m and
n −m, respectively, which are constant along the corresponding eigenbundles. Show
that there exists a conformal diffeomorphism ψ of an open subset W ⊂ Qn−m

c × Sm,
c > −1, onto Mn, such that

f ◦ ψ = Θ ◦ (f1 × i)|W ,

where f1 : Qn−m
c → Hn−m+1 is an umbilical inclusion (a unit-speed extrinsic circle if

n−m = 1), id : Sm → Sm is the identity map and Θ: Hm−s×Ss → Rm is the conformal
diffeomorphism defined in Examples 9.10.
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Exercise 9.6. Let f : Mn → Rm, n ≥ 4, be an isometric immersion with nowhere flat
normal bundle carrying a principal curvature normal vector field η of multiplicity n−2
such that E⊥η is integrable. Show that f(M) is, up to a conformal transformation of
Rm, an open subset of a submanifold of one of the three types in Corollary 9.33.

Hint: Use the Codazzi equation to show that

〈CTX,AξY 〉 = ‖η‖〈∇XY, T 〉 − 〈AξY,∇TX〉 − 〈AξX,∇TY 〉
+ T 〈AξX, Y 〉 − 〈A∇⊥T ξX, Y 〉 (9.62)

for all X, Y ∈ Γ(E⊥η ) and T ∈ Γ(Eη). Use the assumption on the integrability of E⊥η to
show that CT is symmetric for all T ∈ Γ(Eη) and that the first term in the right-hand
side of (9.62) is symmetric in X and Y . Conclude that[

CT , Aξ|E⊥η
]

= 0. (9.63)

Then use that E⊥η has rank 2 to prove that at any point of Mn either there exists
T0 ∈ Eη such that CT = 〈T, T0〉I for all T ∈ Γ(Eη) or there exists T1 ∈ Γ(Eη) such
that CT1 (is symmetric and) has two distinct real eigenvalues. Notice that if the latter
possibility holds at some point x, then it also holds in an open neighborhood U of x.
Use (9.63) to show that this implies that f has flat normal bundle on U , contradicting
the assumption. Conclude that the first possibility holds everywhere, and then use
Corollary 9.33.

Exercise 9.7. Let Mn be a Riemannian manifold. Show that the following holds:

(i) Any conformal immersion f : Mn → Smc with conformal factor ϕ ∈ C∞(M) gives
rise to an isometric immersion I(f) : Mn → Vm+1

+ given by

I(f) =
1

ϕ
TB,z ◦ f

where TB,z is given by (9.6) for a vector z ∈ Lm+2 with 〈z, z〉 = −1/c.

(ii) Any isometric immersion F : Mn → Vm+1
+ gives rise to a conformal immersion

C(F ) : Mn → Smc given by

TB,z ◦ C(F ) =
1

〈F, z〉
F.

(iii) For any conformal immersion f : Mn → Smc and for any isometric immersion
F : Mn → Vm+1

+ one has

C(I(f)) = f and I(C(F )) = F.

(iv) If f, g : Mn → Smc are conformal immersions, then f and g are conformally con-
gruent if and only if I(f), I(g) : Mn → Vm+1

+ ⊂ Lm+2 are isometrically congruent.
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State and prove similar assertions if Smc is replaced by Hm
c .

Exercise 9.8. Show that a compact flat Riemannian manifold Mn does not admit a
conformal immersion into R2n−2.

Hint: Suppose that there exists a conformal immersion f : Mn → R2n−2 and let F =
I(f) : Mn → V2n−1 ⊂ L2n be its isometric light-cone representative. Given a future-
pointing time-like vector v = (v0, . . . , v2n−1) ∈ L2n, that is, v0 > 0, let x ∈ Mn be a
point at which the height-function hv : Mn → R given by

hv(x) = −〈F (x), v〉

attains its maximum. Then v ∈ NFM(x) and

Hesshv(x)(X, Y ) = −〈αF (X, Y ), v〉

for all X, Y ∈ TxM (see Corollary 1.3), and hence φ( , ) = 〈αF ( , ), v〉 is positive-
definite. Show that this contradicts Exercise 5.1.



Chapter 10

Isometric immersions of warped
products

In this chapter we discuss two other useful ways of constructing immersions of
product manifolds from immersions of the factors, with an increasing degree of gener-
ality. Namely, we introduce the notions of (extrinsic) warped products of immersions
and, more generally, of partial tubes over extrinsic products of immersions.

Both types of immersions share with extrinsic products of immersions the prop-
erty that their second fundamental forms are adapted to the product structure of the
manifold. Once this condition is satisfied, it is shown that immersions of each kind
are characterized by the special types of metrics they induce on the product manifold.
These are, respectively, warped product metrics and metrics called polar.

We then discuss sufficient conditions, in terms of the s-nullities, for the second
fundamental form of an isometric immersion of a product manifold endowed with a
warped product metric to be adapted to the product structure of the manifold.

10.1 Polar metrics on product manifolds

Our aim in this section is to introduce some classes of metrics on a product
manifold and to characterize them in terms of the geometry of its product net.

The results in this section are stated without proofs, but references where the
proofs may be found are provided in the Notes of this chapter. We use the notations
and terminology introduced in Section 8.1.

A metric g on a product manifold M = Πr
i=0Mi is called polar if there exist a

metric g0 on M0 and smooth maps x0 ∈M0 7→ ga(x0), 1 ≤ a ≤ r, where each ga(x0) is
a metric on Ma, such that

g = π∗0g0 +
r∑

a=1

π∗a(ga ◦ π0), (10.1)

275
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that is,

g(x) = (π0∗(x))∗g0(x0) +
r∑

a=1

(πa∗(x))∗(ga(x0)(xa))

for all x = (x0, . . . , xr) ∈M .
A special type of polar metric is the warped product of the metrics g0, . . . , gr on

M0, . . . ,Mr, respectively, with smooth warping functions ρa : M0 → R+, 1 ≤ a ≤ r,
that is, the metric given by

g = π∗0g0 +
r∑

a=1

(ρa ◦ π0)2π∗aga.

It is usual to denote a product manifold M = Πr
i=0Mi, endowed with a warped product

metric with warping functions ρa : M0 → R+, 1 ≤ a ≤ r, by

M = M0 ×ρ1 M1 × · · · ×ρr Mr.

In particular, the Riemannian product of g0, . . . , gr corresponds to the case in which
the warping functions ρa, 1 ≤ a ≤ r, are identically one. Thus, warped (respectively,
Riemannian) product metrics correspond to polar metrics for which all metrics ga(x0)
on Ma, 1 ≤ a ≤ r, x0 ∈ M0, are homothetical (respectively, isometric) to a fixed
Riemannian metric.

The next result characterizes polar metrics on a product manifold in terms of the
geometry of its product net.

Proposition 10.1. A Riemannian metric on a product manifold M = Πr
i=0Mi is polar

if and only if the product net E = (Ei)i=0,...,r of M is an orthogonal net such that E⊥a
is totally geodesic for all 1 ≤ a ≤ r.

The additional geometric properties that the product net of a product manifold
must have with respect to a Riemannian metric g in order that g be a warped product
metric are as follows.

Proposition 10.2. A Riemannian metric on a product manifold M = Πr
i=0Mi is

a warped product metric if and only if the product net E = (Ei)i=0,...,r of M is an
orthogonal net such that Ea is spherical and E⊥a is totally geodesic for all 1 ≤ a ≤ r.

The next result characterizes Riemannian manifolds that can be locally or globally
decomposed as a product manifold endowed with a polar metric.

Theorem 10.3. Let M be a Riemannian manifold carrying an orthogonal net E =
(Ei)i=0,...,r such that E⊥a is totally geodesic for 1 ≤ a ≤ r. Then there exists locally
(globally, if M is simply connected and the leaves of E⊥a are complete) a product rep-
resentation ψ : Πr

i=0Mi → M of E which is an isometry with respect to a polar metric
on Πr

i=0Mi.



Chapter 10. Isometric immersions of warped products 277

The preceding theorem can be regarded as a generalization of the theorem of de
Rham as well as of its extension given next for warped product manifolds.

Theorem 10.4. Let M be a Riemannian manifold carrying an orthogonal net E =
(Ei)i=0,...,r such that Ea is spherical (respectively, totally geodesic) and E⊥a is totally
geodesic for 1 ≤ a ≤ r. Then there exists locally (globally, if M is simply connected
and complete) a product representation ψ : Πr

i=0Mi → M of E which is an isometry
with respect to a warped (respectively, Riemannian) product metric on Πr

i=0Mi.

10.2 Partial tubes

In this section we describe a general way of constructing immersions of product
manifolds into space forms starting with isometric immersions of the factors. For
simplicity of the presentation, we first consider immersions into Euclidean space of
product manifolds with only two factors.

10.2.1 Partial tubes in Euclidean space

Let f1 : M1 → Rm be an isometric immersion along which there is an orthonormal
set {ξ1, . . . , ξk} of normal vector fields that are parallel in the normal connection. The
subbundle L = span{ξ1, . . . , ξk} of Nf1M1 is thus parallel and flat. Hence the map
φ : M1 × Rk → L, defined by

φx1(y) = φ(x1, y) =
k∑
i=1

yiξi(x1)

for all x1 ∈M1 and y = (y1, . . . , yk) ∈ Rk, is a parallel vector bundle isometry.
Given an isometric immersion f0 : M0 → Rk, denote M = M0 × M1 and let

f : M → Rm be defined by

f(x0, x1) = f1(x1) + φx1(f0(x0)). (10.2)

In part (ii) of the next result we determine the condition for f to be an immersion at
a given point (x0, x1) ∈ M . If that condition is satisfied at any point of M , then f is
called the partial tube over f1 with fiber f0, or simply the partial tube determined by
(f0, f1, φ).

Proposition 10.5. With f0, f1, f and φ as above, the following assertions hold:

(i) The differential of f at x = (x0, x1) is given by

f∗τ
x
0∗X0 = φx1(f0∗X0) (10.3)

for any X0 ∈ Tx0M0, and
f∗τ

x
1∗ = f1∗P, (10.4)

where P = P (x) is the endomorphism of Tx1M1 defined by

P = I − Af1

φx1 (f0(x0)). (10.5)
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(ii) The map f is an immersion at x = (x0, x1) if and only if P (x) is invertible.

(iii) If f is an immersion at x = (x0, x1), then

NfM(x) = L⊥(x1)⊕ φx1(Nf0M0(x0)) ⊂ Nf1M1(x1),

where L⊥(x1) is the orthogonal complement of L(x1) in Nf1M1(x1).

(iv) If f is an immersion at x = (x0, x1), then

Afξ (x)τx1∗ = τx1∗ P
−1Af1

ξ (x1) (10.6)

for any ξ ∈ NfM(x),

Afδ (x)τx0∗ = 0 (10.7)

for any δ ∈ L⊥(x1), and

Afφx1 (ζ)(x)τx0∗ = τx0∗A
f0

ζ (x0) (10.8)

for any ζ ∈ Nf0M0(x0). Equivalently, if π : Nf1M1(x1) → NfM(x) denotes the
orthogonal projection, then

αf (τx1∗X1, τ
x
1∗Y1) = π(αf1(PX1, Y1)) (10.9)

for all X1, Y1 ∈ Tx1M1,
αf (τx0∗X0, τ

x
1∗X1) = 0 (10.10)

for all X0 ∈ Tx0M0 and X1 ∈ Tx1M1, and

αf (τx0∗X0, τ
x
0∗Y0) = φx1(αf0(X0, Y0)) (10.11)

for all X0, Y0 ∈ Tx0M0.

Proof: The proofs of (10.3) and (10.4) are straightforward, and the assertions in parts
(ii) and (iii) are immediate consequences of those formulas.

To prove (10.6), given ξ ∈ NfM(x) and X1 ∈ Tx1M1, let γ : J →M1 be a smooth
curve, with 0 ∈ J , such that γ(0) = x1 and γ′(0) = X1. Let ξ(t) be the parallel
transport of ξ along the curve τx1 ◦ γ in the normal connection. Using (10.4) we obtain

f∗(x)Afξ (x)τx1∗X1 = −∇̃τx1∗X1ξ

= − d

dt
|t=0ξ(x0, γ(t))

= f1∗(x1)Af1

ξ (x1)X1

= f∗(x)τx1∗ P
−1Af1

ξ (x1)X1

where ∇̃ is the Euclidean connection. The proofs of (10.7) and (10.8) are similar. �

As a consequence of part (ii) of the preceding result, we obtain the following
necessary and sufficient condition for f to be an immersion.
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Corollary 10.6. The map f is an immersion if and only if f0(M0) ⊂ Ω(f1;φ), where

Ω(f1;φ) =
{
Y ∈ Rk : I − Af1

φx1 (Y ) is nonsingular for any x1 ∈M1

}
.

To provide a better description of the subset Ω(f1;φ), let η1, . . . , ηs ∈ Γ(L) be
the distinct principal normal vector fields of f1 with respect to L (see Exercise 1.35).
Thus there exists an orthogonal decomposition TM1 = ⊕si=1Ei such that

Af1

ζ |Ei = 〈ζ, ηi〉I

for any ζ ∈ Γ(L). Therefore I − Af1

φx1 (Y ) is nonsingular if and only if

〈φx1(Y ), ηi(x1)〉 6= 1

for any 1 ≤ i ≤ s, that is, if and only if φx1(Y ) does not belong to any of the focal
hyperplanes

Hf1

i (x1) = {ζ ∈ Nf1M1(x1) : 〈ζ, ηi(x1)〉 = 1}, 1 ≤ i ≤ s.

For each x1 ∈M1, let Vi(x1) ∈ Rk be such that

φx1(Vi(x1)) = ηi(x1), 1 ≤ i ≤ s.

Then
Ω(f1;φ) = ∩x1∈M1 ∩si=1 {Y ∈ Rk : 〈Y, Vi(x1)〉 6= 1}.

We denote by Ω0(f1;φ) the connected component of Ω(f1;φ) given by

Ω0(f1;φ) = ∩x1∈M1 ∩si=1 {Y ∈ Rk : 〈Y, Vi(x1)〉 > 1}

and always assume that f0(M0) ⊂ Ω0(f1;φ).

Remark 10.7. Let f be the partial tube determined by (f0, f1, φ) and let v ∈ Ω(f1;φ).
Since the map f̃1 : M1 → Rm defined by

f̃1(x1) = f1(x1) + φx1(v)

satisfies
f̃1∗ = f1∗

(
I − Af1

φx1 (v)

)
,

then f̃1 is an immersion with the same normal bundle as f1. In particular, ξ1, . . . , ξk
are also parallel normal vector fields along f̃1, and thus L = span{ξ1, . . . , ξk} is also a
parallel flat normal subbundle of Nf̃1

M1. The shape operator of f̃1 is given by

Af̃1

ξ =
(
I − Af1

φx1 (v)

)−1

Af1

ξ
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for any ξ ∈ Γ(Nf̃1
M1). It follows that

I − Af̃1

φx1 (Y ) =
(
I − Af1

φx1 (v)

)−1 (
I − Af1

φx1 (Y+v)

)
for any Y ∈ Rk. Thus

Y ∈ Ω(f̃1;φ) if and only if Y + v ∈ Ω(f1;φ).

Defining f̃0 : M0 → Rk by f̃0 = f0 − v, it follows that f0(M0) ⊂ Ω(f1;φ) if and only if
f̃0(M0) ⊂ Ω(f̃1;φ). Since

f(x0, x1) = f̃1(x1) + φx1(f̃0(x0)),

then the map f is also the partial tube determined by (f̃0, f̃1, φ).
In particular, if f is the partial tube determined by (f0, f1, φ), then one can

always assume that f0 is a substantial immersion, for if f0(M0) is contained in the
affine subspace v + R` ⊂ Rk, one can replace f0 by f̃0 : M0 → R` given by

f̃0(x0) = f0(x0)− v,

replace f1 : M1 → Rm by
f̃1(x1) = f1(x1) + φx1(v)

and then φ by its restriction to M1 × R`.

Another consequence of Proposition 10.5 is the following.

Corollary 10.8. The metric g induced by f is the polar metric

g = π∗0g0 + π∗1(g1 ◦ π0) (10.12)

where g0 is the metric of M0 and, for any x = (x0, x1) ∈ M0 ×M1, the metric g1(x0)
on M1 is given, in terms of the metric g1 of M1 and the endomorphism P defined by
(10.5), by

g1(x0)(X1, Y1) = g1(P 2X1, Y1)

for all X1, Y1 ∈ Tx1M1. Moreover, the second fundamental form of f is adapted to the
product net of M0 ×M1.

Examples 10.9. (i) Let Rm = Rm1 × Rm2 be an orthogonal decomposition. Take an
isometric immersion f1 : M1 → Rm1 , and let f̃1 stand for f1 regarded as a map into
Rm, that is,

f̃1(x1) = (f1(x1), 0). (10.13)

Let L denote the vector subbundle of Nf̃1
M1 whose fiber at any point x1 ∈M1 is Rm2 ,

and consider the obvious parallel vector bundle isometry φ : M1 × Rm2 → L. Notice
that Ω(f̃1, φ) = Rm2 . Given any isometric immersion f0 : M0 → Rm2 , the partial tube
f : M0 ×M1 → Rm determined by (f0, f̃1, φ) is the extrinsic product of f0 and f1.
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(ii) Let Rm = Rm1 × Rm2 be an orthogonal decomposition. Consider an isometric
immersion f1 : M1 → Sm1−1 ⊂ Rm1 and define f̃1 as in (10.13). Let L be the flat
parallel vector subbundle of rank k = m2 + 1 of Nf̃1

M1 whose fiber at x1 ∈M1 is

L(x1) = span{f̃1(x1)} ⊕ Rm2

and let φ : M1×Rk → L be a parallel vector bundle isometry. Let e ∈ Rk be such that
φx1(e) = f̃1(x1) for all x1 ∈M1. Then

Af̃1

φx1 (Y ) = −〈Y, e〉I

for any Y ∈ Rk, where I is the identity endomorphism of Tx1M1. In particular,

Ω0(f̃1, φ) = {Y ∈ Rk : 〈Y, e〉+ 1 > 0}.

Given an isometric immersion f̃0 : M0 → Ω0(f̃1, φ) ⊂ Rk, let f : M0×M1 → Rm be the
partial tube determined by (f̃0, f̃1, φ). Thus

f(x0, x1) = f̃1(x1) + φx1(f̃0(x0))

= φx1(f0(x0))

where f0 : M0 → Rk is given by f0 = f̃0 +e. Note that the condition f̃0(M0) ⊂ Ω0(f̃1, φ)
reduces to

〈f0(x0), e〉 > 0

for all x0 ∈M0.
The map f is called the warped product of f0 and f1. If f1 : Sm1−1 → Sm1−1 is

the identity map, then f is said to be a rotational submanifold with f0 : M0 → Rk as
profile. On the other hand, if f0 is the identity map on

Ω0(f̃1) = {Y ∈ Rk : 〈Y, e〉 > 0},

then f coincides with the generalized cone over f1, which in this case is the cylinder
over the (standard) cone over f1 in Rm1 . In particular, for m1 = m the immersion f is
the cone over f1 : M1 → Sm−1.

The next result summarizes several consequences of Proposition 10.5, as well as
of Corollary 10.8, for f0, f1, f and φ as in the second part of Examples 10.9.

Corollary 10.10. With f0, f1, f and φ as in part (ii) of Examples 10.9, the following
assertions hold:

(i) The map f is an immersion whose induced metric g is the warped product of the
metrics g0 and g1 in M0 and M1, respectively, with warping function ρ : M0 → R+

given by
ρ(x0) = 〈f0(x0), e〉.
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(ii) The normal space of f at x = (x0, x1) is

NfM(x) = i1∗Nf1M1(x1)⊕ φx1(Nf0M0(x0)) ⊂ Nf̃1
M1(x1)

where i1 : Sm1−1 → Rm1 is the inclusion.

(iii) The second fundamental form of f at x = (x0, x1) is given by

αf (τx1∗X1, τ
x
1∗Y1) = 〈f0(x0), e〉(i1∗αf1(X1, Y1)− g1(X1, Y1)φx1(e⊥))

for all X1, Y1 ∈ Tx1M1, where e⊥ is the orthogonal projection of e onto Nf0M0(x0),

αf (τx0∗X0, τ
x
1∗X1) = 0

for all X0 ∈ Tx0M0 and X1 ∈ Tx1M1, and

αf (τx0∗X0, τ
x
0∗Y0) = φx1(αf0(X0, Y0))

for all X0, Y0 ∈ Tx0M0.

Proof: Since

Af̃1

φx1 (f̃0(x0))
= −〈f̃0(x0), e〉I

for all x = (x0, x1) ∈M0 ×M1, the endomorphism

P = P (x) = I − Af̃1

φx1 (f̃0(x0))

reduces to P = 〈f0(x0), e〉I, and the assertion in part (i) follows from Corollary 10.8.
The formulas in parts (ii) and (iii) are immediate consequences of the corresponding
ones in Proposition 10.5. �

10.2.2 Partial tubes in the sphere and the hyperbolic space

The definitions and results in the previous section can be easily extended to
immersions into the sphere and the hyperbolic space.

Let Rm+1
µ denote either Euclidean space Rm+1 or Lorentzian space Lm+1, depend-

ing on whether µ = 0 or 1, respectively. Denote by Qm
ε ⊂ Rm+1

µ , ε = 1− 2µ, either the

sphere Sm or the hyperbolic space Hm. Let f̃1 : M1 → Rm+1
µ be an isometric immer-

sion such that f̃1(M1) is contained in Qm
ε ⊂ Rm+1

µ , so that there exists an isometric

immersion f1 : M1 → Qm
ε such that f̃1 = i ◦ f1, where i : Qm

ε → Rm+1
µ is the inclusion.

Assume that there exists an orthonormal set {ξ1, . . . , ξk} of normal vector fields
along f1 that are parallel in the normal connection and let L denote the parallel and
flat subbundle of Nf1M1 spanned by {ξ1, . . . , ξk}. The subbundle

L̃ = i∗L⊕ span{f̃1}



Chapter 10. Isometric immersions of warped products 283

of Nf̃1
M1 is also parallel and flat; hence there exists a parallel vector bundle isometry

φ : M1 × Rk+1
µ → L̃. Let e ∈ Rk+1

µ be such that f̃1(x1) = φx1(e) for all x1 ∈ M1, and
let f0 : M0 → Rk+1

µ be an isometric immersion such that

f0(M0) ⊂ Qk
ε ∩ (e+ Ω0(f̃1, φ)) ⊂ Rk+1

µ . (10.14)

Define a map f : M0 ×M1 → Qm
ε ⊂ Rm+1

µ by

f(x0, x1) = φx1(f0(x0)).

Then f is called the partial tube over f1 with fiber f0. Note that we can write

f(x0, x1) = f̃1(x1) + φx1(f̃0(x0))

where f̃0(x0) = f0(x0)− e. Notice also that

I − Af̃1

φx1 (Y ) = −Af̃1

φx1 (e+Y )

for all Y ∈ Rk+1
µ , hence f̃0(M0) ⊂ Ω0(f̃1, φ) by (10.14). Thus the map f (regarded as

a map into Rm+1
µ ) is the partial tube over f̃1 with fiber f̃0.

Important special cases of partial tubes in the sphere and the hyperbolic space
are the warped products of immersions defined next.

We start with the case of the sphere. Given an orthogonal decomposition

Rm+1 = Rm1 × Rm2 ,

let f1 : M1 → Sm1−1 ⊂ Rm1 be an isometric immersion and let f̃1 : M1 → Rm+1 be
defined by

f̃1(x1) = (f1(x1), 0).

Consider the flat parallel vector subbundle L of rank k = m2 + 1 of Nf̃1
M1 whose fiber

at x1 ∈M1 is
L(x1) = span{f̃1(x1)} ⊕ Rm2 .

Let φ : M1 ×Rk → L be a parallel vector bundle isometry and let e ∈ Rk be such that
φx1(e) = f̃1(x1). Note that

Af̃1

φx1 (Y ) = −〈Y, e〉I

for all Y ∈ Rk. Hence

e+ Ω0(f̃1, φ) = Ω0(f̃1) = {Y ∈ Rk : 〈Y, e〉 > 0} ⊂ Rk.

If f0 : M0 → Sk−1 ∩ Ω0(f̃1) ⊂ Rk is an isometric immersion, then the partial tube
f : M0 ×M1 → Sm ⊂ Rm+1, given by

f(x0, x1) = φx1(f0(x0)),
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is called the warped product of f0 and f1.

Warped products of immersions into the hyperbolic space are of three different
types. First, for an orthogonal decomposition

Lm+1 = Lm1 × Rm2 ,

let f1 : M1 → Hm1−1 ⊂ Lm1 be an isometric immersion and let f̃1 : M1 → Lm+1 be
given by

f̃1(x1) = (f1(x1), 0).

Consider the flat parallel vector subbundle L of rank k = m2 + 1 of Nf̃1
M1 whose fiber

at x1 ∈M1 is
L(x1) = span{f̃1(x1)} ⊕ Rm2 .

Let φ : M1 × Lk → L be a parallel vector bundle isometry and let e ∈ Lk be such that
φx1(e) = f̃1(x1) for all x1 ∈M1. As in the case of warped products into the sphere we
have

e+ Ω0(f̃1, φ) = Ω0(f̃1) = {Y ∈ Lk : 〈Y, e〉 > 0}.

Note that Hk−1 ⊂ Ω0(f̃1) if e = (e0, . . . , ek−1) ∈ Lk is chosen so that e0 < 0.
If f0 : M0 → Hk−1 ⊂ Lk is an isometric immersion, then the partial tube f : M0×

M1 → Hm ⊂ Lm+1, given by

f(x0, x1) = φx1(f0(x0)),

is called the warped product of hyperbolic type of f0 and f1.

A similar construction can be done by starting with an orthogonal decomposition

Lm+1 = Rm1 × Lm2

and an isometric immersion f1 : M1 → Sm1−1 ⊂ Rm1 . Define f̃1 : M1 → Lm+1 by

f̃1(x1) = (f1(x1), 0)

and consider the flat parallel vector subbundle L of rank k = m2 + 1 of Nf̃1
M1 whose

fiber at x1 ∈M1 is
L(x1) = span{f̃1(x1)} ⊕ Lm2 .

As before, let φ : M1 × Lk → L be a parallel vector bundle isometry and let e ∈ Lk
be such that φx1(e) = f̃1(x1) for all x1 ∈ M1. If f0 : M0 → Hk−1 ∩ Ω0(f̃1) ⊂ Lk is an
isometric immersion, where

Ω0(f̃1) = e+ Ω0(f̃1, φ) = {Y ∈ Lk : 〈Y, e〉 > 0},

then the partial tube f : M0 ×M1 → Hm ⊂ Lm+1, given by

f(x0, x1) = φx1(f0(x0)),
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is called the warped product of elliptic type of f0 and f1.

To define the notion of a warped product of immersions into the hyperbolic space
of parabolic type, consider orthogonal decompositions

Lm+1 = Lm1+1 × Rm2 and Lm1+1 = Rm1−1 × L2

and choose a pseudo-orthonormal basis v0, v1 of L2 with

〈v0, v0〉 = 0 = 〈v1, v1〉 and 〈v0, v1〉 = 1.

Now let f1 : M1 → Rm1−1 be an isometric immersion and define f̃1 : M1 → Lm+1 by

f̃1(x1) = (Ψ(f1(x1)), 0)

where Ψ: Rm1−1 → Vm1 ⊂ Lm1+1 is the isometric embedding defined as in Section 9.1
by

Ψ(x) = v0 + Cx− 1

2
‖x‖2v1 (10.15)

in terms of a linear isometry C : Rm1−1 → span{v0, v1}⊥ ⊂ Lm1+1.
Consider the flat parallel vector subbundle of rank k = m2 + 2 of Nf̃1

M1 whose
fiber at x1 ∈M1 is

L(x1) = span{v1, f̃1(x1)} ⊕ Rm2 .

Write Lk = L2 × Rm2 and let φ : M1 × Lk → L be a parallel vector bundle isometry
such that

φx1(v0) = f̃1(x1) and φx1(v1) = v1

for all x1 ∈M1. Then, if v1 is chosen so that v0
1 < 0, we have

Hk−1 ⊂ Ω0(f̃1) = {Y ∈ Lk : 〈Y, v1〉 > 0} = v0 + Ω0(f̃1, φ).

Given an isometric immersion f0 : M0 → Hk−1 ⊂ Lk, the map f : M0 ×M1 → Hm ⊂
Lm+1, given by

f(x0, x1) = φx1(f0(x0)),

is called the warped product of parabolic type of f0 and f1.
Notice that, although f̃1 does not take values in Hm, its parallel translate f̂1 does,

where

f̂1 = f̃1 −
1

2
v1,

and since f̃1 and f̂1 have the same normal bundle, we can regard f as the partial tube
over f̂1 with fiber f0.

In each of the preceding types of warped products of immersions, if f1 is the
identity map, then f is called a rotational submanifold with f0 as profile. On the other
hand, the reader is asked to check that, if f0 is the identity map, then f coincides with
the generalized cone over f1.

The proof of the next corollary of Proposition 10.5 is also left to the reader.
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Corollary 10.11. With f0, f1, f and φ as above, the following assertions hold:

(i) The map f is an immersion whose induced metric g is the warped product of the
metrics g0 and g1 in M0 and M1, respectively, with warping function ρ : M0 → R+

given by
ρ(x0) = 〈f0(x0), e〉

in the hyperbolic and elliptic cases, and by

ρ(x0) = 〈f0(x0), v1〉

in the parabolic case.

(ii) The normal space of f at x = (x0, x1) is given by

i∗NfM(x) = i1∗Nf1M1(x1)⊕ φx1(Nf0M0(x0)) ⊂ Nf̃1
M1(x1)

where i is the inclusion of Qm
ε into Rm+1

µ and i1 stands either for the inclusion
of Qm1−1

ε into Rm1
µ in the elliptic and hyperbolic cases, or for the map Ψ in the

parabolic one.

(iii) The second fundamental form of f at x = (x0, x1) is given by

i∗α
f (τx1∗X1, τ

x
1∗Y1) = 〈f0(x0), e1〉(i1∗αf1(X1, Y1)− g1(X1, Y1)φx1(e⊥1 )),

in the hyperbolic and elliptic cases, and by

i∗α
f (τx1∗X1, τ

x
1∗Y1) = 〈f0(x0), v1〉(i1∗αf1(X1, Y1)− g1(X1, Y1)φx1(v⊥1 ))

in the parabolic case, where e⊥1 and v⊥1 are the orthogonal projections of e1 and
v1 onto Nf0M0(x0),

αf (τx0∗X0, τ
x
1∗X1) = 0

and
αf (τx0∗X0, τ

x
0∗Y0) = φx1(αf0(X0, Y0))

for all X0, Y0 ∈ Tx0M0 and X1, Y1 ∈ Tx1M1.

10.2.3 Partial tubes over extrinsic products

Next we consider partial tubes in Qm
ε , ε ∈ {−1, 0, 1}, over an extrinsic product

f̃ : M̃ = Πr
a=1Ma → Qm

ε . Assume as before that there exists a parallel vector bundle

isometry φ : M̃ × Rk+|ε|
µ → L̃, 2µ = 1 − ε, onto a flat parallel subbundle L̃ of Nf̃M̃ ,

with f̃ regarded as an isometric immersion into Rm+1
µ and the subbundle L̃ having

the position vector as a section if ε ∈ {−1, 1}. If ε = 0 (respectively, ε ∈ {−1, 1}),
consider an isometric immersion f0 : M0 → Ω0(f̃ ;φ) ⊂ Rk (respectively, f0 : M0 →
(e+ Ω0(f̃ ;φ)) ∩Qk

ε ⊂ Rk+1
µ , where φx̃(e) = f̃(x̃) for all x̃ ∈ M̃). Then the partial tube

f : M = Πr
i=0Mi → Qm

ε determined by (f0, f̃ , φ) has the following properties.
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Proposition 10.12. The metric induced on M by f is polar and the second funda-
mental form of f is adapted to the product net of M .

Proof: We give the proof for immersions into Euclidean space, the other cases being
similar. Thus there exist an orthogonal decomposition

Rm = Πr
j=0Rmj ,

with Rm0 possibly trivial, a vector v0 ∈ Rm0 (in case Rm0 is nontrivial) and isometric
immersions fa : Ma → Rna , 1 ≤ a ≤ r, such that

f̃(x1, . . . , xr) = (v0, f1(x1), . . . , fr(xr))

for all x̃ = (x1, . . . , xr) ∈ M̃ .
Regard M as the product M = M0×M̃ and denote by π̃ : M → M̃ the projection.

By Corollary 10.8, the metric induced by f is given by

g = π∗0g0 + π̃∗(g̃ ◦ π0), (10.16)

where g0 is the metric on M0 and, for all x = (x0, x̃) ∈M = M0× M̃ , the metric g̃(x0)
on M̃ is given, in terms of the product metric g̃ of M̃ , by

g̃(x0)(X̃, Ỹ ) = g̃(P 2X̃, Ỹ )

for all X̃, Ỹ ∈ Tx̃M̃ , where

P = P (x0, x̃) = I − Af̃φx̃(f0(x0)).

Since L is a flat parallel subbundle of Nf̃M̃ , so are its projections La onto NfaMa

for 1 ≤ a ≤ r. Thus there exist parallel vector bundle isometries φa : Ma ×Rma → La,
1 ≤ a ≤ r, such that φ is the restriction to M̃ × Rk of the parallel vector bundle
isometry φ̃ : M̃ × R` → ⊕ra=1La, with R` = Πr

a=1Rma , given by

φ̃x̃

r∑
a=1

va =
r∑

a=1

φax̃ava (10.17)

for all x̃ = (x̃1, . . . , x̃r) ∈ M̃ . We denote by π̃a either of the projections ⊕ra=1La 7→ La,
Πr
a=1Rma 7→ Rma or M̃ 7→ Ma. Also, for all x̃ = (x̃1, . . . , x̃r) ∈ M̃ , we denote by

τ̃ x̃a : Ma → M̃ the inclusion given by

τ̃ x̃a (xa) = (x̃1, . . . , xa, . . . , x̃r).

By part (iv) of Proposition 8.3,

f̃∗A
f̃
ξ τ̃

x̃
a ∗ = fa∗A

fa
π̃aξ

(10.18)
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for all ξ ∈ Γ(Nf̃M̃). Therefore

f̃∗A
f̃
φx̃(f0(x0))τ̃

x̃
a ∗ = fa∗A

fa
π̃aφx̃(f0(x0))

= fa∗A
fa
φax̃a (π̃a(f0(x0)))

for all 1 ≤ a ≤ r. Given X̃ ∈ Tx̃M̃ , let X̃ =
∑r

a=1 X̃a be its decomposition with respect
to the product net of M̃ . Then

f̃∗A
f̃
φx̃(f0(x0))X̃ =

r∑
a=1

f̃∗A
f̃
φx̃(f0(x0))X̃

a

=
r∑

a=1

f̃∗A
f̃
φx̃(f0(x0))τ̃

x̃
a ∗π̃a∗X̃

a

=
r∑

a=1

fa∗A
fa
φax̃a (π̃a(f0(x0)))π̃a∗X̃

a.

It follows that

g̃(x0) =
r∑

a=1

π̃∗aga(x0), (10.19)

where ga(x0) is the metric on Ma given, in terms of the metric ga of Ma, by

ga(x0)(Xa, Ya) = ga((I − Afaφax̃a (π̃a(f0(x0))))
2Xa, Ya) (10.20)

for all Xa, Ya ∈ Tx̃aMa. Since π̃a ◦ π̃ = πa for 1 ≤ a ≤ r, we conclude from (10.16) and
(10.19) that g has the form (10.1), with ga(x0) as in (10.20). The assertion on the second
fundamental form of f is a consequence of (10.18) and part (iv) of Proposition 10.5.�

10.2.4 The decomposition theorem

In this section we prove a converse of Proposition 10.12 that provides a general
decomposition theorem for immersions of product manifolds. The proof relies on the
following lemma.

Lemma 10.13. Let f : M → Rm
µ be an isometric immersion and let D be a vector

subbundle of TM . Then the following conditions on D are equivalent:

(i) D is totally geodesic and αf is adapted to the net (D,D⊥).

(ii) D is integrable and f∗D
⊥ is constant in Rm

µ along each leaf of D.

Proof: If D is integrable, then the subbundle f∗D
⊥ is constant in Rm

µ along each leaf

of D if and only if ∇̃Xf∗Y ∈ f∗D⊥ for all X ∈ Γ(D) and Y ∈ Γ(D⊥). Since

∇̃Xf∗Y = f∗∇XY + αf (X, Y ),

this is the case if and only if ∇XY ∈ Γ(D⊥) and αf (X, Y ) = 0 for all X ∈ Γ(D) and
Y ∈ Γ(D⊥), that is, if and only if the conditions in part (i) hold. �
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Theorem 10.14. Let f : M = Πr
i=0Mr → Qm

c be an isometric immersion of a product
manifold endowed with a polar metric. If the second fundamental form of f is adapted
to the product net of M , then f is a partial tube over an extrinsic product f̃ : M̃ =
Πr
a=1Mr → Qm

c of immersions.

Assuming, for simplicity, that c = ε ∈ {−1, 0, 1}, then the statement is, more
precisely, that there exist an extrinsic product f̃ : M̃ = Πr

a=1Mr → Qm
ε ⊂ Rm+1

µ of

immersions, a parallel vector bundle isometry φ : M̃ × Rk+|ε|
µ → L̃, 2µ = 1 − ε, onto

a flat parallel subbundle of Nf̃M̃ (with f̃ regarded as an isometric immersion into

Rm+1
µ and the subbundle L̃ having the position vector as a section if ε ∈ {−1, 1}),

and an isometric immersion f0 : M0 → Rk+|ε|
µ (with f0(M0) ⊂ Ω0(f̃ ;φ) if ε = 0 and

f0(M0) ⊂ (e+Ω0(f̃ ;φ))∩Qk
ε ⊂ Rk+1

µ if ε ∈ {−1, 1}, where φx̃(e) = f̃(x̃) for all x̃ ∈ M̃),

such that f is the partial tube determined by (f0, f̃ , φ).

Proof: First we give the proof for the case in which r = 1 and ε = 0. For a fixed
x̄0 ∈M0, let µx̄0 be the inclusion of M1 into M = M0 ×M1 given by

µx̄0(x1) = (x̄0, x1)

and define f1 : M1 → Rm by f1 = f ◦ µx̄0 . Let E = (E0, E1) be the product net of
M . By Proposition 10.1, E is an orthogonal net and E0 is totally geodesic. Given
x1 ∈M1, it follows from Lemma 10.13 that the image by f of the leaf M0×{x1} of E0

is contained in the affine normal space of f1 at x1, that is,

f(x0, x1) ∈ f1(x1) +Nf1M1(x1)

for all x0 ∈M0. Hence, for each x0 ∈M0, we can regard

x1 ∈M1 7→ ξx0(x1) = f(x0, x1)− f1(x1)

as a normal vector field along f1. Let X1 ∈ Tx1M1. Again from Lemma 10.13 we obtain

∇̃X1ξ
x0 = f∗(x0, x1)µx0∗X1 − f∗(x̄0, x1)µx̄0∗X1 ∈ f∗(x̄0, x1)E1(x̄0, x1) = f1∗Tx1M1.

Hence ξx0 is a parallel normal vector field along f1. For a fixed x1 ∈M1, set

L(x1) = span{ξx0(x1) : x0 ∈M0}.

Then, for any pair of points x1, x̃1 ∈ M1, parallel transport in the normal connection
of f1 along any curve joining x1 and x̃1 takes L(x1) onto L(x̃1). Thus such subspaces
define a parallel flat normal subbundle L of Nf1M1, and there exists a parallel vector
bundle isometry φ : M1 × Rk → L such that

φ−1
x1

(ξx0(x1)) = φ−1
x̃1

(ξx0(x̃1))

for all x0 ∈ M0 and x1, x̃1 ∈ M1. Therefore there is a well-defined map f0 : M0 → Rk

such that
φx1(f0(x0)) = ξx0(x1)
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for all x1 ∈M1, and hence f is given by (10.2). Moreover, from

f∗(x)τx0 ∗X0 = φx1(f0∗X0)

for all x = (x0, x1) ∈M and X0 ∈ Tx0M0, it follows that f0 is an isometric immersion.
Suppose now that (r = 1 and) ε ∈ {−1, 1}, and apply the preceding argument

to f , regarded as a map into Rm+1
µ ⊃ Qm

ε . Then f1(M1) ⊂ Qm
ε ⊂ Rm+1

µ and we may
assume that the vector subbundle L has the position vector of f1 in Rm+1

µ as a section.
We obtain a parallel vector bundle isometry φ : M1 × Rk+1

µ → L and an isometric

immersion f̃0 : M0 → Rk+1
µ such that

f(x0, x1) = f1(x1) + φx1(f̃0(x0))

for all x0 ∈M0 and x1 ∈M1. Let e1 ∈ Rk+1
µ be such that

φx1(e1) = f1(x1)

for all x1 ∈M1. Defining
f0(x0) = f̃0(x0) + e1

for all x0 ∈M0, we see that

f(x0, x1) = φx1(f0(x0)),

hence f0(M0) ⊂ Qk
ε ⊂ Rk+1

µ . It follows that f is the partial tube over f1 with fiber f0.

Suppose now that r is arbitrary. As before, fix x̄0 ∈ M0 and set f̃ = f ◦ µx̄0 ,
where µx̄0 is the inclusion of M̃ = Πr

a=1M
na
a into M given by (8.15). Then the metric

g̃ induced by f̃ is the product metric

g̃ = µ∗x̄0
g =

r∑
a=1

π̃∗aga(x̄0),

where π̃a : Πr
a=1M

na
a → Mna

a is the projection. On the other hand, the second funda-

mental form αf̃ of f̃ is given by

αf̃ (X, Y ) = αf (µx̄0∗X,µx̄0∗ Y ) + f∗ α
µx̄0 (X, Y ). (10.21)

By Proposition 10.1 , the product net E = (Ei)i=0,...,r of M is an orthogonal net such
that E⊥a is totally geodesic for 1 ≤ a ≤ r. In particular, this implies that

〈∇XbXa, X0〉 = 0

for all Xa ∈ Γ(Ea), Xb ∈ Γ(Eb), 1 ≤ a 6= b ≤ r, and X0 ∈ Γ(E0), and hence αµx̄0 is
adapted to the product net Ē = (Ēa)a=1,...,r of M̃ . Using this and the fact that αf is

adapted to E, it follows from (10.21) that αf̃ is adapted to Ē. Hence f̃ is an extrinsic
product of isometric immersions by Theorem 8.4, Corollary 8.6 and Corollary 8.8.
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Finally, we apply the case r = 1 just proved to f : M → Qm
ε , regarding M as the

product of M0 and M̃ . We conclude that there exist a parallel vector bundle isometry
φ : M̃ × Rk+|ε|

µ → L onto a flat parallel subbundle of Nf̃M̃ (with f̃ regarded as an

isometric immersion into Rm+|ε|
µ ), and an isometric immersion f0 : M0 → Ω(f̃ ;φ)∩Qk

ε ⊂
Rk+|ε|
µ such that f is the partial tube determined by (f0, f̃ , φ). �

Let g : Ln−ν → Qm
c be an isometric immersion that carries a parallel flat normal

subbundle V of rank ν. The n-dimensional submanifold parametrized, on the open
subset of regular points, in terms of the exponential map of Qm

c by

γ ∈ V 7→ expg(π(γ))(γ),

where π : V → Ln−ν is the projection, is called the generalized cylinder in Qm
c over g

determined by V. We leave to the reader to check that any such submanifold carries a
relative nullity distribution ∆ of rank ν, whose leaves are the fibers of V, and that the
conullity distribution ∆⊥ is integrable, its leaves being given by the parallel sections of
V. The following consequence of Theorem 10.14 shows that generalized cylinders are
the only submanifolds that have a relative nullity distribution with integrable conullity.

Proposition 10.15. Let f : M → Qm
ε , ε ∈ {−1, 0, 1}, be an isometric immersion

with constant index of relative nullity ν. Assume that the conullity distribution ∆⊥ is
integrable. Then f is locally (globally if M is simply connected and the leaves of the
relative nullity ∆ are complete) a generalized cylinder over an isometric immersion
f1 : Mn−ν

1 → Qm
ε .

Proof: Since ∆ is a totally geodesic distribution, by Theorem 10.3 there exists locally
(globally if M is simply connected and the leaves of ∆ are complete) a product repre-
sentation ψ : M0 ×M1 → M of the orthogonal net (∆,∆⊥) which is an isometry with
respect to a polar metric on M0 ×M1.

The second fundamental form of f ◦ ψ is clearly adapted to the product net
E = (E0, E1) of M0 ×M1, for E0 is the relative nullity distribution of f ◦ ψ. It follows
from Theorem 10.14 that there exists an isometric immersion f1 : Mn−ν

1 → Qm
ε , a

parallel vector bundle isometry φ : M1 × Rν+|ε|
µ → L̃, 2µ = 1 − ε, onto a flat parallel

subbundle of Nf1M1 (with f1 regarded as an isometric immersion into Rm+1
µ ⊃ Qm

ε

and the subbundle L̃ having the position vector as a section if ε ∈ {−1, 1}), and an

isometric immersion f0 : M0 → Rν+|ε|
µ (with f0(M0) ⊂ Ω0(f1;φ) if ε = 0 and f0(M0) ⊂

(e+Ω0(f1;φ))∩Qν
ε ⊂ Rν+1

µ if ε ∈ {−1, 1}, where φx1(e) = f1(x1) for all x1 ∈M1), such
that f ◦ ψ is the partial tube determined by (f0, f1, φ).

Since E0 is the relative nullity distribution of f ◦ψ, it follows that f0 must be an
inclusion of an open subset M0 of either Ω0(f1;φ) or e+Ω0(f1;φ), according to whether
ε = 0 or ε ∈ {−1, 1}, respectively. If V stands for the flat parallel normal subbundle
of Nf1M1 given by i∗V ⊕ span{f1} = L̃ if ε ∈ {−1, 1}, where i : Qν

ε → Rν+1
µ is the

inclusion, and V = L̃ if ε = 0, we conclude that f is locally (globally if M is simply
connected and the leaves of ∆ are complete) a generalized cylinder over f1 determined
by V. �
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10.3 Isometric immersions of warped products

The main result of this section is a decomposition theorem for isometric immer-
sions of warped product manifolds. We first introduce the general notion of a warped
product of immersions into space forms, extending the case of two factors discussed in
part (ii) of Examples 10.9 and in Section 10.2.2.

10.3.1 Warped products of immersions into Euclidean space

The general notion of a warped product of immersions into Euclidean space is
defined as follows. Start with an orthogonal decomposition

Rm = Πr
j=0Rmj ,

with Rm0 possibly trivial, and isometric immersions f̃a : Ma → Rma , 1 ≤ a ≤ r.
Assume that there exists 1 ≤ s ≤ r such that f̃a(Ma) ⊂ Sma−1 for 1 ≤ a ≤ s, so there
are isometric immersions fa : Ma → Sma−1 such that f̃a = ia ◦ fa, 1 ≤ a ≤ s, where
ia : Sma−1 → Rma is the inclusion. Set fa = f̃a and let ia : Rma → Rma be the identity
map for s+ 1 ≤ a ≤ r if s < r.

Now let f̃ : M̃ = Πr
a=1Ma → Rm be the extrinsic product of f1, . . . , fr given by

f̃(x1, . . . , xr) = (0, f̃1(x1), . . . , f̃r(xr))

for all x̃ = (x1, . . . , xr) ∈ M̃ . The subbundle L of Nf̃M̃ whose fiber at x̃ is

L(x̃) = Rm0 ⊕ span{f̃1(x1), . . . , f̃s(xs)}

is then parallel and flat, so there is a parallel vector bundle isometry φ : M̃ ×Rk → L,
where k = s+m0.

Let e1, . . . , es ∈ Rk be such that φx̃(ea) = f̃a(xa) for 1 ≤ a ≤ s and define

Ω0(f̃) = {Y ∈ Rk : 〈Y, ea〉 > 0 for all 1 ≤ a ≤ s}.

Given an isometric immersion f0 : M0 → Ω0(f̃) ⊂ Rk, the map f : M = Πr
i=0Mi → Rm

given by

f(x0, x1, . . . , xr) = f(x0, x̃) = (0, . . . , 0, f̃s+1(xs+1), . . . , f̃r(xr)) + φx̃(f0(x0)) (10.22)

is called the warped product of f0, f1, . . . , fr.

Proposition 10.16. The following assertions hold:

(i) The map f is an immersion whose induced metric g is the warped product of the
metrics g0, . . . , gr of M0, . . . ,Mr with warping functions ρa : M0 → R+ given by

ρa(x0) =

{
〈f0(x0), ea〉 if 1 ≤ a ≤ s

1 if s+ 1 ≤ a ≤ r.
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(ii) The normal space of f at x = (x0, x1, . . . , xr) = (x0, x̃) is

NfM(x) = ⊕ra=1ia∗NfaMa(xa)⊕ φx̃(Nf0M0(x0)) ⊂ Nf̃M̃(x̃).

(iii) The second fundamental form of f at x is given by

αf (τxa∗Xa, τ
x
a∗Ya) =

{
ρa(x0)(ia∗α

fa(Xa, Ya)− ga(Xa, Ya)φx̃(e
⊥
a )) if 1 ≤ a ≤ s

ia∗α
fa(Xa, Ya) if s+ 1 ≤ a ≤ r

(10.23)
for all Xa, Ya ∈ TxaMa, where e⊥a denotes the orthogonal projection of ea onto
Nf0M0(x0),

αf (τx0∗X0, τ
x
0∗Y0) = φx̃(α

f0(X0, Y0)) (10.24)

for all X0, Y0 ∈ Tx0M0, and

αf (τxi ∗Xi, τ
x
j∗Xj) = 0 (10.25)

for all Xi ∈ TxiMi and Xj ∈ TxjMj, 0 ≤ i 6= j ≤ r.

Proof: Given x̄ = (x̄0, x̄1, . . . , x̄r) = (x̄0, x̂), where x̂ = (x̄1, . . . , x̄r), we denote by
τ̂ x̄1 : M̃ → M the inclusion given by x̃ 7→ (x̄0, x̃). Notice that τ x̄a = τ̂ x̄1 ◦ τ̃ x̂a . From part
(iv) of Proposition 8.3 we obtain

Af̃φx̃(Y )τ̃
x̃
a∗ = −〈Y, ea〉τ̃ x̃a∗ (10.26)

for 1 ≤ a ≤ s, and

Af̃φx̃(Y )τ̃
x̃
a∗ = 0 (10.27)

for s+ 1 ≤ a ≤ r. It follows that Y ∈ Ω0(f̃) if and only if

Y −
s∑

a=1

ea ∈ Ω0(f̃ ;φ).

Define f̃0 : M0 → Rk by

f̃0 = f0 −
s∑

a=1

ea.

Then f̃0(M0) ⊂ Ω0(f̃ ;φ) whenever f0(M0) ⊂ Ω0(f̃), and

f(x0, x̃) = f̃(x̃) + φx̃(f̃0(x0))

for all x0 ∈ M0 and x̃ ∈ M̃ . Thus f is the partial tube determined by (f̃0, f̃ , φ). In
particular, f is an immersion.

By (10.26), for all x0 ∈M0 and x̃ ∈ M̃ the endomorphism

P (x0, x̃) = I − Af̃
φx̃(f̃0(x0))
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of Tx̃M̃ satisfies

P (x0, x̃)τ̃ x̃a∗ = (1 + 〈f̃0(x0), ea〉)τ̃ x̃a∗
= 〈f0(x0), ea〉τ̃ x̃a∗ (10.28)

if 1 ≤ a ≤ s, whereas
P (x0, x̃)τ̃ x̃a∗ = τ̃ x̃a∗ (10.29)

if s+ 1 ≤ a ≤ r by (10.27). Therefore, by (10.4) we have

f∗τ
x
a∗ = f∗τ̂

x
1∗τ̃

x̃
a∗

= f̃∗P (x0, x̃)τ̃ x̃a∗

= ρa(x0)f̃∗τ̃
x̃
a∗

= ρa(x0)f̃a∗ (10.30)

for all 1 ≤ a ≤ r. On the other hand,

f∗τ
x
0∗X0 = φx̃(f0∗X0) (10.31)

for all X0 ∈ Tx0M0.
Equations (10.30) and (10.31) imply that the normal space of f is as stated in

part (ii). The assertion in part (i) on the metric g induced by f can also be derived
from these equations as follows. We have

g(x)(X, Y ) = g(x)(
r∑
i=0

τxi ∗πi∗X,
r∑
j=0

τxj ∗πj∗Y )

= 〈f∗
r∑
i=0

τxi ∗πi∗X, f∗

r∑
j=0

τxj ∗πj∗Y 〉

= 〈φx̃(f0∗π0∗X0), φx̃(f0∗π0∗Y0)〉+
r∑

a=1

ρ2
a(x0)〈fa∗πa∗Xa, fa∗πa∗Ya〉

= g0(x0)(π0∗X0, π0∗Y0) +
r∑

a=1

ρ2
a(x0)ga(xa)(πa∗Xa, πa∗Ya)

= (π0
∗g0 +

r∑
a=1

(ρa ◦ π0)2πa
∗ga)(x)(X, Y )

for all x = (x0, x1, . . . , xr) ∈M and X, Y ∈ TxM .
We now compute the second fundamental form of f . From (10.9), (10.28) and

(10.29) we have

αf (τxa∗Xa, τ
x
a∗Ya) = αf (τ̂x1∗τ̃

x̃
a∗Xa, τ̂

x
1∗τ̃

x̃
a∗Ya)

= π(αf̃ (P (x0, x̃)τ̃ x̃a∗Xa, τ̃
x̃
a∗Ya))

= ρa(x0)π(αf̃ (τ̃ x̃a∗Xa, τ̃
x̃
a∗Ya)) (10.32)
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for all Xa, Ya ∈ TxaMa, where π denotes the orthogonal projection of Nf̃M̃(x̃) onto
NfM(x). On the other hand,

αf̃ (τ̃ x̃a∗Xa, τ̃
x̃
a∗Ya) = αf̃a(Xa, Ya)

for all Xa, Ya ∈ TxaMa by part (iv) of Proposition 8.3, and

αf̃a(Xa, Ya) = ia∗α
fa(Xa, Ya)− ga(Xa, Ya)f̃a(xa)

if 1 ≤ a ≤ s, whereas

αf̃a(Xa, Ya) = ia∗α
fa(Xa, Ya)

if s+ 1 ≤ a ≤ r. Thus

π(αf̃ (τ̃ x̃a∗Xa, τ̃
x̃
a∗Ya)) = ia∗α

fa(Xa, Ya)− ga(Xa, Ya)φx̃(e
⊥
a )

if 1 ≤ a ≤ s, and

π(αf̃ (τ̃ x̃a∗Xa, τ̃
x̃
a∗Ya)) = ia∗α

fa(Xa, Ya)

if s+ 1 ≤ a ≤ r. Substituting into (10.32) yields (10.23). Now

αf (τxa∗Xa, τ
x
b∗Xb) = αf (τ̂x1∗τ̃

x̃
a∗Xa, τ̂

x
1∗τ̃

x̃
b∗Xb)

= π(αf̃ (P τ̃ x̃a∗Xa, τ̃
x̃
b∗Xb))

= ρa(x0)π(αf̃ (τ̃ x̃a∗Xa, τ̃
x̃
b∗Xb))

= 0

for all Xa ∈ TxaMa and Xb ∈ TxbMb with 1 ≤ a 6= b ≤ r. Formula (10.25) then follows
from the preceding one and (10.10), whereas (10.24) is a consequence of (10.11). �

If all factors fa of the extrinsic product f̃ are identity maps, that is, if for all
1 ≤ a ≤ s (respectively, s + 1 ≤ a ≤ r) the immersion fa : Ma → Sma−1 (respectively,
fa : Ma → Rma) is the identity map of Sma−1 (respectively, Rma), then the map f
is called the multi-rotational submanifold determined by f̃ with f0 as profile. If, in
addition, also f0 : Ω0(f̃) → Ω0(f̃) is the identity map, then f is called the warped
product representation determined by f̃ .

Corollary 10.17. Let f̃ : Πr
a=1Na → Rm = Πr

j=0Rmj be an extrinsic product of identity
maps ida : Na → Na, 1 ≤ a ≤ r, where Na = Sma−1 for 1 ≤ a ≤ s ≤ r and Na = Rma

for s+ 1 ≤ a ≤ r. Then the warped product representation

ψ : Πr
j=0Nj → Rm

determined by f̃ , where N0 = Ω0(f̃) ⊂ Rk, k = s + m0, is an isometry onto Rm \
∪sa=1(Rma)⊥ with respect to a warped product metric on Πr

j=0Nj of the metrics on Nj,
0 ≤ j ≤ r, with warping functions ρa : N0 → R+ given by{

ρa(Y ) = 〈Y, ea〉 if 1 ≤ a ≤ s

1 if s+ 1 ≤ a ≤ r.
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For the extrinsic product f̃ defined in the beginning of this section, assume that
s = r, that is, there exist isometric immersions fa : Ma → Sma−1 such that f̃a = ia ◦ fa,
1 ≤ a ≤ r, where ia : Sma−1 → Rma is the inclusion. Suppose that f0 : M0 → Ω0(f̃)
takes values in Sk−1 ∩ Ω0(f̃) ⊂ Rk. Then the map (10.22), which in this case reduces
to

f(x0, x̃) = φx̃(f0(x0))

for all x̃ = (x1, . . . , xr) ∈ M̃ = Πr
a=1Ma, gives rise to an immersion

f : M = Πr
i=0Mi → Sm−1,

also called the warped product of f0, . . . , fr. Let i : Sm−1 → Rm and i0 : Sk−1 → Rk de-
note the umbilical inclusions. One has the following consequence of Proposition 10.16.

Corollary 10.18. All the assertions in Proposition 10.16 hold with NfM , Nf0M0, αf

and αf0 replaced by i∗NfM , i0∗Nf0M0, i∗α
f and i0∗α

f0, respectively.

Proof: We only give the proof of the formula for αf correspondent to (10.23), the proofs
of the other assertions being straightforward. Denote f̂ = i ◦ f and f̂0 = i0 ◦ f0. On
the one hand,

αf̂ (τxa∗Xa, τ
x
a∗Ya) = i∗α

f (τxa∗Xa, τ
x
a∗Ya)− g(τxa∗Xa, τ

x
a∗Ya)f̂

= i∗α
f (τxa∗Xa, τ

x
a∗Ya)− ρ2

a(x0)ga(Xa, Ya)φx̃(f0(x0)).

On the other hand, by (10.23) we have

αf̂ (τxa∗Xa, τ
x
a∗Ya) = ρa(x0)(ia∗α

fa(Xa, Ya)− ga(Xa, Ya)φx̃(e
⊥
a + 〈ea, f0(x0)〉f0(x0)),

bearing in mind that

Nf̂0
M0 = i0∗Nf0M0 ⊕ span{f0(x0)}.

Using that ρa(x0) = 〈ea, f0(x0)〉, it follows that

i∗α
f (τxa∗Xa, τ

x
a∗Ya) = ρa(x0)(ia∗α

fa(Xa, Ya)− ga(Xa, Ya)φx̃(e
⊥
a )),

and this completes the proof. �

As before, if in Corollary 10.18 all factors fa : Ma → Sma−1, 1 ≤ a ≤ r, of
the extrinsic product f̃ are identity maps ida : Sma−1 → Sma−1, then f is called the
multi-rotational submanifold determined by f̃ with f0 as profile. If, in addition, also
f0 : Ω0(f̃)∩Sk−1 → Ω0(f̃)∩Sk−1 is the identity map, then f is called the warped product
representation of Sm−1 determined by f̃ .

Corollary 10.19. Let f̃ : Πr
a=1Na → Sm−1 ⊂ Rm = Πr

j=0Rmj be an extrinsic product
of the identity maps ida : Na → Na of Na = Sma−1, 1 ≤ a ≤ r. Then the warped product
representation

ψ : Πr
j=0Nj → Sm−1

determined by f̃ , where N0 = Ω0(f̃) ∩ Sk−1 ⊂ Rk, k = r + m0, is an isometry onto
Sm−1 ∩ (Rm \ ∪ra=1(Rma)⊥) with respect to a warped product metric on Πr

j=0Nj of the
metrics on Nj, 0 ≤ j ≤ r, with warping functions ρa : N0 → R+, 1 ≤ a ≤ r, given by
ρa(Y ) = 〈Y, ea〉.
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10.3.2 Warped products of immersions into the hyperbolic
space

Warped products of immersions into the hyperbolic space are of three different
types, which are introduced next separately.

Consider first an orthogonal decomposition

Lm+1 = Lm1 × Πr+1
i=2Rmi (10.33)

with Rmr+1 possibly trivial, and isometric immersions

f1 : M1 → Hm1−1 and fa : Ma → Sma−1, 2 ≤ a ≤ r.

Denote by
i1 : Hm1−1 → Lm1 and ia : Sma−1 → Rma , 2 ≤ a ≤ r,

the umbilical inclusions and set f̃1 = i1 ◦ f1 and f̃a = ia ◦ fa, 2 ≤ a ≤ r.
Let f̃ : M̃ = Πr

a=1Ma → Lm+1 be given by

f̃(x̃) = (f̃1(x1), . . . , f̃r(xr), 0)

for all x̃ = (x1, . . . , xr) ∈ M̃ . Let L be the flat parallel vector subbundle of Nf̃M̃ whose
fiber at x̃ is the subspace of

Nf̃M̃(x̃) = Nf̃1
M1(x1)⊕ · · · ⊕Nf̃r

Mr(xr)⊕ Rmr+1

given by
L(x̃) = span{f̃1(x1), . . . , f̃r(xr)} ⊕ Rmr+1 .

Let φ : M̃ × Lk → L, k = r + mr+1, be a parallel vector bundle isometry, and let
e1, . . . , er ∈ Lk be such that e0

1 < 0 and

φx̃(ea) = f̃a(xa) for 1 ≤ a ≤ r.

Finally, define

Ω0(f̃) = {Y ∈ Lk : 〈Y, ea〉 > 0 for all 2 ≤ a ≤ r} (10.34)

and let f0 : M0 → Ω0(f̃) ∩Hk−1 ⊂ Lk be an isometric immersion. The map

f : Πr
i=0Mi = M0 × M̃ → Hm ⊂ Lm+1

defined by
f(x0, x1, . . . , xr) = f(x0, x̃) = φx̃(f0(x0))

is called the warped product (of hyperbolic type) of f0, f1, . . . , fr.

In a similar way one defines warped products of immersions of elliptic type.
Namely, start with an orthogonal decomposition

Lm+1 = Πr
a=1Rma × Lmr+1 (10.35)
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and isometric immersions fa : Ma → Sma−1, 1 ≤ a ≤ r. As before, denote by
ia : Sma−1 → Rma the umbilical inclusion and set f̃a = ia ◦ fa for 1 ≤ a ≤ r. De-
fine

f̃ : M̃ = Πr
a=1Ma → Hm ⊂ Lm+1

by
f̃(x̃) = (f̃1(x1), . . . , f̃r(xr), 0)

for all x̃ = (x1, . . . , xr) ∈ M̃ . Consider the flat parallel vector subbundle L of rank
k = r +mr+1 of Nf̃M̃ whose fiber at x̃ is

L(x̃) = span{f̃1(x1), . . . , f̃r(xr)} ⊕ Lmr+1 .

Let φ : M̃ × Lk → L be a parallel vector bundle isometry and let e1, . . . , er ∈ Lk be
such that

φx̃(ea) = f̃a(xa) for 1 ≤ a ≤ r.

Define
Ω0(f̃) = {Y ∈ Lk : 〈Y, ea〉 > 0 for all 1 ≤ a ≤ r} (10.36)

and let f0 : M0 → Ω0(f̃) ∩Hk−1 ⊂ Lk be an isometric immersion. The map

f : Πr
i=0Mi = M0 × M̃ → Hm ⊂ Lm+1

given by
f(x0, x1, . . . , xr) = f(x0, x̃) = φx̃(f0(x0))

is called the warped product (of elliptic type) of f0, f1, . . . , fr.

Finally we define warped products of parabolic type. Start with orthogonal de-
compositions

R`−1 = Πs
b=1Rmj , L`+1 = R`−1 ⊕ L2 and Lm+1 = L`+1 × Πr+1

a=s+1Rmi (10.37)

with Rmr+1 possibly trivial, and isometric immersions

fb : Mb → Rmb , 1 ≤ b ≤ s, and fa : Ma → Sma−1, s+ 1 ≤ a ≤ r,

if s < r. Denote f̃a = ia ◦ fa, s + 1 ≤ a ≤ r, where ia : Sma−1 → Rma is the umbilical
inclusion.

Let f̂ : M̂ = Πs
b=1Mb → R`−1 be the extrinsic product of f1, . . . , fs, given by

f̂(x̂) = (f1(x1), . . . , fs(xs))

for all x̂ = (x1, . . . , xs) ∈ M̂ , and define f̃ : M̃ = Πr
j=1Mj → Lm+1 by

f̃(x̃) = (Ψ(f̂(x̂)), f̃s+1(xs+1), . . . , f̃r(xr), 0)
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for all x̃ = (x1, . . . , xr) ∈ M̃ , where Ψ: R`−1 → V` ⊂ L`+1 is the isometric embedding
of R`−1 into V` ⊂ L`+1 = R`−1⊕L2 given by (10.15) in terms of a pseudo-orthonormal
basis v0, v1 of L2 with

v0
1 < 0, 〈v0, v0〉 = 0 = 〈v1, v1〉 and 〈v0, v1〉 = 1. (10.38)

Now consider the flat parallel vector subbundle L of rank k = mr+1 + r − s + 2
of Nf̃M̃ whose fiber at x̃ is the subspace of

Nf̃M̃(x̃) = Ψ∗Nf̂M̂(x̂)⊕NΨR`−1(f̂(x̂))⊕ra=s+1 Nf̃a
Ma(xa)⊕ Rmr+1

given by
L(x̃) = span{v1,Ψ(f̂(x̂)), f̃s+1(xs+1), . . . , f̃r(xr)} ⊕ Rmr+1 .

Write Lk = L2×Rk−2 = L2×Rr−s×Rmr+1 and let φ : M̃×Lk → L be a parallel vector
bundle isometry such that

φx̃(v0) = Ψ(f̂(x̂)), φx̃(v1) = v1 and φx̃(ea) = f̃a(xa), s+ 1 ≤ a ≤ r,

where es+1, . . . , er is an orthonormal basis of Rr−s.
Finally, define

Ω0(f̃) = {Y ∈ Lk : 〈Y, ea〉 > 0 for all s+ 1 ≤ a ≤ r} (10.39)

and let f0 : M0 → Ω0(f̃) ∩Hk−1 ⊂ Lk be an isometric immersion. Then the map

f : Πr
i=0Mi = M0 × M̃ → Hm ⊂ Lm+1

given by
f(x0, x1, . . . , xr) = f(x0, x̃) = φx̃(f0(x0))

is called the warped product (of parabolic type) of f0, f1, . . . , fs, fs+1, . . . , fr.

The proof of the next result is left to the reader.

Proposition 10.20. The following assertions hold:

(i) The map f is an immersion whose induced metric g is the warped product of the
metrics g0, . . . , gr of M0, . . . ,Mr with warping functions ρa : M0 → R+ given by

ρa(x0) = 〈f0(x0), ea〉, 1 ≤ a ≤ r,

in the hyperbolic and elliptic cases, and by

ρa(x0) =

{
〈f0(x0), v1〉 if 1 ≤ a ≤ s

〈f0(x0), ea〉 if s+ 1 ≤ a ≤ r

in the parabolic case.
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(ii) The normal space of f at x = (x0, x1, . . . , xr) = (x0, x̃) is given by

i∗NfM(x) = ⊕ra=1ia∗NfaMa(xa)⊕ φx̃(i0∗Nf0M0(x0)) ⊂ Nf̃M̃(x̃)

in the hyperbolic and elliptic cases, and by

i∗NfM(x) = Ψ∗ ⊕sb=1 NfbMb(xb)⊕ra=s+1 ia∗NfaMa(xa)⊕ φx̃(i0∗Nf0M0(x0))

in the parabolic case, where i0 : Hk−1 → Lk and i : Hm → Lm+1 are inclusions.

(iii) The second fundamental form of f at x is given by

i∗α
f (τxa∗Xa, τ

x
a∗Ya) = ρa(x0)(ia∗α

fa(Xa, Ya)− ga(Xa, Ya)φx̃(e
⊥
a ))

for all Xa, Ya ∈ TxaMa and 1 ≤ a ≤ r (respectively, s + 1 ≤ a ≤ r) in the
hyperbolic and elliptic cases (respectively, parabolic case), and by

i∗α
f (τxb∗Xb, τ

x
b∗Yb) = ρb(x0)(Ψ∗α

fb(Xb, Yb)− gb(Xb, Yb)φx̃(v
⊥
1 ))

for all Xb, Yb ∈ TxbMb and 1 ≤ b ≤ s in the parabolic case, where v⊥1 and e⊥a are
the orthogonal projections of v1 and ea onto i0∗Nf0M0(x0), respectively. Moreover,
in all cases we have

i∗α
f (τx0∗X0, τ

x
0∗Y0) = φx̃(i0∗α

f0(X0, Y0))

for all X0, Y0 ∈ Tx0M0, and

αf (τxi ∗Xi, τ
x
j∗Xj) = 0

for all Xi ∈ TxiMi and Xj ∈ TxjMj, 0 ≤ i 6= j ≤ r.

In the three types of warped products of immersions into the hyperbolic space
just described, if all factors f1, . . . , fr of the correspondent extrinsic product f̃ are
identity maps, then the warped product f of f0, f1, . . . , fr is called, as in the Euclidean
and spherical cases, the multi-rotational submanifold determined by f̃ with f0 as pro-
file. If, in addition, also f0 is the identity map, then f is called the warped product
representation determined by f̃ .

Therefore, in the hyperbolic case the extrinsic product f̃ reduces, in terms of an
orthogonal decomposition of Lm+1 as in (10.33), to the map

f̃ : Ñ = Hm1−1 × Πr
a=2Sma−1 → Hm ⊂ Lm+1

given by
f̃(x1, . . . , xr) = (i1(x1), . . . , ir(xr), 0),

where i1 : Hm1−1 → Lm1 and ia : Sma−1 → Rma , 2 ≤ a ≤ r, are umbilical inclusions.
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Let φ : Ñ × Lk → Nf̃Ñ , k = r +mr+1, be a parallel vector bundle isometry, and

let e1, . . . er ∈ Lk be an orthonormal set such that e0
1 < 0 and φx̃(ea) = ia(xa) for all

x̃ = (x1, . . . , xr) ∈ Ñ and 1 ≤ a ≤ r. Set

N0 = Ω0(f̃) ∩Hk−1,

with Ω0(f̃) given by (10.34). Then the map

f : N0 × Ñ → Hm ⊂ Lm+1

defined by
f(x0, x̃) = φx̃(i0(x0)),

where i0 : N0 → Lk is an umbilical inclusion, becomes an isometry of the warped
product manifold

(N0 ⊂ Hk−1)×σ1 Hm1−1 ×σ2 Sm2−1 × · · · ×σr Smr−1

with warping functions σa : N0 ⊂ Lk → R+ given by

σa(Y ) = 〈Y, ea〉, 1 ≤ a ≤ r,

onto the open dense subset

Hm ∩ (Lm+1 \ ∪ra=2(Rma)⊥).

It is called the warped product representation of hyperbolic type of Hm.

In the elliptic case, the extrinsic product f̃ reduces, in terms of an orthogonal
decomposition of Lm+1 as in (10.35), to the map

f̃ : Ñ = Πr
a=1Sma−1 → Hm ⊂ Lm+1

given by
f̃(x1, . . . , xr) = (i1(x1), . . . , ir(xr), 0)

where ia : Sma−1 → Rma , 1 ≤ a ≤ r, are umbilical inclusions.
Let φ : Ñ×Lk → Nf̃Ñ , k = r+mr+1, be a parallel vector bundle isometry, and let

e1, . . . , er ∈ Lk be an orthonormal set such that φx̃(ea) = ia(xa) for x̃ = (x1, . . . , xr) ∈
Ñ and 1 ≤ a ≤ r. Set

N0 = Ω0(f̃) ∩Hk−1,

with Ω0(f̃) given by (10.34). Then the map

f : N0 × Ñ → Hm ⊂ Lm+1,

defined by
f(x0, x̃) = φx̃(i0(x0)),
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where i0 : N0 → Lk is an umbilical inclusion, becomes an isometry of the warped
product manifold

(N0 ⊂ Hk−1)×σ1 Sm1−1 × · · · ×σr Smr−1

with warping functions σa : N0 ⊂ Lk → R+ given by

σa(Y ) = 〈Y, ea〉, 1 ≤ a ≤ r,

onto the open dense subset

Hm ∩ (Lm+1 \ ∪ra=1(Rma)⊥).

It is called the warped product representation of elliptic type of Hm.

Finally, in the parabolic case the extrinsic product f̃ reduces, in terms of the
orthogonal decompositions as in (10.37), to the map

f̃ : Ñ = Πs
b=1Rmb × Πr

a=s+1Sma−1 → Hm ⊂ Lm+1

given by
f̃(x1, . . . , xr) = (Ψ(x̂), is+1(xs+1), . . . , ir(xr))

where x̂ = (x1, . . . , xs) ∈ Πs
b=1Rmb = R`−1 and Ψ: R`−1 → L`+1 is the isometric

embedding of R`−1 into V` ⊂ L`+1 = R`−1 ⊕ L2 defined by (10.15) in terms of a
pseudo-orthonormal basis v0, v1 of L2 as in (10.38).

Write Lk = L2 × Rk−2 = L2 × Rr−s × Rmr+1 and let φ : Ñ × Lk → Nf̃Ñ , k =
mr+1 + r − s+ 2, be a parallel vector bundle isometry such that

φx̃(v0) = Ψ(x̂), φx̃(v1) = v1 and φx̃(ea) = f̃a(xa), s+ 1 ≤ a ≤ r,

for all x̃ = (x1, . . . , xr) ∈ Ñ , where es+1, . . . , er is an orthonormal basis of Rr−s.
Let Ω0(f̃) be given as in (10.39) and set

N0 = Ω0(f̃) ∩Hk−1.

Then the map
f : N0 × Ñ → Hm ⊂ Lm+1

given by
f(x0, x̃) = φx̃(i0(x0))

where i0 : N0 → Lk is an umbilical inclusion, becomes an isometry of the warped
product manifold

(N0 ⊂ Hk−1)×σ1 Rm1 × · · · ×σs Rms ×σs+1 Sms+1−1 ×σr Smr−1,

with warping functions σa : N0 ⊂ Lk → R+ given by

σb(Y ) = 〈Y, v1, 〉, 1 ≤ b ≤ s, and σa(Y ) = 〈Y, ea, 〉, s+ 1 ≤ a ≤ r,

onto the open dense subset

Hm ∩ (Lm+1 \ ∪ra=s+1(Rma)⊥).

It is called the warped product representation of parabolic type of Hm.
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10.3.3 Nölker’s theorem

We are now in a position to state and prove a decomposition theorem for isometric
immersions of warped product manifolds into space forms.

Theorem 10.21. Any isometric immersion f : M → Qm
ε of a warped product manifold

whose second fundamental form is adapted to the product net of M is a warped product
of immersions.

Proof: We give the proof for isometric immersions into Euclidean space, the other cases
being similar. First we assume that M = M0 ×M1 is a product manifold with only
two factors, endowed with a warped product metric

g = π∗0g0 + (ρ ◦ π0)2π∗1g1

where πi : M → Mi, 0 ≤ i ≤ 1, are the projections, g0 and g1 are the metrics on M0

and M1, respectively, and ρ ∈ C∞(M0) is the warping function.
If M is a Riemannian product, that is, if the warping function ρ is constant, then

f is an extrinsic product of immersions by Theorem 8.4. Thus, from now on we assume
that the warping function ρ is not constant.

For a fixed x̄ = (x̄0, x̄1) ∈ M , let f1 : M1 → Rm be given by f1 = f ◦ τ x̄1 . Notice
that the metric induced by f1 is g1(x̄0) = ρ2(x̄0)g1, where g1 is the metric on M1. Thus,
replacing g1 by ρ2(x̄0)g1 and the warping function ρ by ρ/ρ(x̄0), we may assume that
f1 is an isometric immersion.

By Theorem 10.14, there exist a parallel vector bundle isometry φ : M1×Rs → L

onto a flat parallel subbundle of Nf1M1 and an isometric immersion

f0 : M0 → Ω0(f1;φ) ⊂ Rs

such that f is the partial tube determined by (f0, f1, φ). In view of Remark 10.7, we
may also assume that f0 is substantial in Rs.

By Corollary 10.8, the metric induced by f is given by (10.12), where g0 is the
metric on M0 and, for all x = (x0, x1) ∈M , the metric g1(x0) on M1 is given by

g1(x0)(X1, Y1) = g1(P 2X1, Y1)

for all X1, Y1 ∈ Tx1M1. Here P = P (x0, x1) is the endomorphism of Tx1M1 given by
(10.5). Therefore we must have

ρ2(x0)g1(X1, Y1) = g1(x0)(X1, Y1)

= g1(P 2X1, Y1)

for all for all (x0, x1) ∈M and all X1, Y1 ∈ Tx1M1. Hence

(I − Af1

φx1 (f0(x0)))
2 = ρ2(x0)I (10.40)

for all (x0, x1) ∈ M . Notice that if L ⊂ N⊥1 (f1) then the preceding equation would
imply ρ to be identically one, in contradiction with our assumption.
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We claim that L is an umbilical subbundle of Nf1M1. Let η1, . . . , ηk ∈ Γ(L) be
the distinct principal normal vector fields of f1 with respect to L (see Exercise 1.35).
Thus there exists an orthogonal decomposition TM1 = ⊕ki=1Ei such that

Af1

ζ |Ei = 〈ζ, ηi〉I

for all ζ ∈ Γ(L). We must show that k = 1.
Write ηi(x1) = φx1(Vi(x1)) for all x1 ∈M1. Then (10.40) can be written as

〈Vi(x1), f0(x0)〉 = 1 + ρ(x0)

for all (x0, x1) ∈M and 1 ≤ i ≤ k. If k ≥ 2, then

〈Vi(x1)− Vj(x1), f0(x0)〉 = 0

for all (x0, x1) ∈M and 1 ≤ i 6= j ≤ k, which contradicts the fact that f0 is substantial
in Rs. Thus k = 1 and our claim is proved.

If M1 has dimension at least two, Exercise 2.14 implies that f1(M1) is contained
in an (m− s)-dimensional sphere Sm−s, 1 ≤ s ≤ m− 1, which we can assume to be of
unit radius and centered at the origin of a subspace Rm−s+1 ⊂ Rm, and that L is the
vector subbundle of Nf1M1 whose fiber at x1 ∈ M1 is spanned by the position vector
f1(x1) and the orthogonal complement Rs−1 of Rm−s+1.

Now assume that f1 : M1 → Rm is a unit-speed curve γ : I → Rm. We claim that
γ(I) is contained in a sphere of Rm, which we can assume to be a hypersphere Sm−s of
unit radius centered at the origin of a subspace Rm−s+1 ⊂ Rm, 1 ≤ s ≤ m−1, and that
the fiber at t ∈ I = M1 of the vector subbundle L of NγI is spanned by the position
vector γ(t) in Rm−s+1 and the orthogonal complement Rs−1 of Rm−s+1 in Rm.

Eq. (10.40) implies that the function ρ : M → R+, given by

ρ(x0, t) = 1− 〈γ′′(t), φt(f0(x0))〉, (10.41)

does not depend on t. Differentiating with respect to t and using that f0 is substantial
yields 〈γ′′′(t), ξ〉 = 0 for all t ∈ I and for all ξ ∈ L(t). Observe also that one cannot
have γ′′(t) ∈ L⊥(t) at any t ∈ I, for this and (10.41) would imply ρ to be identically
one. The claim then follows from Exercise 2.8. In either case we conclude that f is the
warped product of f0 and f1.

Suppose now that M = Πr
i=0Mi is an arbitrary product manifold endowed with

a warped product metric

g = π∗0g0 +
r∑

a=1

(ρa ◦ π0)2π∗aga

for some ρa ∈ C∞(M0) with ρa > 0, 1 ≤ a ≤ r. Assume that there exists 1 ≤ k ≤ r
such that ρa is identically one for k + 1 ≤ a ≤ r. Therefore the metric g is a polar
metric as in (10.1), with

ga(x0) = ρ2
a(x0)ga (10.42)
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for all x0 ∈M0, 1 ≤ a ≤ r. For a fixed x̄ = (x̄0, . . . , x̄r) ∈M , let

f̃ : M̃ = Πr
a=1Ma → Rm

be given by
f̃ = f ◦ τ̂ x̄1 ,

where τ̂ x̄1 : M̃ → M is given by τ̂ x̄1 (x̃) = (x0, x̃) for all x̃ = (x1, . . . , xr) ∈ M̃ . Then the
metric induced by f̃ is

τ̂ x̄1
∗g =

r∑
a=1

ρ2
a(x̄0)π̃∗aga.

Hence we may replace each ga by ρ2
a(x̄0)ga, and each warping function ρa by ρa/ρa(x̄0),

so as to make f̃ into an isometric immersion with respect to the product metric of
g1, . . . , gr on M̃ .

By Theorem 8.4, the isometric immersion f̃ : M̃ → Rm is an extrinsic product
of isometric immersions fa : Ma → Rma , 1 ≤ a ≤ r, with respect to an orthogonal
decomposition

Rm = Πr
j=0Rmj ,

with Rm0 possibly trivial. Thus there exist v0 ∈ Rm0 (in case Rm0 is nontrivial) and
isometric immersions fi : Mi → Rmi , 1 ≤ i ≤ r, such that

f̃(x1, . . . , xr) = (v0, f1(x1), . . . , fr(xr))

for all (x1, . . . , xr) ∈ M̃ . Moreover, by Theorem 10.14 there exist a parallel vector
bundle isometry φ : M̃ × Rs → L onto a flat parallel subbundle L of Nf̃M̃ , and a

substantial isometric immersion f̃0 : M0 → Ω0(f̃ ;φ) ⊂ Rs such that f : M → Rm is the
partial tube determined by (f̃0, f̃ , φ).

As in the proof of Proposition 10.12, let La be the projection of L onto NfaMa

and let φa : Ma ×Rna → La, 1 ≤ a ≤ r, be a parallel vector bundle isometry so that φ
is the restriction of the parallel vector bundle isometry

φ̃ : Rs = Πr
a=1Rna → Πr

a=1La

defined by (10.17). Then the metric ga(x0) is given by (10.20). Comparing with (10.42)
yields

(I − Afaφaxa (π̃a(f0(x0))))
2 = ρ2

a(x0)I.

Arguing as in the preceding case, we see that La is an umbilical subbundle of NfaMa

for 1 ≤ a ≤ k and belongs to N⊥1 (fa) for k + 1 ≤ a ≤ r. The proof is now completed
as before. �

Theorem 10.21 implies, in particular, that any isometry of a warped product
manifold onto an open subset of Qn

ε , ε ∈ {−1, 0, 1}, is essentially the restriction of a
warped product representation of Qn

ε determined by an extrinsic product of identity
maps.
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Corollary 10.22. Let f : M → U ⊂ Qn
ε , ε ∈ {−1, 0, 1}, be an isometry of a warped

product manifold M = M0 ×ρ1 M1 × · · · ×ρr Mr onto an open subset U ⊂ Qn
ε . Then

there exists a warped product representation

ψ : N = N0 ×σ1 N1 × · · · ×σr Nr → Qn
ε

either as in Corollary 10.17, Corollary 10.19 or of one of the three types described after
Proposition 10.20, depending on whether ε = 0, 1 or −1, respectively, and isometries
fj : Mj ⊂ Uj onto open subsets Uj ⊂ Nj, 0 ≤ j ≤ r, such that U ⊂ ψ(N), ρa = σa ◦ f0

for 1 ≤ a ≤ r and
f = ψ ◦ (f0 × · · · × fr).

It is convenient to restate Theorem 10.21 in terms of the warped product repre-
sentations of Qm

ε .

Corollary 10.23. Let f : M → Qm
ε , ε ∈ {−1, 0, 1}, be an isometric immersion of a

warped product manifold M = M0×ρ1 M1×· · ·×ρrMr whose second fundamental form
is adapted to the product net of M . Then there exist a warped product representation

ψ : N0 ×σ1 N1 × · · · ×σr Nr → Qm
ε

either as in Corollary 10.17, Corollary 10.19 or of one of the three types described after
Proposition 10.20, depending on whether ε = 0, 1 or −1, respectively, and isometric
immersions fj : Mj → Nj, 0 ≤ j ≤ r, such that ρa = σa ◦ f0 for 1 ≤ a ≤ r and

f = ψ ◦ (f0 × · · · × fr).

10.4 Immersions of warped products and s-nullities

In this section Lemma 8.15 is applied to isometric immersions of warped product
manifolds.

Theorem 10.24. Let f : Mn → Qn+p
c be an isometric immersion of a warped product

manifold whose warping functions are pairwise linearly independent on any open subset.
If 2p < n and at any point the s-nullities satisfy νs < n− 2s for 1 ≤ s ≤ p, then f is
a warped product of isometric immersions.

Proof: We use the fact that the curvature tensor R of a warped product metric

g = π∗0g0 +
r∑

a=1

(ρa ◦ π0)2π∗aga

on the product manifold Mn = Πr
i=0Mi, with smooth warping functions ρa : M0 → R+,

1 ≤ a ≤ r, is related to the curvature tensor R̃ of the product metric g̃ =
∑r

i=0 π
∗
i gi by

R(X, Y ) =R̃(X, Y )−
r∑

a,b=1

〈ηa, ηb〉Xa ∧ Y b (10.43)

+
r∑

a=1

[(∇X0ηa − 〈ηa, X〉ηa) ∧ Y a +Xa ∧ (∇Y 0ηa − 〈ηa, Y 〉ηa)]
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for all x ∈Mn and X, Y ∈ TxM , where

ηa = −grad log(ρa ◦ π0), 1 ≤ a ≤ r,

and X =
∑r

i=0X
i is the orthogonal decomposition of X ∈ TxM with respect to the

product net E = (Ei)i=0,...,r of Mn at x (see Exercise 10.8).
It follows from (10.43) that

R(X, Y, Z, U) = R(X, Y, U, V ) = R(X,U, V,W ) = 0

for all X, Y, Z ∈ Ea(x) and U, V,W ∈ E⊥a (x), 1 ≤ a ≤ r. Hence Lemma 8.15 applies
to the second fundamental form α of f at any point x ∈ Mn, with respect to the
orthogonal splitting

TxM = Ea(x)⊕ E⊥a (x), 1 ≤ a ≤ r.

Therefore α is adapted to E, and the statement follows from Theorem 10.21. �

Remark 10.25. The assumption in Theorem 10.24 that the warping functions be
pairwise linearly independent should not be seen as a restriction. In fact, if two warping
functions are linearly dependent, one can scale the metric of one of the factors by a
constant in such a way that the two warping functions coincide, and then replace both
factors by their product.

The next result restricts the codimension to the number of factors and assumes
a curvature condition.

Theorem 10.26. Let f : Mn → Qn+r+1
c , 2r + 2 < n, be an isometric immersion of a

warped product manifold

Mn = Mn0
0 ×ρ1 M

n1
1 × · · · ×ρr Mnr

r .

Assume that no factor of Mn has an open subset where the sectional curvature is
constant, and that the warping functions are not constant on any open subset of M0.
If at any point the s-nullities satisfy νs < n− 2s for 1 ≤ s ≤ r+ 1, then f is a warped
product of hypersurfaces.

Proof: If the number k of pairwise linearly independent warping functions is k = r,
the result follows from Theorem 10.24 and the curvature assumption, which forces the
immersions of all factors to have positive codimension. Thus we may assume that k < r
and let ρi1 , . . . , ρik , 1 ≤ i1 < · · · < ik ≤ r, be the pairwise linearly independent warping
functions. Hence we may view Mn as a warped product

Mn = M `0
0 ×ρi1 M̂

`1
1 × · · · ×ρik M̂

`k
k (10.44)

where M `0
0 = Mn0

0 and the factors M̂ `a
a , 1 ≤ a ≤ k, are the Riemannian products

M̂ `a
a = Πi∈IaM

ni
i , 1 ≤ a ≤ k,



308 10.4. Immersions of warped products and s-nullities

and Ia denotes the set of all indices 1 ≤ b ≤ r that correspond to factors with the same
associated warping function ρia after homotheties.

We apply Theorem 10.24 to Mn with the warped product structure (10.44). By
Corollary 10.23, there exist a warped product representation

ψ : N = Nm0
0 ×σ1 N

m1
1 × · · · ×σr N

mk
k → Qn+k+1

c

and isometric immersions f̂i : M̂
`i
i → Nmi

i , 0 ≤ i ≤ k, such that

f = ψ ◦ (f̂0 × f̂1 × · · · × f̂k). (10.45)

We show next that at any point of M̂ `a
a , 1 ≤ a ≤ k, the s-nullities of f̂a for

1 ≤ s ≤ cod(f̂a) = ma − `a satisfy

ν f̂as < `a − 2s. (10.46)

In view of (10.45) we have

αf = ψ∗α
f̂ (10.47)

where f̂ = f̂0 × · · · × f̂k. On the other hand, by Exercise 10.9 we have

π̄0∗α
f̂ (X, Y ) = αf̂0(π0∗X, π0∗Y )

−
∑k

a=1 ρa(x0)〈πa∗X, πa∗Y 〉((gradσa)(f0(x0))− f0∗grad ρa(x0))
(10.48)

and
π̄a∗α

f̂ (X, Y ) = αf̂a(πa∗X, πa∗Y ), 1 ≤ a ≤ k, (10.49)

for all x ∈ M and X, Y ∈ TxM , where πi : M → Mi and π̄i : N → Ni denote the
canonical projections, 0 ≤ i ≤ k.

We argue by contradiction. Assume that there exist 1 ≤ a0 ≤ k, x̄a0 ∈ M̂
`a0
a0 and

1 ≤ s0 ≤ cod(f̂a0) such that ν
f̂a0
s0 ≥ `a0 − 2s0 at x̄a0 . Then there exists a subspace

U s0
a0
⊂ Nf̂a0

M̂a0(x̄a0) such that

dim Wa0 = {Y ∈ Tx̄a0
Ma0 : α

f̂a0

U
s0
a0

(Y, Z) = 0 for all Z ∈ Tx̄a0
Ma0} ≥ `a0 − 2s0.

Let E = (Ei)i=0,...,k be the product net of Mn with respect to its decomposition (10.44)
and let Ē = (Ēi)i=0,...,k be the product net of N . Given any x ∈ π−1

a0
(x̄a0), let U s0 ⊂

Ēa0(f̂(x)) ⊂ Tf̂(x)N be such that π̄a0∗U
s0 = U s0

a0
.

By (10.48) and (10.49) we have

π̄a0∗α
f̂
Us0 (Y, Z) = αf̂a(πa0∗Y, πa0∗Z)

and
π̄a∗α

f̂
Us0 (Y, Z) = 0
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for all Y, Z ∈ Tx̄a0
M and 1 ≤ a 6= a0 ≤ k. Thus

αf̂Us0 (Y, Z) = 0

if Y ∈ Wa0 ⊕a6=a0 Ea(x) and Z ∈ TxM , and hence

νs0(f̂) ≥ `a0 − 2s0 +
k∑

a6=a0

`a = n− 2s0.

In view of (10.47), this is a contradiction and proves (10.46).
Assume that |Ia| > 1 for some 1 ≤ a ≤ k. From (10.46) and Theorem 8.14 it

follows that f̂a is an extrinsic product of isometric immersions ga1 , . . . , g
a
|Ia|. By the

curvature assumption, cod(gai ) ≥ 1 for all i ∈ Ia. Therefore

cod(f̂a) ≥ |Ia| if Nma
a = Rma and cod(f̂a) > |Ia| otherwise.

The curvature assumption implies that cod(f̂i) ≥ 1 if either i = 0 or |Ii| = 1. Hence

r + 1 =
k∑
i=0

cod(f̂i) ≥
k∑
i=0

|Ii| = r + 1.

Therefore cod(f̂i) = |Ii| for all 0 ≤ i ≤ k. In particular, if |Ii| > 1 then f̂i is a
product of Euclidean hypersurfaces. We conclude that each factor in the initial product
decomposition of Mn must be a hypersurface. �

In the case of warped products Np+n = Lp ×ρ Mn with only two factors, under
the assumptions that n ≥ 3 and that Np+n is free of points with constant sectional
curvature c, a complete description of their isometric immersions into Qp+n+k

c with
codimension k ≤ 2 is given below without proof. Notice that all the assumptions in
this result are of purely intrinsic nature.

Theorem 10.27. Assume that a warped product Np+n = Lp ×ρ Mn with n ≥ 3 is
free of points with constant sectional curvature c. Then, for any isometric immersion
f : Np+n → Qp+n+2

c , there exists an open dense subset of Np+n each of whose points
lies in an open product neighborhood U = Lp0 ×Mn

0 ⊂ Lp ×Mn such that one of the
following possibilities holds:

(i) f |U is a warped product of isometric immersions with respect to a warped product
representation ψ : V p+k1×σQn+k2

c̃ → Qp+n+2
c , k1 + k2 = 2.

Lp0 ×σ◦h1 M
n
0

h1

- Qp+n+2
c

h2
�

f |U = Ψ ◦ (h1 × h2)

6 6

V p+k1 ×σ Qn+k2
c̃ PPPPPPPPPPPPPq

ψ
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(ii) f |U is a composition H ◦ g of isometric immersions where g is a warped product
of isometric immersions g = ψ ◦ (h1 × h2) determined by a warped product rep-
resentation ψ : V p+k1×σQn+k2

c̃ → Qp+n+1
c with k1 +k2 = 1, and H : W → Qp+n+2

c

is an isometric immersion of an open subset W ⊃ g(U) of Qp+n+1
c .

Lp0 ×σ◦h1 M
n
0

h1

- Qp+n+2
c

h2 �

f |U = H ◦ ψ ◦ (h1 × h2)

6 6

V p+k1 ×σ Qn+k2
c̃ -

ψ
W ⊂ Qp+n+1

c

H
?

(iii) There exist open intervals I, J ⊂ R such that Lp0, Mn
0 , U split as Lp0 = Lp−1

0 ×ρ1 I,
Mn

0 = J ×ρ2 M
n−1
0 and

U = Lp−1
0 ×ρ1 ((I ×ρ3 J)×ρ̄Mn−1

0 ),

where ρ1 ∈ C∞(Lp−1
0 ), ρ2 ∈ C∞(J), ρ3 ∈ C∞(I) and ρ̄ ∈ C∞(I × J) satisfy

ρ = (ρ1 ◦ πLp−1
0

)(ρ3 ◦ πI) and ρ̄ = (ρ3 ◦ πI)(ρ2 ◦ πJ),

and there exist warped product representations

ψ1 : V p−1 ×σ1 Qn+3
c̃ → Qp+n+2

c and ψ2 : W 4 ×σ2 Qn−1
c̄ → Qn+3

c̃ ,

an isometric immersion g : I ×ρ3 J → W 4 and isometries i1 : Lp−1
0 → W p−1 ⊂

V p−1 ⊂ Qp−1
c and i2 : Mn−1 → W n−1 ⊂ Qn−1

c̄ onto open subsets such that

f |U = ψ1 ◦ (i1 × (ψ2 ◦ (g × i2))), ρ̄ = σ2 ◦ g and ρ1 = σ1 ◦ i1.

Moreover, Lp0 has constant sectional curvature c if p ≥ 2.

W 4 ×σ2 Qn−1
c̄

i1

i2

g

∪
W n−1

ψ2

f |U = ψ1 ◦ (i1 × (ψ2 ◦ (g × i2)))

6

6

6

�
�
�
�
�
�
�
�
�
�
��

V p−1 ×σ1 Qn+3
c̃

∪
W p−1

- Qp+n+2
c

Lp−1
0 ×ρ1=σ1◦i1((I×ρ3J)×ρ̄=σ2◦gM

n−1
0 ) = U = Lp0 ×ρMn

0

ψ1

�

6
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Cases (i) to (iii) are disjoint. Moreover, in case (iii) the isometric immersion
g : I ×ρ3 J → W 4 is neither a warped product g = ψ3 ◦ (α × β), where ψ3 : V 1+k1 ×σ3

Q1+k2
ĉ → Q4

c̃ is a warped product representation with k1+k2 = 2 and α : I → V 1+k1 and
β : J → Q1+k2

ĉ are unit-speed curves with ρ3 = σ3 ◦α, nor a composition H ◦G of such
a warped product G = ψ3 ◦ (α × β), determined by a warped product representation
ψ3 : V 1+k1 ×σ3 Q

1+k2
ĉ → Q3

c̃ as before with k1 + k2 = 1, with an isometric immersion H
of an open subset W ⊃ G(I × J) into Q4

c̃ .

10.5 Notes

The de Rham-type characterization in Theorem 10.4 of warped product manifolds
is due to Hiepko [214]. Polar metrics were defined by Tojeiro [331], where Theorem 10.3
was obtained.

Partial tubes were introduced by Carter-West [72]. In fact, the definition of
partial tube in [72] is more general than the one considered here. Given a submanifold
f : Mn → Rm, the partial tube over f with a smooth submanifold S ⊂ Rk as fiber
was defined in [72] as follows. Let B(f) be a smooth subbundle of the normal bundle
NfM of f , with type fiber S, which is invariant under parallel transport along any
curve in Mn. Equivalently, the fiber S of B(f) at any point is a union of orbits, at
that point, of the normal holonomy group of f , that is, the holonomy group of the
normal bundle of f . It is also assumed that no point of B(f) is a critical point of
the endpoint map η : NfM → Rm given by η(x, ξ) = f(x) + ξ. The restriction of η
to B(f) is then the partial tube over f with S as fiber. The definition considered
here corresponds to the case in which each point of S is itself an orbit of the normal
holonomy group of f . The general definition includes the important special case of a
holonomy tube, which is a partial tube whose fiber at any point is a single orbit of the
normal holonomy group of f at that point. For an interesting application of this notion
for the classification of submanifolds with constant principal curvatures, among other
applications, see Heintze-Olmos-Thorbergsson [215] or the book [34]. See also [71] for
further applications of partial tubes.

The decomposition Theorem 10.14 for isometric immersions of product manifolds
endowed with polar metrics was proved by Tojeiro [331]. The notion of warped product
of immersions, as well as the decomposition Theorem 10.21 for isometric immersions
of warped product manifolds into space forms, is due to Nölker [267].

Theorem 10.27 has been taken from Dajczer-Tojeiro [144]. The sufficient condi-
tions in Theorems 10.24 and 10.26 for the second fundamental form of an isometric
immersion of a warped product to be adapted to its product structure in terms of the
s-nullities were obtained by Dajczer-Vlachos [151].

A conformal version of 10.21, which also extends Theorem 9.26, was obtained
by Tojeiro [334]. The result in Exercise 10.3 is due to do Carmo-Dajczer [56], where
rotation hypersurfaces in the sphere and in the hyperbolic space were first studied,
whereas those in Exercises 10.6 and 10.7 have been obtained by Chen [83].
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10.6 Exercises

Exercise 10.1. (a) Show that any rotation hypersurface in Rn+1 can be locally
parametrized by

f(t1, . . . , tn−1, s) = (x1(s)ϕ1, . . . , x1(s)ϕn, xn+1(s))

where ϕ(t1, . . . , tn−1) = (ϕ1, . . . , ϕn) is a parametrization of the unit sphere in Rn and
x(s) = (x1(s), xn+1(s)), x1 > 0, is a parametrization by arc-length of the profile curve.

(b) Show that a rotation hypersurface in Sn+1 can be locally parametrized by

f(t1, . . . , tn−1, s) = (x1(s)ϕ1, . . . , x1(s)ϕn, xn+1(s), xn+2(s))

where ϕ(t1, . . . , tn−1) = (ϕ1, . . . , ϕn) is a parametrization of the unit sphere in Rn and
x(s) = (x1(s), xn+1(s), xn+2(s)), x1 > 0, is a parametrization by arc-length of the profile
curve in S2 ⊂ R3 = span{e1, en+1, en+2}.
(c) (i) Show that a rotation hypersurface in Hn+1 of spherical (respectively, hyperbolic)
type can be locally parametrized by

f(t1, . . . , tn−1, s) = (x1(s)ϕ1, . . . , x1(s)ϕn, xn+1(s), xn+2(s))

where e1, . . . , en+2 is an orthonormal basis of Ln+2 such that en+2 (respectively, e1) is
time-like, ϕ(t1, . . . , tn−1) = (ϕ1, . . . , ϕn) is a parametrization of the unit sphere in Rn =
span{e1, . . . , en} (respectively, the “unit” hyperbolic space of Ln = span{e1, . . . , en})
and x(s) = (x1(s), xn+1(s), xn+2(s)), x1 > 0, is a parametrization by arc-length of the
profile curve in S2 ⊂ R3 = span{e1, en+1, en+2} (respectively, H2 ⊂ L3 = span{e1, en+1, en+2}).
(ii) Show that a rotation hypersurface in Hn+1 of parabolic type can be parametrized
by

f(t2, . . . , tn, s) = x1(s)Ψ(t2, . . . , tn) + xn+1(s)en+1 + xn+2(s)en+2 (10.50)

where e1, . . . , en+2 is a pseudo-orthonormal basis of Ln+2 such that

〈e1, e1〉 = 0 = 〈en+1, en+1〉, 〈e1, en+1〉 = 1,

〈ek, ej〉 = δkj, k = 1, . . . , n+ 2, j = 2, . . . , n+ 2, j 6= n+ 1,

Ψ(t2, . . . , tn) = e1 +
n∑
i=2

tiei −
1

2

n∑
i=2

t2i en+1

and x(s) = (x1(s), xn+1(s), xn+2(s)), x1 > 0, is a parametrization by arc-length of the
profile curve in H2 ⊂ L3 = span{e1, en+1, en+2}. Use that

2x1xn+1 + x2
n+2 = −1

to show that (10.50) can also be written as

f(t2, . . . , tn, s) = (x1(s), x1(s)t2, . . . , x1(s)tn,−
1 + x2

n+2(s) + x2
1(s)

∑n
i=2 t

2
i

2x1(s)
, xn+2(s))
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Exercise 10.2. Let f : Mn
δ → Qn+1

c be a rotation hypersurface, where δ is either 1, 0
or −1 if c < 0, depending on whether f is of spherical, parabolic or hyperbolic type,
respectively, and δ = 1 if c ≥ 0. Show that the principal curvatures of f are given by

λ = −
√
δ − cx2

1 − ẋ2
1

x1

and µ =
ẍ1 + cx1√
δ − cx2

1 − ẋ2
1

with λ corresponding to all of the ti-coordinate curves and µ to the s-coordinate curve.

Exercise 10.3. Let f : Mn → Qn+1
c , n ≥ 3, be a hypersurface. Assume that the

principal curvatures k1, . . . , kn of f satisfy

k1 = · · · = kn−1 = λ and kn = µ = µ(λ) 6= λ.

Show that f(M) is an open subset of a rotation hypersurface.

Hint: Use Exercise 1.18 and the assumption that µ = µ(λ) to show that the one-
dimensional distribution Eµ = ker(µI − A), where A is the shape operator of f , is
totally geodesic. Use also part (ii) of Proposition 1.22 to show that Eλ = ker(λI −A)
is a spherical distribution, and conclude from Theorem 10.4 that Mn is locally a warped
product I ×ρ Qn−1

c̃ . Then use Theorem 10.21.

Exercise 10.4. Let f : Mn → Rm be an isometric immersion of a Riemannian mani-
fold that carries an orthogonal net E = (E0, E1) with E0 totally geodesic. Assume that
the second fundamental form of f is adapted to E.

(i) Show that there exist locally (globally, if Mn is simply connected and the leaves of
E0 are complete) a product representation ψ : M0×M1 →M of E, an immersion
f1 : M1 → Rm, a parallel vector bundle isometry φ : M1 × Rs → L onto a flat
parallel subbundle of Nf1M1 and an immersion f0 : M0 → Ω(f1;φ) ⊂ Rs such
that f ◦ ψ is the partial tube determined by (f0, f1, φ).

(ii) If, in addition, the distribution E1 is spherical, show that f is a warped product
of immersions f1 : M1 → Sm−s ⊂ Rm−s+1 and f0 : M0 → Rs.

Exercise 10.5. Let f : M2 → Rm be a surface with flat normal bundle free of umbilical
points. Let E = (E0, E1) be the orthogonal net on M2 determined by its curvature
lines. Assume that those correspondent to E0 are geodesics.

(i) Show that there exist locally (globally, if M2 is simply connected and the geodesic
integral curves of E0 are complete) a product representation ψ : I × J →M2 of
E, where I, J ⊂ R are open intervals and I = R under the global assumptions, a
smooth curve β : J → Rm, a parallel vector bundle isometry φ : J ×Rs → L onto
a flat parallel subbundle L of NβJ and a smooth curve α : I → Ω(β;φ) ⊂ Rs

such that f ◦ ψ is the partial tube determined by (α, β, φ).

(ii) If, in addition, the curvature lines correspondent to E1 have constant geodesic
curvature, show that f is a warped product of curves α : I → Sm−s ⊂ Rm−s+1

and β : J → Rs.
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(iii) Conclude that a surface in R3 with no umbilic points such that the curvature
lines correspondent to one of the principal curvatures are geodesics, and those
correspondent to the other have constant geodesic curvature, must be an open
subset of a cylinder over a plane curve, a cone over a curve in the sphere, or a
rotation surface.

Exercise 10.6. Let f : Mn1
1 ×ρMn1

2 → Qm
c , with c ≤ 0 and n1, n2 ≥ 2, be a minimal

isometric immersion of a warped product of Riemannian manifolds. If ρ is harmonic,
show that c = 0 and that f is a warped product of immersions.

Hint: Let E = (E1, E2) be the product net of M = Mn1
1 ×Mn2

2 and, at x = (x1, x2) ∈M ,
consider an orthonormal basis u1, . . . , un1 , v1, . . . , vn2 of TxM with u1, . . . , un1 ∈ E1(x)
and v1, . . . , vn2 ∈ E2(x). Use the Gauss equation of f to show that

〈∇uiη, ui〉 − 〈η, ui〉2 = c+ 〈α(ui, ui), α(vj, vj)〉 − ‖α(ui, vj)‖2

where η = −grad log ρ. Sum in both indices and use the minimality condition to obtain

n2
∆ρ

ρ
+ n1n2c = ‖

∑
i

α(ui, ui)‖2 +
∑
i,j

‖α(ui, vj)‖2, (10.51)

and then conclude using Theorem 10.21.

Exercise 10.7. Prove that there exists no minimal isometric immersion of a warped
product Mn1

1 ×ρMn1
2 into Qm

c if Mn1
1 is compact, c ≤ 0 and n1, n2 ≥ 2.

Hint: Let f : Mn1
1 ×ρ Mn1

2 → Qm
c be a minimal isometric immersion. From (10.51),

c ≤ 0 and ρ > 0 obtain ∆ρ ≥ 0. Use the compactness of Mn1
1 to conclude that ρ is

constant by means of Hopf’s theorem (see part (ii) of Exercise 3.5). Now use (10.51)
again to show that c = 0, and conclude from Exercise 8.7 that f is an extrinsic product
of minimal isometric immersions f1 : Mn1

1 → Rm1 and f2 : Mn2
2 → Rm2 , with the metric

of Mn1
1 divided by ρ. Then obtain a contradiction with Corollary 3.7.

Exercise 10.8. Let Mn = M0 ×ρ1 M1 × · · · ×ρr Mr be a warped product manifold,
let E = (Ei)i=0,...,r be its product net, and let πi : M → Mi, 0 ≤ i ≤ r, denote the
projection.

(i) Show that the Levi-Civita connection ∇ of Mn and the Levi-Civita connection
∇̂ of the Riemannian product manifold M0 ×M1 × · · · ×Mr are related by

∇XY − ∇̂XY =
r∑

a=1

(〈Xa, Y a〉ηa − 〈ηa, X〉Y a − 〈ηa, Y 〉Xa), (10.52)

where X 7→ X i denotes the orthogonal projection onto Ei, 0 ≤ i ≤ r, and
ηa = −grad (log ◦ρa ◦ π0), 1 ≤ a ≤ r.

(ii) Prove that Ea is spherical with mean curvature normal vector field ηa and E⊥a is
totally geodesic for 1 ≤ a ≤ r.
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(iii) Show that the curvature tensors R and R̂ of ∇ and ∇̂, respectively, are related
by

R(X, Y ) = R̂(X, Y )−
∑r

a,b=1〈ηa, ηb〉Xa ∧ Y b

+
∑r

a=1[(∇X0ηa − 〈ηa, X〉ηa) ∧ Y a +Xa ∧ (∇Y 0ηa − 〈ηa, Y 〉ηa)].

Hint for part (i): First use the fact that the tensor S ∈ Γ(Hom2(TM, TM ;TM))
defined by the right-hand side of (10.52) is symmetric to show that ∇̃ = ∇̂ + S is
a torsion-free connection on TM . Then use that (∇̂XY )i = ∇̂XY

i, 0 ≤ i ≤ r, as
follows from the fact that Ei is totally geodesic with respect to ∇̂, to prove that ∇̃ is
compatible with g. Conclude that ∇̃ = ∇.

Exercise 10.9. Let Mn = M0×ρ1 M1× · · · ×ρr Mr and Nm = N0×σ1 N1× · · · ×σr Nr

be warped product manifolds, and let πi : M
n → Mi and π̄i : N

m → Ni denote the
canonical projections. Let fi : Mi → Ni be an isometric immersion for 0 ≤ i ≤ r and
suppose that ρa = σa ◦ f0 for 1 ≤ a ≤ r. Show that f = f0× · · · × fr : Mn → Nm is an
isometric immersion and that the following assertions hold:

(i) π̄i∗f∗TxM = fi∗TxiMi and π̄i∗NfM(x) = NfiMi(xi) for all 0 ≤ i ≤ r and x =
(x0, . . . , xr) ∈Mn.

(ii) The second fundamental form of f satisfies

π̄0∗α
f (X, Y ) = αf0(π0∗X, π0∗Y )

−
∑r

a=1 ρa(x0)〈πa∗X, πa∗Y 〉((gradσa)(f0(x0))− f0∗grad ρa(x0))

and
π̄a∗α

f (X, Y ) = αfa(πa∗X, πa∗Y ), 1 ≤ a ≤ r,

for all x ∈Mn and X, Y ∈ TxM .

(iii) Derive the formulas in part (iii) of Proposition 10.16, as well as those in part
(iii) of Proposition 10.20, from those in part (ii) above.

Hint for part (ii): use part (i) of the preceding exercise.



Chapter 11

The Sbrana-Cartan hypersurfaces

By the classical Beez-Killing theorem, a hypersurface f : Mn → Qn+1
c is rigid if

it has type number τ ≥ 3 at any point. Therefore, if f : Mn → Qn+1
c is an isometric

immersion such that Mn admits another isometric immersion f̃ : Mn → Qn+1
c that

is not congruent to f on any open subset of Mn, then f must have type number
τ ≤ 2 at any point. Notice that f has type number τ ≤ 1 at a point of Mn if
and only if all sectional curvatures of Mn at that point are equal to c, as follows
from the Gauss equation. Totally geodesic hypersurfaces have already been classified
in Chapter 1, whereas hypersurfaces of constant type number τ = 1 can locally be
explicitly parametrized by means of the Gauss parametrization; see Corollaries 7.20
and 7.23.

The study of Euclidean hypersurfaces that allow isometric deformations has been
carried out by Sbrana in 1909 and Cartan in 1916. For this reason, an isometric im-
mersion f : Mn → Qn+1

c is called a Sbrana-Cartan hypersurface if Mn is a Riemannian
manifold of dimension n ≥ 3 free of points where all sectional curvatures are equal to
c that admits an isometric immersion f̃ : Mn → Qn+1

c not congruent to f on any open
subset. By the discussion above, a Sbrana-Cartan hypersurface must have constant
type number τ = 2.

Examples of Sbrana-Cartan hypersurfaces of Rn+1 are cylinders over surfaces
g : L2 → R3 that are free of flat points and admit isometric deformations that are not
congruent to g on any open subset of L2. Similar examples in any space form Qn+1

c are
generalized cones over surfaces in an umbilical submanifold Q3

c̃ ⊂ Qn+1
c , c̃ > c. These

are called surface-like Sbrana-Cartan hypersurfaces. Another class of examples consists
of ruled hypersurfaces, that is, hypersurfaces carrying a foliation of codimension one
by totally geodesic submanifolds of the ambient space. These will be shown to admit
locally as many isometric deformations as smooth real functions on an open interval,
all of them ruled with the same rulings.

Since a Sbrana-Cartan hypersurface f : Mn → Qn+1
c with n ≥ 3 has constant type

number τ = 2, it can be locally parametrized, in terms of the Gauss parametrization,
by a surface in the unit sphere of either Rn+1, Rn+2 or Ln+2, corresponding to c = 0,
c > 0 or c < 0, respectively, and a smooth function on the surface if c = 0. The main
purpose of this chapter is to give a proof of the parametric description of Sbrana-Cartan

316
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hypersurfaces by determining which of such surfaces (and functions on them if c = 0)
give rise to Sbrana-Cartan hypersurfaces that are neither surface-like nor ruled.

An alternative description due to Cartan of the Sbrana-Cartan hypersurfaces of
Euclidean space will be provided in Chapter 14. It shows that they all arise as envelopes
of certain two-parameter congruences of affine hyperplanes.

11.1 The reduction

If f : Mn → Qn+1
c is a Sbrana-Cartan hypersurface and f̃ : Mn → Qn+1

c is an
isometric immersion that is not congruent to f on any open subset of Mn, then f
and f̃ share a common relative nullity distribution ∆ of rank n− 2 by Corollary 4.15.
Therefore the shape operator Ã of f̃ is a Codazzi tensor on Mn having ∆ as its kernel,
and which is not a constant multiple of A on any open subset. Next we study the
restrictions that are imposed on f by the existence of a Codazzi tensor Ã on Mn such
that ∆ ⊂ ker Ã.

The results of this section will also be used in the parametric description of
infinitesimally bendable Euclidean hypersurfaces in Chapter 14. For this reason, we
do not assume initially that Ã also satisfies det Ã|∆⊥ = detA|∆⊥ , as follows from the
Gauss equations of f and f̃ . Instead, we postpone the use of this additional condition
until Section 11.3.

11.1.1 Hyperbolic, parabolic and elliptic hypersurfaces

Let f : Mn → Qn+1
c , n ≥ 3, be a hypersurface that carries a relative nullity

distribution ∆ of rank n − 2, and let C : Γ(∆) → Γ(End(∆⊥)) denote its splitting
tensor. Then f is said to be hyperbolic (respectively, parabolic or elliptic) if there
exists J ∈ Γ(End(∆⊥)) satisfying the following conditions:

(i) J2 = I (respectively, J2 = 0, with J 6= 0, or J2 = −I),

(ii) ∇TJ = 0 for all T ∈ Γ(∆),

(iii) CT ∈ span{I, J} for all T ∈ Γ(∆).

Lemma 11.1. Let f : Mn → Qn+1
c , n ≥ 3, be a hypersurface that carries a relative

nullity distribution ∆ of rank n − 2. Assume that there exists a symmetric Codazzi
tensor B ∈ Γ(End(TM)) that is not a constant multiple of A on any open subset of
Mn and such that ∆ ⊂ kerB. Then f is either hyperbolic, parabolic or elliptic with
respect to a tensor J ∈ Γ(End(∆⊥)) on each connected component of an open dense
subset U ⊂Mn, depending on whether the tensor D ∈ Γ(End(∆⊥)) defined as

D = (A|∆⊥)−1B|∆⊥

has two distinct real eigenvalues, one real eigenvalue of multiplicity two or a pair of
complex conjugate eigenvalues, respectively. Moreover, on U the tensor D satisfies:
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(i) D ∈ span{I, J} and D 6∈ span{I},

(ii) ∇TD = 0 for all T ∈ Γ(∆).

Conversely, assume that f : Mn → Qn+1
c , n ≥ 3, is hyperbolic, parabolic or elliptic

with respect to J ∈ Γ(End(∆⊥)) and is not surface-like on any open subset of Mn.
Suppose also that there exists D ∈ Γ(End(∆⊥)) satisfying the conditions in parts (i)
and (ii) above, and such that the tensor B ∈ Γ(End(TM)), defined by

B|∆⊥ = AD and ∆ ⊂ kerB, (11.1)

satisfies
(∇XB)Y = (∇YB)X (11.2)

for all X, Y ∈ Γ(∆⊥). Then B is a symmetric Codazzi tensor on Mn.

Proof: By Proposition 7.3 we have

∇TA = ACT (11.3)

and
ACT = Ct

TA (11.4)

for any T ∈ Γ(∆). These equations rely only on the Codazzi equation for A applied to
vector fields T ∈ Γ(∆) and X ∈ Γ(∆⊥). Therefore they also hold for B, that is,

∇TB = BCT (11.5)

and
BCT = Ct

TB (11.6)

for any T ∈ Γ(∆). Eqs. (11.4) and (11.6) yield

ADCT = Ct
TAD = ACTD.

Thus A[D,CT ] = 0, and hence
[D,CT ] = 0 (11.7)

for any T ∈ Γ(∆). On the other hand, from (11.3) and (11.5) we obtain

ACTD = (∇TA)D

= ∇TAD − A∇TD

= ∇TB − A∇TD

= ADCT − A∇TD.

It follows from (11.7) that
A∇TD = A[D,CT ] = 0,

which implies part (ii).
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Since B is not a constant multiple of A on any open subset of Mn, there is an
open dense subset U of Mn where D 6∈ span{I}. Let U ⊂ U be an open subset where D
has either two smooth distinct real eigenvalues, a single real eigenvalue of multiplicity
two or a pair of smooth complex conjugate eigenvalues. By looking at the Jordan form
of D one can write

D = aI + bJ

where J ∈ Γ(End(∆⊥)) satisfies J2 = εI, with ε = 1, 0 or −1, respectively. Here
a, b ∈ C∞(U), with b nowhere vanishing and b = 1 if ε = 0.

Let S ⊂ Γ(End(∆⊥)) be the subspace of all elements that commute with D, or
equivalently, commute with J . It is easily seen that S = span{I, J}, and it follows from
(11.7) that C(Γ(∆)) ⊂ S. To complete the proof of the direct statement, it remains to
show that ∇TJ = 0 for any T ∈ Γ(∆). From part (ii) we obtain

T (a)I + T (b)J + b∇TJ = 0

for any T ∈ Γ(∆). Hence

T (a)J + ε T (b)I + b(∇TJ)J = 0 and T (a)J + ε T (b)I + bJ(∇TJ) = 0.

Adding the two equations yields T (a) = T (b) = 0, and hence ∇TJ = 0.
We conclude that f is either hyperbolic, parabolic or elliptic with respect to J ,

corresponding to ε = 1, 0 or −1, respectively.

We now prove the converse. Since f is not surface-like on any open subset of Mn,
by Propositions 7.4 and 7.6 there exists an open dense subset of Mn where C(Γ(∆))
is not contained in span{I}. It follows from condition (iii) and (11.4) that

AJ = J tA, (11.8)

and hence AD = DtA, for D ∈ span{I, J}. Thus B is symmetric.
The Codazzi equation

(∇XB)Y = (∇YB)X

for X, Y ∈ Γ(∆⊥) holds by assumption. It is trivially satisfied if both X, Y ∈ Γ(∆).
Finally, if Y = T ∈ Γ(∆) and X ∈ Γ(∆⊥) the equation reduces to

∇TAD = ADCT . (11.9)

From condition (iii) and part (i) it follows that (11.7) holds. On the other hand, in
view of part (ii) we have

∇TAD = (∇TA)D,

thus we obtain (11.9) from (11.3) and (11.7). �

A hypersurface f : Mn → Qn+1
c is said to be ruled if it carries a totally geodesic

distribution L of rank n − 1 and the restriction of f to each leaf of L is also totally
geodesic.
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Proposition 11.2. Under the assumptions of Lemma 11.1, if D has one constant real
eigenvalue of multiplicity two, then f is ruled.

Conversely, any simply connected ruled hypersurface f : Mn → Qn+1
c that is not

surface-like on any open subset of Mn and is free of points where all sectional cur-
vatures are equal to c is parabolic. Moreover, the set of symmetric Codazzi tensors
B ∈ Γ(End(TM)) such that ∆ ⊂ kerB and

detB|∆⊥ = δ2 detA|∆⊥

for a given δ ∈ R is in one-to-one correspondence with the set of smooth real functions
on an open interval.

Proof: The assumptions are that there exists J ∈ Γ(End(∆⊥)) such that J 6= 0, J2 = 0,
∇TJ = 0, CT ∈ span{I, J} for all T ∈ Γ(∆), and that

D = δI + J

for some δ ∈ R.
Let Y be a unit-length vector field spanning ker J , and let X ∈ Γ(∆⊥) be or-

thogonal to Y and such that JX = Y . In particular, DY = δY . The condition that
∇TJ = 0 for all T ∈ Γ(∆) is easily seen to be equivalent to

∇TY = 0 = ∇TX (11.10)

for all T ∈ Γ(∆). Hence, replacing J by ‖X‖J , one can assume that also X has unit
length and that

D = δI + θJ

where θ ∈ C∞(M).
We prove next that the distribution

L = ∆⊕ span{Y }

is totally geodesic and that the restriction of f to each leaf of L is also totally geodesic.
Since B is symmetric then AJ is also symmetric, because D ∈ span{I, J} and

D 6∈ span{I}. Hence

〈AY, Y 〉 = 〈AJX, Y 〉
= 〈X,AJY 〉
= 0. (11.11)

Moreover, from C(Γ(∆)) ⊂ span{I, J} and JY = 0 we obtain

〈CTY,X〉 = 0

for all T ∈ Γ(∆). Thus
〈∇Y T,X〉 = −〈CTY,X〉 = 0 (11.12)
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for all T ∈ Γ(∆). Now observe that

AD = δA+ θAJ.

Since B and any constant multiple of A are Codazzi tensors, then the same holds for
the tensor Φ defined by

Φ|∆⊥ = θAJ and ∆ ⊂ ker Φ.

Hence
∇XΦY − Φ∇XY = ∇Y ΦX − Φ∇YX. (11.13)

Writing µ = 〈AY,X〉, it follows using (11.11) that

ΦX = θµX and ΦY = 0.

Substituting in (11.13) and taking the inner product of both sides with Y yield

θµ〈∇Y Y,X〉 = 0,

hence
〈∇Y Y,X〉 = 0 (11.14)

because D 6= δI and A|∆⊥ is invertible. We see that L is totally geodesic from the first
equality in (11.10), (11.12), (11.14) and the fact that ∆ is totally geodesic. Finally,
from (11.11) and that ∆ is the relative nullity distribution of f , it follows that the
restriction of f to each leaf of L is totally geodesic. Therefore f is ruled.

We now prove the converse. Let L be a totally geodesic distribution of rank
n− 1 on Mn such that the restriction of f to each of its leaves is also totally geodesic.
Then, at each point x ∈ Mn, the subspace AL(x) is contained in the one-dimensional
subspace L⊥(x); hence the relative nullity subspace ∆(x) has dimension at least n− 2.
Since ∆(x) cannot have dimension greater than n−2 by the assumption that Mn does
not have points where all sectional curvatures are equal to c, it follows that f carries a
relative nullity distribution ∆ of constant rank n − 2. Since Mn is simply connected,
there is a global orthonormal frame {X, Y } of ∆⊥ such that X ∈ Γ(L⊥).

Define J ∈ Γ(End(∆⊥)) by setting

JX = Y and JY = 0. (11.15)

We first prove that f is parabolic with respect to J . Since the distributions ∆ and L
are both totally geodesic, it follows that ∇TY = 0, which is equivalent to ∇TJ = 0.

To show that the splitting tensor satisfies C(Γ(∆)) ⊂ span{I, J}, it suffices to
prove that

CTJ = JCT

for all T ∈ Γ(∆). This is easily seen to be equivalent to

〈∇XX,T 〉 = 〈∇Y Y, T 〉
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for all T ∈ Γ(∆). To prove this fact, write

µ = 〈AX, Y 〉

so that AY = µX. Then take the Y -component of (11.3) applied to X, and the
X-component of the same equation applied to Y , to obtain

〈∇XX,T 〉 = T (log µ) = 〈∇Y Y, T 〉.

To complete the proof, it remains to show that the set of tensors D ∈ Γ(End(∆⊥))
satisfying the conditions in parts (i) and (ii) of Lemma 11.1, with detD = δ2 ∈ R
and such that B ∈ Γ(End(TM)), defined by (11.1), satisfies (11.2), is in one-to-one
correspondence with the set of smooth real functions on an open interval.

Any tensor D ∈ Γ(End(∆⊥)) as in part (i) such that detD = δ2 is given by

D = δI + θJ

for some θ ∈ C∞(M). Then the condition in part (ii) is satisfied if and only if T (θ) = 0
for all T ∈ Γ(∆). On the other hand, in view of the Codazzi equation of f , condition
(11.2) holds if and only if the tensor Φ = θAJ satisfies (11.13). As shown in the proof
of the direct statement, the Y -component of that equation is equivalent to

〈∇Y Y,X〉 = 0,

which is satisfied because the distribution L = ∆ ⊕ span{Y } is totally geodesic. On
the other hand, the X-component of (11.13) is equivalent to the equation

Y (log(θµ)) = 〈∇XX, Y 〉. (11.16)

Choosing an arbitrary smooth function as initial condition along a fixed maximal in-
tegral curve of X, there exists a unique θ ∈ C∞(M), with

T (θ) = 0 (11.17)

for all T ∈ Γ(∆), such that θµ is a solution of (11.16). �

Proposition 11.2 gives rise to the first class of Sbrana-Cartan hypersurfaces that
are not surface-like.

Corollary 11.3. Any simply connected ruled hypersurface f : Mn → Qn+1
c that is

not surface-like on any open subset of Mn and is free of points where all sectional
curvatures are equal to c is a (parabolic) Sbrana-Cartan hypersurface. Moreover, all
isometric immersions of Mn into Qn+1

c are ruled with the same rulings, and their
congruence classes are in one-to-one correspondence with the smooth functions on an
open interval.
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Proof: By Proposition 11.2, the set of symmetric Codazzi tensors Ã ∈ Γ(End(TM))
such that ∆ ⊂ ker Ã and det Ã|∆⊥ = detA|∆⊥ is in one-to-one correspondence with
the set of smooth real functions on an open interval. More precisely, let X, Y be an
orthonormal frame of ∆⊥ with X orthogonal to the rulings, and let J ∈ Γ(End(TM))
be given by (11.15). Then any Codazzi tensor Ã on Mn with ∆ ⊂ ker Ã such that
det Ã|∆⊥ = detA|∆⊥ is given by Ã = AD, where D = I + θJ and θ ∈ C∞(M) is
arbitrarily prescribed along an integral curve of X and required to satisfy (11.16) and
(11.17).

For each such Codazzi tensor Ã on Mn, the Gauss and Codazzi equations for
an isometric immersion of Mn into Qn+1

c are trivially satisfied. Since Mn is simply
connected, by Theorem 1.11 there exists an isometric immersion f̃ : Mn → Qn+1

c with
Ã as its shape operator. That f̃ is also ruled with the same rulings follows from

〈ÃY, Y 〉 = 〈ADY, Y 〉
= 〈AY, Y 〉+ θ〈AJY, Y 〉
= 0.

It remains to show that these are all isometric immersions of Mn into Qn+1
c . This

follows from the fact that, if f̃ : Mn → Qn+1
c is an isometric immersion, then ∆ is also

the relative nullity distribution of f̃ by Corollary 4.15, and hence the shape operator
Ã of f̃ is a Codazzi tensor on Mn such that ker Ã = ∆. Moreover, the Gauss equations
for f and f̃ yield detA|∆⊥ = det Ã|∆⊥ . �

11.1.2 Projectable vector fields and tensors

In order to determine which hyperbolic and elliptic hypersurfaces f : Mn → Qn+1
c

carry a tensor D satisfying all the conditions in the converse statement of Lemma 11.1,
the strategy is to parametrize f in terms of the Gauss parametrization, and then to
reduce the problem to an equivalent one for its Gauss image, as well as its support
function if c = 0. To show that the tensor D on the hypersurface can be “projected
down” to a tensor D̄ on its Gauss image, we discuss next some general criteria for
vector fields and tensors to be projectable under a given submersion.

If π : M → L is a submersion between differentiable manifolds, then X ∈ X(M)
is said to be projectable if it is π-related to some X̄ ∈ X(L), that is, if there exists
X̄ ∈ X(L) such that π∗X = X̄ ◦ π.

Proposition 11.4. Let ∆ be an integrable distribution on a differentiable manifold M
and let π : M → L be the projection onto the (local) quotient space L = M/∆ of leaves
of ∆. Then X ∈ X(M) is projectable if and only if [X,T ] ∈ Γ(∆) for any T ∈ Γ(∆).

Proof: Suppose that π∗X = X̄ ◦ π for some X̄ ∈ X(L). Given T ∈ Γ(∆), we have

π∗[X,T ] = [π∗X, π∗T ] = [X̄, 0] ◦ π = 0,

hence [X,T ] ∈ Γ(∆).
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For the converse, in order to prove that X is projectable, one must show that,
for each y ∈ L, the map ψ : F = π−1(y)→ TyL defined by

ψ(x) = π∗(x)Xx

is constant. Given x ∈ F and v ∈ TxF , choose T ∈ ∆ with T (x) = v and let gt be
the local one-parameter group of diffeomorphisms generated by T . By the assumption,
and since π ◦ gt = π, we have

0 = π∗[X,T ](x)

= lim
t7→0

1

t
(π∗X(gt(x))− π∗gt∗X(x))

= lim
t7→0

1

t
(π∗X(gt(x))− π∗X(x))

= ψ∗(x)v,

and this concludes the proof. �

For a vector field X ∈ Γ(∆⊥), the conclusion of Proposition 11.4 can be expressed
in terms of the splitting tensor C of ∆.

Corollary 11.5. Let ∆ be an integrable distribution on a Riemannian manifold M
and let L = M/∆ be the (local) quotient space of leaves of ∆. Then X ∈ Γ(∆⊥) is
projectable if and only if

∇h
TX + CTX = 0

for any T ∈ Γ(∆).

Proof: Since
[X,T ] = ∇v

XT − CTX −∇v
TX −∇h

TX

for any T ∈ Γ(∆), then [X,T ] ∈ Γ(∆) if and only if

∇h
TX + CTX = 0,

and the statement follows from Proposition 11.4. �

Let M be a Riemannian manifold and let π : M → L be a submersion. Consider
the vertical distribution ∆ of π, that is, for any x ∈M the subspace ∆(x) is the tangent
space to the fiber π−1(π(x)) through x. Given D̄ ∈ Γ(End(TL)), its horizontal lift D
is the element of Γ(End(∆⊥)) such that, for any x ∈M and v ∈ ∆⊥(x), the vector Dv
is the unique one in ∆⊥(x) that is projected to D̄π∗v under π∗. In other words, D is
the unique element of Γ(End(∆⊥)) such that D̄ ◦ π∗ = π∗ ◦D.

A tensor D ∈ Γ(End(∆⊥)) is said to be projectable with respect to π if it is the
horizontal lift of some tensor D̄ on L. Clearly, D is projectable with respect to π if
and only if for all x̄ ∈ L, x, y ∈ π−1(x̄), v ∈ ∆⊥(x) and w ∈ ∆⊥(y) with π∗v = π∗w,
one has that π∗Dv = π∗Dw.
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Proposition 11.6. Let M be a Riemannian manifold and let π : M → L be a submer-
sion with ∆ as its vertical distribution. Then a tensor D ∈ Γ(End(∆⊥)) is projectable
with respect to π if and only if DX is projectable whenever X ∈ Γ(∆⊥) is projectable.

Proof: Suppose that D is projectable, that is, that there is a tensor D̄ in L such that

D̄ ◦ π∗ = π∗ ◦D.

Given a projectable vector field X in M , let X̄ be the vector field in L such that
π∗X = X̄ ◦ π. Then

π∗DX = D̄ ◦ π∗X = D̄ ◦ X̄ ◦ π,

thus DX is projectable.
Conversely, suppose there exist x̄ ∈ L, x, y ∈ π−1(x̄), v ∈ ∆⊥(x) and w ∈ ∆⊥(y)

such that
π∗v = π∗w and π∗Dv 6= π∗Dw.

Let v̄ = π∗v = π∗w and let X̄ ∈ X(L) be any vector field such that X̄(x̄) = v̄. Let X
be the horizontal lift of X̄. Then X(x) = v and X(y) = w. Since

π∗DX(x) = π∗Dv 6= π∗Dw = π∗DX(y),

the vector field DX is not projectable. �

Corollary 11.7. Let ∆ be an integrable distribution on a Riemannian manifold M and
let L = M/∆ be the (local) quotient space of leaves of ∆. A tensor D ∈ Γ(End(∆⊥))
is projectable if and only if

∇h
TD = [D,CT ] (11.18)

for all T ∈ Γ(∆).

Proof: Assume that D ∈ Γ(End(∆⊥)) is projectable. By Proposition 11.6, if X ∈
Γ(∆⊥) is projectable, then so is DX. Since

∇h
TDX + CTDX = (∇h

TD − [D,CT ])X +D(∇h
TX + CTX) (11.19)

for any X ∈ Γ(∆⊥), it follows from Corollary 11.5 that ∇h
TD − [D,CT ] vanishes on

projectable vector fields. Thus it vanishes, for this is a tensorial property.
Conversely, if (11.18) holds then (11.19) and Corollary 11.5 imply that DX is

projectable whenever X ∈ Γ(∆⊥) is projectable. Thus D is projectable by Proposi-
tion 11.6. �

11.1.3 Hyperbolic and elliptic surfaces

Let g : L2 → Sn1,µ, n ≥ 4, be a surface in the Euclidean or Lorentzian sphere.
Assume that the first normal spaces N g

1 of g have dimension two everywhere. Then,
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given x ∈ L2 and a basis X, Y of TxL, there exist a, b, c ∈ R with a2 + b2 + c2 6= 0 such
that the second fundamental form αg of g satisfies

aαg(X,X) + 2cαg(X, Y ) + bαg(Y, Y ) = 0.

The surface g is said to be elliptic (respectively, hyperbolic or parabolic) at x ∈ L2 if
ab − c2 > 0 (respectively, < 0 or = 0). In Exercise 11.2, the reader is asked to show
that this condition is independent of the given basis, and that it is equivalent to the
existence of an endomorphism J on TxL satisfying J2 = εI with ε = −1 (respectively,
ε = 1 or ε = 0) and

αg(JX, Y ) = αg(X, JY ) (11.20)

for all X, Y ∈ TxL. Moreover, in the elliptic and hyperbolic cases the endomorphism
J is unique up to sign.

The surface g is said to be elliptic (respectively, hyperbolic or parabolic) if it is
elliptic (respectively, hyperbolic or parabolic) at every point of L2. In this case, the
endomorphisms J on each tangent space give rise to a tensor J on L2 such that (11.20)
holds for all X, Y ∈ X(L).

When the first normal spaces of g have dimension less than two, the surface g
is still called elliptic, hyperbolic or parabolic with respect to such a tensor J if the
condition (11.20) is satisfied.

Proposition 11.8. Given a surface g : L2 → Sn1,µ, set h = i ◦ g : L2 → Rn+1
µ , where

i : Sn1,µ → Rn+1
µ is the inclusion map. Then (11.20) holds if and only if any height

function hv = 〈h, v〉, for v ∈ Rn+1
µ , satisfies

(Hesshv + hvI) ◦ J = J t ◦ (Hesshv + hvI)

where Hesshv denotes the endomorphism of TL associated with the Hessian of hv with
respect to the induced metric.

Proof: By Corollary 1.3, the Hessian of hv as a symmetric bilinear form satisfies

Hesshv(X, Y ) = 〈αh(X, Y ), v〉
= 〈i∗αg(X, Y )− 〈X, Y 〉h, v〉

for all X, Y ∈ X(L). Hence

〈i∗αg(X, Y ), v〉 = Hesshv(X, Y ) + 〈X, Y 〉hv

for all X, Y ∈ X(L). Thus the endomorphism of TL associated with Hesshv satisfies

〈i∗αg(JX, Y )− i∗αg(X, JY ), v〉 = 〈((Hesshv + hvI)J − J t(Hesshv + hvI))X, Y 〉

for all X, Y ∈ X(L), and the conclusion follows. �
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For a given surface g : L2 → Sn and γ ∈ C∞(L), we say that the pair (g, γ) is
elliptic (respectively, hyperbolic or parabolic) with respect to a tensor J on L2 satisfying
J2 = εI with ε = −1 (respectively, ε = 1 or ε = 0) if g is elliptic (respectively, hyperbolic
or parabolic) with respect to J and γ satisfies the same condition as any height function
of h = i ◦ g, namely, if

(Hess γ + γI) ◦ J = J t ◦ (Hess γ + γI).

We say that a local system of coordinates (u, v) on L2 is real conjugate for a
surface g : L2 → Sn1,µ if the condition

αg(∂u, ∂v) = 0

holds for ∂u = ∂/∂u and ∂v = ∂/∂v. The coordinate system (u, v) is said to be complex
conjugate for g if

αg(∂z, ∂z̄) = 0

where z = u+ iv and ∂z = (1/2)(∂u − i∂v), that is, if

αg(∂u, ∂u) + αg(∂v, ∂v) = 0.

In the following result, in the case of real conjugate coordinates (respectively,
complex conjugate coordinates) we denote F = 〈∂u, ∂v〉 (respectively, F = 〈∂z, ∂z̄〉,
where 〈 , 〉 also stands for the C-bilinear extension of the metric of L2) and Γ1, Γ2

(respectively, Γ) are the Christoffel symbols defined by

∇∂u∂v = Γ1∂u + Γ2∂v (11.21)

(respectively,
∇∂z∂z̄ = Γ∂z + Γ̄∂z̄, (11.22)

where ∇ also denotes the C-bilinear extension of ∇).

Proposition 11.9. Given a surface g : L2 → Sn1,µ, set h = i ◦ g, where i : Sn1,µ → Rn+1
µ

is the inclusion. The following assertions are equivalent:

(i) The coordinates (u, v) are either real conjugate or complex conjugate for g.

(ii) The position vector of h satisfies

huv − Γ1hu − Γ2hv + Fh = 0 (11.23)

in the case of real conjugate coordinates, or

hzz̄ − Γhz − Γ̄hz̄ + Fh = 0 (11.24)

for complex conjugate coordinates.
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Proof: The condition αg(∂u, ∂v) = 0 is equivalent to

αh(∂u, ∂v) + Fh = 0

whereas αg(∂z, ∂z̄) = 0 is equivalent to

αh(∂z, ∂z̄) + Fh = 0.

The preceding equations can also be written as (11.23) and (11.24), respectively. �

Proposition 11.10. If the surface g : L2 → Sn1,µ is hyperbolic (respectively, elliptic),
then there exist locally real conjugate (respectively, complex conjugate) coordinates on
L2 for g. Conversely, if there exist real conjugate (respectively, complex conjugate)
coordinates on L2, then g : L2 → Sn1,µ is hyperbolic (respectively, elliptic).

Proof: Assume that g is hyperbolic and let J be a tensor on L2 such that J2 = I and

αg(JX, Y ) = αg(X, JY )

for all X, Y ∈ X(L). Let X, Y be a frame of eigenvectors of J associated with the
eigenvalues 1 and −1, respectively. Then there exist local coordinates (u, v) in L2 such
that the coordinate vector fields ∂u and ∂v are collinear with X and Y , respectively.
Hence

αg(∂u, ∂v) = αg(J∂u, ∂v) = αg(∂u, J∂v) = −αg(∂u, ∂v)
and, consequently, αg(∂u, ∂v) = 0.

Conversely, if (u, v) are real conjugate coordinates on L2 for g, let J be the tensor
defined by J∂u = ∂u and J∂v = −∂v. Then J2 = I and (11.20) holds, since this
equation is satisfied for X, Y ∈ {∂u, ∂v}. Thus g is hyperbolic with respect to J . The
proof for the elliptic case is similar. �

11.1.4 From hypersurfaces to surfaces and backwards

In this section we relate the notions of hyperbolic and elliptic hypersurfaces
f : Mn → Qn+1

c , c 6= 0 (respectively, c = 0) with those of hyperbolic and elliptic
surfaces g : L2 → Sn+1

1,µ (respectively, pairs (g, γ), where g : L2 → Sn and γ ∈ C∞(L)).
The results are stated and proved for the case c = 0. The statements and proofs for
c 6= 0 require a few minor modifications that are left to the reader.

Proposition 11.11. Let f : Mn → Rn+1 be a hypersurface carrying a relative nullity
distribution ∆ of rank n−2. Assume that f is not surface-like on any open subset, and
let g : L2 → Sn and γ ∈ C∞(L) parametrize f in terms of the Gauss parametrization.
If f is hyperbolic (respectively, elliptic) with respect to J ∈ Γ(End(∆⊥)), then J is the
horizontal lift of a tensor J̄ ∈ Γ(End(TL)) and the pair (g, γ) is hyperbolic (respectively,
elliptic) with respect to J̄ .

Conversely, if the pair (g, γ)is hyperbolic (respectively, elliptic) with respect to J̄ ∈
Γ(End(TL)), then f is hyperbolic (respectively, elliptic) with respect to the horizontal
lift J ∈ Γ(End(∆⊥)) of J̄ .
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Proof: Since ∇TJ = 0 and [J,CT ] = 0 for all T ∈ Γ(∆), it follows from Corollary 11.7
that J is projectable, that is, there exists a tensor J̄ on L2 such that

J̄ ◦ π∗ = π∗ ◦ J.

That J̄2 = Ī (respectively, J̄2 = −Ī) follows from the similar property of J . It remains
to prove that

AwJ̄ = J̄ tAw (11.25)

for all w ∈ NgL, and that

(Hess γ + γĪ)J̄ = J̄ t(Hess γ + γĪ). (11.26)

Given X̄, Ȳ ∈ X(L), let X, Y ∈ Γ(∆⊥) be their horizontal lifts to Mn. Set
h = i ◦ g, where i : Sn → Rn+1 is the inclusion, and let η : Mn → Sn be the Gauss map
of f , so that h and the Gauss map η : Mn → Sn of f are related by i ◦ η = h ◦ π. Then

f∗AX = −i∗η∗X = −h∗π∗X = −h∗X̄, (11.27)

hence
f∗AJX = −h∗π∗JX = −h∗J̄π∗X = −h∗J̄X̄. (11.28)

Let π̂ : Λ = NgL → L2 be the canonical projection. By Theorem 7.18, there exists a
diffeomorphism θ : U ⊂ Λ → Mn from an open neighborhood of the zero section of Λ
such that π ◦ θ = π̂ and

f ◦ θ (y, w) = γ(y)h(y) + h∗∇γ(y) + i∗w

for all (y, w) ∈ Λ. Let j : TyL→ T(y,w)Λ be the map given by Proposition 7.19. Using
(7.24), (7.27) and (11.28), we obtain

−〈AJθ∗jX̄, θ∗jȲ 〉 = −〈f∗AJθ∗jX̄, f∗θ∗jȲ 〉
= 〈h∗J̄π∗θ∗jX̄, h∗Ȳ 〉
= 〈J̄ π̂∗jX̄, Ȳ 〉′

= 〈J̄P−1
w X̄, Ȳ 〉′ (11.29)

for all X̄, Ȳ ∈ TyL. Since ACT is symmetric for all T ∈ Γ(∆) by Proposition 7.3, and
the splitting tensor satisfies C(Γ(∆)) ⊂ span{I, J} and C(Γ(∆)) 6⊂ span{I}, it follows
that AJ is symmetric. By (11.29) this implies that J̄P−1

w = P−1
w J̄ t, or equivalently,

that
PwJ̄ = J̄ tPw. (11.30)

In particular, for w = 0 this gives (11.26), and then (11.26) and (11.30) imply (11.25).
Conversely, suppose that the pair (g, γ) is hyperbolic (respectively, elliptic) with

respect to J̄ ∈ Γ(End(TL)), and let J ∈ Γ(End(∆⊥)) be the horizontal lift of J̄ . We
prove next that f is hyperbolic (respectively, elliptic) with respect to J .
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Since the pair (g, γ) is hyperbolic (respectively, elliptic) with respect to J̄ , then
(11.25) and (11.26) hold, hence so does (11.30). It follows from (11.29) that AJ is
symmetric.

By Corollary 11.7 we have

∇TJ = [J,CT ] (11.31)

for all T ∈ Γ(∆). On the other hand, an easy computation yields

∇TAJ − AJCT = (∇TA− ACT )J + A(∇TJ − [J,CT ]).

Hence (11.31) and Proposition 7.3 give

∇TAJ = AJCT .

In particular, this implies that AJCT is symmetric, and hence

AJCT = Ct
TJ

tA = Ct
TAJ = ACTJ.

Therefore
[J,CT ] = 0 (11.32)

for all T ∈ Γ(∆). In view of (11.31), this implies that

∇TJ = 0

for all T ∈ Γ(∆). It also follows from (11.32) that

C(Γ(∆)) ⊂ span{I, J}.

Thus f is hyperbolic (respectively, elliptic) with respect to J . �

The following result is needed for the parametric descriptions of Sbrana-Cartan
hypersurfaces and infinitesimally bendable hypersurfaces to be given in Chapter 14.

Proposition 11.12. For a hypersurface f : Mn → Rn+1 under the assumptions of
Proposition 11.11, let D ∈ Γ(End(∆⊥)) satisfy conditions (i) and (ii) in Lemma 11.1
and be such that (11.2) holds for B ∈ Γ(End(TM)) given by (11.1). Then D is the
horizontal lift of a Codazzi tensor D̄ ∈ Γ(End(TL)) such that D̄ ∈ span{Ī , J̄} and
D̄ 6∈ span{Ī}.

Conversely, if D̄ ∈ Γ(End(TL)) is a Codazzi tensor such that D̄ ∈ span{Ī , J̄} and
D̄ 6∈ span{Ī}, then its horizontal lift D ∈ Γ(End(∆⊥)) satisfies conditions (i) and (ii)
in Lemma 11.1 and the tensor B ∈ Γ(End(TM)), defined by (11.1), satisfies (11.2).

Proof: Since C(Γ(∆)) ⊂ span{I, J} and D ∈ span{I, J}, then (11.7) holds. By
Corollary 11.7, this and condition (ii) in Lemma 11.1 imply that D is projectable, that
is, there exists D̄ ∈ Γ(End(TL)) such that

D̄ ◦ π∗ = π∗ ◦D.
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In particular, D̄ ∈ span{Ī , J̄}, for D ∈ span{I, J} by condition (i) in Lemma 11.1.
Moreover, D̄ 6∈ span{Ī} by the similar property of D. We now prove that D̄ is a
Codazzi tensor on L2.

Given X̄, Ȳ ∈ X(L), let X, Y ∈ Γ(∆⊥) be their horizontal lifts to Mn. As before
h = i ◦ g, where i : Sn → Rn+1 is the inclusion, so that i ◦ η = h ◦π, where η : Mn → Sn
is the Gauss map of f . Since

f∗AX = −h∗X̄

and
f∗ADX = −h∗D̄X̄, (11.33)

then

f∗AD[X, Y ] = −h∗D̄π∗[X, Y ]

= −h∗D̄[π∗X, π∗Y ]

= −h∗D̄[X̄, Ȳ ]. (11.34)

Using (11.27) and (11.33), the Gauss formulas of f and g yield

f∗∇XADY = ∇̃Xf∗ADY − 〈AX,ADY 〉 i ◦ η
= −∇̃X̄h∗D̄Ȳ −

〈
h∗X̄, h∗D̄Ȳ

〉
h ◦ π

= −h∗∇′X̄D̄Ȳ − α
h
(
X̄, D̄Ȳ

)
−
〈
X̄, D̄Ȳ

〉′
h ◦ π

= −h∗∇′X̄D̄Ȳ − α
g
(
X̄, D̄Ȳ

)
. (11.35)

That D̄ is a Codazzi tensor on L2 now follows from (11.34), (11.35) and the fact that
(11.2) holds for B ∈ Γ(End(TM)) given by (11.1).

Conversely, let D̄ ∈ Γ(End(TL)) be a Codazzi tensor such that D̄ ∈ span{Ī , J̄}
and D̄ 6∈ span{Ī}. Let D ∈ Γ(End(∆⊥)) be the horizontal lift of D̄. Clearly, D satisfies
condition (i) in Lemma 11.1. By Corollary 11.7 we have

∇TD = [D,CT ]

for all T ∈ Γ(∆). On the other hand, since D ∈ span{I, J} and C(Γ(∆)) ⊂ span{I, J},
it follows that

[D,CT ] = 0

for all T ∈ Γ(∆). Thus condition (ii) in Lemma 11.1 is also satisfied. Finally, if
B ∈ Γ(End(TM)) is defined by (11.1), that B satisfies (11.2) follows from (11.34),
(11.35) and the fact that D̄ being a Codazzi tensor on L2. �

11.2 Surfaces of first and second species

Before we turn to the description of the Sbrana-Cartan hypersurfaces in terms of
the Gauss parametrization, we characterize in this section the hyperbolic and elliptic
surfaces g : L2 → Sn1,µ with respect to J̄ ∈ Γ(End(TL)) that carry a Codazzi tensor
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D̄ ∈ Γ(End(TL)) satisfying D̄J̄ = J̄ tD̄ and such that det D̄ = 1. In the next section,
it is shown that these surfaces are precisely the Gauss maps of the Sbrana-Cartan
hypersurfaces.

In the following result, Γ1, Γ2 (respectively, Γ) are the Christoffel symbols defined
in (11.21) (respectively, (11.22)).

Proposition 11.13. For a surface g : L2 → Sn1,µ, the following two assertions are
equivalent:

(i) The surface g is hyperbolic (respectively, elliptic) with respect to J̄ ∈ Γ(End(TL))
and there exists D̄ ∈ span{Ī , J̄} such that D̄ 6= ±Ī and

(a) det D̄ = 1,

(b)
(
∇′
X̄
D̄
)
Ȳ −

(
∇′
Ȳ
D̄
)
X̄ = 0 for all X̄, Ȳ ∈ X(L).

(ii) L2 carries local real conjugate (respectively, complex conjugate) coordinates (u, v)
for g, and the system of equations{

τu = 2Γ2τ(1− τ)

τv = 2Γ1(1− τ)
(11.36)

has positive solutions other than the trivial one τ = 1 (respectively, the equation

ρz̄ + Γ(ρ− ρ̄) = 0 (11.37)

admits a solution ρ = ρ(z, z̄) that takes values in the unit circle, other than the
trivial one ρ = 1).

Proof: Suppose first that g is hyperbolic with respect to a tensor J̄ on L2 satisfying
J̄2 = Ī, and that there exists D̄ ∈ span{Ī , J̄} such that (a) and (b) hold. With respect
to local real conjugate coordinates (u, v) in L2 given by Proposition 11.10, the equation
in part (b) reduces to

∇′∂uD̄∂v = ∇′∂vD̄∂u. (11.38)

Since D̄ ∈ span{Ī , J̄} and det D̄ = 1, there exists θ ∈ C∞(L) such that

D̄∂u = θ∂u and D̄∂v = θ−1∂v. (11.39)

Hence

∇′∂uD̄∂v −∇
′
∂vD̄∂u = ∇′∂uθ

−1∂v −∇′∂vθ∂u
= ((θ−1 − θ)Γ1 − θv)∂u + ((θ−1 − θ)Γ2 + (θ−1)u)∂v

and (11.38) is equivalent to the system of partial differential equations{
θv = Γ1(θ−1 − θ)
(θ−1)u = −Γ2(θ−1 − θ).
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Multiplying the first equation by 2θ and the second by 2θ3 yields

(θ2)v = 2Γ1(1− θ2) and (θ2)u = 2Γ2θ2(1− θ2).

Hence, setting τ = θ2, the preceding equations take the form (11.36).
Assume now that g is elliptic with respect to a tensor J̄ in L2 with J̄2 = −Ī,

and suppose that (a) and (b) hold for D̄ ∈ span{Ī , J̄}. Let (u, v) be the local complex
conjugate coordinates in L2 given by Proposition 11.10. Then the complex coordinate
vector fields ∂z and ∂z̄ are eigenvectors of the complexified tensor

J̄C : TL2 ⊗ C→ TL2 ⊗ C.

Therefore, in terms of the complexified tensor

D̄C : TL2 ⊗ C→ TL2 ⊗ C

of D̄, condition (b) is equivalent to

∇′∂zD̄
C∂z̄ = ∇′∂z̄D̄

C∂z (11.40)

where ∇′ also stands for the complex-bilinear extension of the connection of L2.
Since D̄C ∈ span{Ī , J̄C} and det D̄C=1, there is a smooth function ρ : L2 → S1 ⊂

C such that
D̄C∂z = ρ∂z and D̄C∂z̄ = ρ̄∂z̄. (11.41)

Therefore

∇′∂zD̄
C∂z̄ −∇′∂z̄D̄

C∂z = ∇′∂z ρ̄∂z̄ −∇
′
∂z̄ρ∂z

= (Γ(ρ̄− ρ)− ρz̄) ∂z +
(
Γ̄(ρ̄− ρ) + ρ̄z

)
∂z̄,

and hence (11.40) is equivalent to (11.37).
Conversely, assume that L2 carries real conjugate coordinates (u, v), and that

(11.36) admits a nontrivial solution τ = θ2. Define a tensor D̄ in L2 by (11.39), and
let J̄ be given by

J̄∂u = ∂u and J̄∂v = −∂v.

Then the surface g is hyperbolic with respect to J̄ , and det D̄ = 1. Moreover, the proof
of the direct statement shows that D̄ satisfies (b).

Similarly, assume that L2 carries complex conjugate coordinates (u, v), and that
ρ : L2 → S1 ⊂ C is a nontrivial solution of (11.37). Then g is elliptic with respect to
the tensor J̄ on L2 such that

J̄C∂z = i∂z and J̄C∂z̄ = −i∂z̄,

and the tensor D̄ in L2 defined by (11.41) satisfies (11.40), that is, the equation in part
(b) holds for D̄. �
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11.2.1 Surfaces of first and second species of real type

We first look for surfaces g : L2 → Sn1,µ, endowed with real conjugate coordinates
(u, v), for which the system of equations (11.36) has positive solutions other than the
trivial one τ = 1. The integrability condition for (11.36) is

(Γ2
v − 2Γ1Γ2)τ − Γ1

u + 2Γ1Γ2 = 0. (11.42)

The surface g is said to be of first species of real type if (11.42) is trivially satisfied,
that is, if

Γ1
u = Γ2

v = 2Γ1Γ2 (11.43)

and, in addition, an everywhere positive solution of (11.42) exists (which is always the
case locally; see Exercise 11.6). The surface g is called of second species of real type if
it is not of first species and the function

τ =
Γ1
u − 2Γ1Γ2

Γ2
v − 2Γ1Γ2

is positive, not identically one and a (necessarily unique) solution of (11.36).

The reader is asked in Exercise 11.6 to compute the general solution of (11.43).
Putting this together with Proposition 11.9 yields the following characterization of
surfaces of first species of real type.

Proposition 11.14. A surface g : L2 → Sn1,µ is of first species of real type if and only
if there exist coordinates (u, v) on L2 and smooth functions U = U(u), V = V (v) and
F = F (u, v) such that the position vector of h = i ◦ g, where i : Sn1,µ → Rn+1

µ is the
inclusion map, satisfies the differential equation

huv +
Vv

2(U + V )
hu +

Uu
2(U + V )

hv + Fh = 0.

11.2.2 Surfaces of first and second species of complex type

Consider now a surface g : L2 → Sn1,µ, endowed with complex conjugate coordi-
nates, for which the differential equation (11.37) admits a solution ρ = ρ(z, z̄) that
takes values in the unit circle and is not the trivial one ρ = 1. Differentiating ρρ̄ = 1
and using (11.37) yield

ρz = −ρ2ρ̄z = ρ2Γ̄(ρ̄− ρ). (11.44)

Differentiating (11.37) and (11.44) with respect to z and z̄, respectively, and using
again both equations, we obtain

ρ̄(Γz − 2ΓΓ̄) = ρ(Γ̄z̄ − 2ΓΓ̄),

or equivalently,
Im(ρ̄(Γz − 2ΓΓ̄)) = 0. (11.45)
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The surface g is called of first species of complex type when (11.45) is trivially satisfied,
that is, if

Γz = 2ΓΓ̄, (11.46)

which is the complex analogue of (11.43). It is said to be of second species of complex
type if it is not of first species and (11.37) has a (necessarily unique) solution determined
by (11.45).

For the general solution of (11.46) the reader is referred to Exercise 11.7. Together
with Proposition 11.9, it implies the following characterization of surfaces of first species
of complex type.

Proposition 11.15. A surface g : L2 → Sn1,µ is of first species of complex type if
and only if there exist coordinates (u, v) on L2 and smooth functions F = F (u, v) and
φ = φ(u, v), with

φuu + φvv = 0,

such that the position vector of h = i ◦ g, where i : Sn1,µ → Rn+1
µ is the inclusion map,

satisfies the differential equation

huu + hvv +
φu
φ
hu +

φv
φ
hv + Fh = 0.

11.3 The parametric description

We are now in a position to state and prove the parametric description of the
Sbrana-Cartan hypersurfaces in terms of the Gauss parametrization.

Theorem 11.16. Let f : Mn → Qn+1
c , c 6= 0 (respectively, c = 0), be a Sbrana-Cartan

hypersurface that is neither surface-like nor ruled on any open subset of Mn. Then, on
each connected component of an open dense subset of Mn, f is parametrized in terms
of the Gauss parametrization by either a hyperbolic or an elliptic surface g : L2 → Sn+1

1,µ

(respectively, hyperbolic or elliptic pair (g, γ), where g : L2 → Sn is a surface and
γ ∈ C∞(L)), with g of first or second species of real or complex type.

Conversely, any simply connected hypersurface parametrized in terms of the Gauss
parametrization by such a surface g (respectively, pair (g, γ)) is a Sbrana-Cartan hyper-
surface that admits either a one-parameter family of isometric deformations (continu-
ous class) or a single one (discrete class), according to whether g is of first or second
species, respectively.

Proof: Let f̃ : Mn → Qn+1
c be an isometric immersion that is not congruent to f on

any open subset of Mn. By Corollary 4.15, the hypersurfaces f and f̃ share a common
relative nullity distribution ∆ of rank n− 2. Therefore the shape operator Ã of f̃ is a
Codazzi tensor on Mn such that ker Ã = ∆. The Gauss equations for f and f̃ yield

detA|∆⊥ = det Ã|∆⊥ . (11.47)
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Since f̃ is not congruent to f on any open subset of Mn, by Theorem 1.11 one cannot
have Ã = ±A on any open subset of Mn. Thus Ã is not a constant multiple of A on
any open subset of Mn.

It follows from Lemma 11.1 that f is either hyperbolic, parabolic or elliptic with
respect to a tensor J ∈ Γ(End(∆⊥)) on each connected component of an open dense
subset U of Mn, depending on whether the tensor

D = (A|∆⊥)−1Ã|∆⊥ ∈ Γ(End(∆⊥))

has two distinct real eigenvalues, one real eigenvalue of multiplicity two or a pair of
complex conjugate eigenvalues, respectively. The second case cannot occur by Propo-
sition 11.2 and the assumption that f is not ruled on any open subset of Mn. Thus
f is either hyperbolic or elliptic with respect to J ∈ Γ(End(∆⊥)) on each connected
component of U. Moreover, the tensor D satisfies conditions (i) and (ii) in Lemma
11.1, and detD = 1 in view of (11.47).

If c 6= 0 (respectively, c = 0), let f be parametrized, in terms of the Gauss
parametrization, by the surface g : L2 → Sn+1

1,µ (respectively, the pair (g, γ), where
g : L2 → Sn is a surface and γ ∈ C∞(L)) on some connected component U of U.
By Proposition 11.11, J is the horizontal lift of a tensor J̄ ∈ Γ(End(TL)) and the
surface g (respectively, the pair (g, γ)) is either hyperbolic or elliptic with respect to
J̄ , depending on whether f is hyperbolic or elliptic on U with respect to J .

By Proposition 11.12, also the tensor D is the horizontal lift of a tensor D̄ ∈
Γ(End(TL)), which satisfies D̄ ∈ span{Ī , J̄} and is a Codazzi tensor on L2. Moreover,
det D̄ = 1, for detD = 1. Finally, it follows from Proposition 11.13 that the surface g
(respectively, the pair (g, γ)) is of first or second species of real or complex type.

Conversely, let f : Mn → Qn+1
c , c 6= 0 (respectively, c = 0), be a simply connected

hypersurface parametrized, in terms of the Gauss parametrization, by either a hyper-
bolic or elliptic surface g : L2 → Sn+1

1,µ (respectively, hyperbolic or elliptic pair (g, γ),
where g : L2 → Sn is a surface and γ ∈ C∞(L)) with respect to J̄ ∈ Γ(End(TL)), with
g of first or second species of real or complex type.

By Proposition 11.11 the hypersurface f is either hyperbolic or elliptic with re-
spect to the horizontal lift J ∈ Γ(End(∆⊥)) of J̄ , depending on whether g (respectively,
the pair (g, γ)) is hyperbolic or elliptic with respect to J̄ . On the other hand, since g
is of first or second species of real or complex type, by Proposition 11.13 there exists a
Codazzi tensor D̄ ∈ span{Ī , J̄} such that D̄ 6= ±Ī and det D̄ = 1. It now follows from
Proposition 11.12 that the horizontal lift D ∈ Γ(End(∆⊥)) of D̄ satisfies conditions (i)
and (ii) in Lemma 11.1, and that (11.2) holds for the tensor Ã ∈ Γ(End(TM)) defined
by

Ã|∆⊥ = AD and ∆ = ker Ã. (11.48)

Moreover, detD = 1. Thus Ã is a symmetric Codazzi tensor on Mn by Lemma 11.1,
and detA|∆⊥ = det Ã|∆⊥ . It follows that Ã satisfies the Gauss and Codazzi equations
for an isometric immersion of Mn into Qn+1

c .
By Theorem 1.11 and the assumption that Mn is simply connected, there exists

an isometric immersion f̃ : Mn → Qn+1
c with Ã as its shape operator. Since Ã 6= ±A
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on any open subset of Mn, for D 6= ±I on any such subset, the hypersurfaces f and f̃
are not congruent on any open subset of Mn. Thus f is a Sbrana-Cartan hypersurface.

For the last assertion on how many isometric deformations does the hypersurface
f have, notice that the above proof has shown that these are in one-to-one correspon-
dence with the tensors D ∈ Γ(End(∆⊥)), with detD = 1, that satisfy conditions (i)
and (ii) in Lemma 11.1 and are such that (11.2) holds for the tensor Ã ∈ Γ(End(TM))
defined by (11.48). The set of all such tensors is, in turn, in one-to-one correspondence
with the set of Codazzi tensors D̄ ∈ Γ(End(TL)) such that det D̄ = 1, D̄ ∈ span{Ī , J̄}
and D̄ 6= ±Ī. By Proposition 11.13 there exist as many such tensors as positive solu-
tions of either (11.36) or (11.37), according to whether the Gauss map g is of real or
complex type. By (11.49) and (11.50) in Exercise 11.6, there is a one-parameter family
of such solutions if g is of first species, and a single one if g is of second species. �

11.4 Notes

The parametric description of the Sbrana-Cartan hypersurfaces of Euclidean
space in terms of the Gauss parametrization was given by Sbrana [312] in 1909 after
earlier works by Schur [314] in 1886 and Bianchi [35] in 1905, who only considered the
three-dimensional case. An alternative description of these hypersurfaces as envelopes
of certain two-parameter congruences was obtained by Cartan [64] in 1916, who gave a
more precise statement of the classification. Cartan’s description will be presented in
the last section of Chapter 14. The classification of Sbrana-Cartan hypersurfaces was
extended to the case of nonflat ambient space forms by Dajczer-Florit-Tojeiro [103].
We point out that the claims made in [163] and reproduced in [317] are incorrect.

The problem of determining whether Sbrana-Cartan hypersurfaces that allow a
single deformation do exist was addressed neither by Sbrana nor by Cartan. An affir-
mative answer was obtained in [103]. More precisely, it was shown that the transversal
intersection in Qn+2

c of two hypersurfaces Nn+1
j (c), 1 ≤ j ≤ 2, with constant sec-

tional curvature c, generically gives rise, by isometrically deforming Nn+1
j (c) into Qn+1

c ,
1 ≤ j ≤ 2, to a hypersurface in Qn+1

c of this type, together with its (unique) isometric
deformation. Moreover, a parametric description was provided, in terms of the Gauss
parametrization, of all Sbrana-Cartan hypersurfaces that can be obtained in this way,
referred to in the sequel as Sbrana-Cartan hypersurfaces of intersection-type. These are
the only known examples so far of Sbrana-Cartan hypersurfaces that admit a unique
isometric deformation.

The study of Sbrana-Cartan hypersurfaces of intersection-type in Euclidean space
was pursued further by Florit-Freitas [184], who obtained a nice characterization of
them among the class of hyperbolic n-dimensional submanifolds of Rn+2 that carry a
relative nullity distribution ∆ of rank n− 2. The latter can be characterized as those
n-dimensional submanifolds of Rn+2 carrying a relative nullity distribution of rank n−2
that admit at any point a pair of linearly independent normal vectors whose shape
operators have rank one. It was proved in [184] that for any hyperbolic submanifold
f : Mn → Rn+2 there always exists a surface g : L2 → Rn+2 such that g∗Tπ(x)L =
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NfM(x) for all x ∈ Mn, where L2 is the space of leaves of ∆ and π : Mn → L2 is the
quotient map. The surface g is called the polar surface of f , and it was shown that
f can be recovered from g by means of a Gauss-like parametrization. The transversal
intersections in Rn+2 of two flat hypersurfaces Nn+1

j , 1 ≤ j ≤ 2, were then characterized
as those nowhere flat hyperbolic n-dimensional submanifolds whose polar surfaces are
given by

g(u, v) = α1(u) + α2(v)

for some curves αj : Ij ⊂ R → Rn+2, 1 ≤ j ≤ 2. This enabled the authors to derive a
simple criterion, in terms of an invariant related to a pair of curves called their shared
dimension, to decide whether a given Sbrana-Cartan hypersurface of intersection-type
belongs to the discrete or to the continuous class.

Already in Dajczer-Florit-Tojeiro [103], the observation that Sbrana-Cartan hy-
persurfaces of intersection-type can belong either to the discrete or to the continuous
class, or even be surface-like, was used to construct explicit examples where Sbrana-
Cartan hypersurfaces of different types are smoothly attached, thus showing the local
nature of their classification.

The Gauss image of any Sbrana-Cartan hypersurface of intersection-type is there-
fore, generically, a surface of second species of real type. The existence of deformable
hypersurfaces whose Gauss images are surfaces of second species of complex type was
proved later by Dajczer-Florit [100], where a procedure to obtain explicit parametrized
examples was also given.

A transformation that assigns to any n-dimensional deformable hypersurface be-
longing to the continuous real case, a family of new such hypersurfaces, was constructed
by Bianchi for n = 3, and then extended by Sbrana [312] to any dimension. The trans-
formation actually acts on surfaces of first species of real type. The family of trans-
formed surfaces depends on n − 1 parameters and is obtained through an integration
involving the solutions of a completely integrable first order linear system of differential
equations. A permutability theorem for the transformation was also given in [312].

The characterization of the Sbrana-Cartan hypersurfaces whose isometric defor-
mations have isometric Gauss maps is due to Dajczer-Gromoll [111]; see Exercise 11.9.

A parametric description of the hypersurfaces f : Mn → Rn+1 for which Mn also
admits an isometric immersion into the Lorentz space Ln+1 was obtained by Dajczer-
Florit [94]. They are given, as the Sbrana-Cartan hypersurfaces, by means of the Gauss
parametrization in terms of surfaces of first and second species of real type, but now
making use of a negative solution of system (11.36).

11.5 Exercises

Exercise 11.1. Show that the last assertion in Corollary 11.3 is not true for surface-
like ruled hypersurfaces. More precisely, argue that a cylinder over a ruled surface in
R3 may admit nonruled isometric deformations.

Exercise 11.2. Let V and W be vector spaces of dimensions 2 and p ≥ 2, respectively,
and let α : V × V → W be a symmetric bilinear form. Assume that there exist a basis
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X, Y of V and a, b, c ∈ R such that a2 + b2 + c2 6= 0 and

aα(X,X) + 2cα(X, Y ) + bα(Y, Y ) = 0.

Show that ab−c2 being positive, negative or zero is independent of the basis X, Y , and
that it is equivalent to the existence of an endomorphism J of V such that J2 = εI
with ε = −1 (respectively, ε = 1 or ε = 0, with J 6= 0 if ε = 0) and

α(JT, S) = α(T, JS)

for all T, S ∈ V .

Hint: Given any other basis X̃, Ỹ of V , write

X = a11X̃ + a12Ỹ and Y = a21X̃ + a22Ỹ ,

and denote

P =

(
a11 a12

a21 a22

)
.

Show that
ãα(X̃, X̃) + 2c̃α(X̃, Ỹ ) + b̃α(Ỹ , Ỹ ) = 0,

where the matrices

A =

(
a c
c b

)
and Ã =

(
ã c̃

c̃ b̃

)
are related by Ã = P tAP . Conclude that ab − c2 being positive, negative or zero is
independent of the basis X, Y , and that there exists a basis X, Y of V for which the
matrix A is either (

1 0
0 1

)
,

(
1 0
0 − 1

)
or

(
1 0
0 0

)
.

In other words, there exists a basis X, Y of V such that one of the following conditions
hold:

(i) α(X,X) = −α(Y, Y ),

(ii) α(X,X) = α(Y, Y ),

(iii) α(X,X) = 0.

Define an endomorphism J of V by asking that JX = Y and JY = −X in case (i),
JX = Y and JY = X in case (ii), and JX = 0 and JY = X in case (iii).

Exercise 11.3. Show that minimal surfaces endowed with isothermal coordinates are
surfaces of first species of complex type.
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Exercise 11.4. Given curves cj : Ij ⊂ R → Rnj , cj = cj(tj), 1 ≤ j ≤ 2, with Frenet
frames c′j = ej1, e

j
2, . . . , e

j
nj

and first curvature functions kj, let θj be given by θ′j = kj,

1 ≤ j ≤ 2. Show that the map g : I1 × I2 → Rn1+n2 defined by

g =
1√

cos2 θ1 + cos2 θ2

(cos θ2 e
1
2, cos θ1 e

2
2)

parametrizes a surface of first species of real type.

Exercise 11.5. Let f : Mn → Qn+1
c be a minimal simply connected isometric im-

mersion with constant index of relative nullity ν = n − 2. For a smooth function
θ : Mn → [0, π), consider the tensor field R(θ) which acts pointwise as the identity on
the relative nullity distribution ∆ and as a rotation through an angle θ on ∆⊥. The
traceless symmetric tensor A(θ) = R(θ) ◦A clearly satisfies the Gauss equation. Show
the following facts:

(i) The tensor A(θ) satisfies the Codazzi equation if and only if θ is constant.

(ii) The associated family fθ : Mn → Qn+1
c , θ ∈ [0, π), of minimal immersions given

by Theorem 1.11 is a one-parameter family of non-congruent maps.

(iii) Any other minimal isometric immersion f̃ : Mn → Qn+1
c is congruent to some

element in the associated family.

Exercise 11.6. (i) If g : L2 → Sn+1
1,µ is a surface of first species of real type, show that

ω = Γ2du+ Γ1dv

is a closed one-form. Conclude that there exists locally ϕ ∈ C∞(L) such that

dϕ+ 2ϕω = 0.

Prove that
ϕ = U + V

for some smooth functions U = U(u) and V = V (v), and conclude that

Γ1 =
−Vv

2(U + V )
, Γ2 =

−Uu
2(U + V )

.

(ii) Show that the general solution of (11.36) is

τ(u, v) =
c− V (v)

c+ U(u)
, (11.49)

where c ∈ R. Conclude that, locally, there always exist positive solutions of (11.36)
other than τ = 1.
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Exercise 11.7. Show that the general solutions of (11.46) and (11.37) are, respec-
tively,

Γ = − 1

2φ
(φu + iφv)

and

ρ = eiθ with cot θ =
1

φ
(λ+ µ), (11.50)

where φ = φ(u, v) satisfies
φuu + φvv = 0, (11.51)

µ is any particular solution of µv = φu and λ = λ(u) is determined by

λu + µu + φv = 0

up to a real constant.

Exercise 11.8. Prove that a Sbrana-Cartan hypersurface of continuous or discrete
class with sectional curvature KM ≥ 0 is always of real type.

Exercise 11.9. Let f : Mn → Rn+1 be a Sbrana-Cartan hypersurface. Assume that
there is an isometric deformation g : Mn → Rn+1 such that f and g have isometric
Gauss maps. Show that f is minimal and that g belongs to its associated family.

Hint: Having isometric Gauss maps means that the shape operators of f and g satisfy

(Af )2 = (Ag)2 = (AfD)2.

This easily implies the statement for surface-like hypersurfaces, and excludes ruled and
hypersurfaces of real type and continuous or discrete class. If f is of complex type in
the continuous or discrete class, and Z is the complex eigenfield of D with DZ = ρZ
for some smooth function ρ 6= 1 taking values in S1 ⊂ C, then, the complex coordinate
vector ∂z = (1/2)(∂u − i∂v) induced on the Gauss image by Z satisfies

〈∂z, ∂z〉 = 〈AfZ,AfZ〉 = 〈AfDZ,AfDZ〉 = ρ2〈AfZ,AfZ〉 = ρ2〈∂z, ∂z〉,

hence 〈∂z, ∂z〉 = 0. Verify that this means that the coordinates (u, v) are isothermal.
Use the condition that (u, v) are complex conjugate to conclude that the Gauss image
of f is minimal. Moreover, using that the solutions of (11.51) associated to minimal
surfaces are the constant ones, verify that the corresponding solutions of (11.37) given
by Exercise 11.6 are ρ = eiθ, θ ∈ R. Conclude that the one-parameter family of
isometric deformations of a minimal hypersurface coincides with its associated family.
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Genuine deformations

In order to find necessary conditions for a submanifold in a space form with codi-
mension greater than one to admit isometric deformations, one has to take into account
that any submanifold of a deformable submanifold already possesses the isometric de-
formations induced by the latter. Therefore, when studying the isometric deformations
of a submanifold, one should look for the “genuine” ones, that is, those which are not
induced by isometric deformations of an “extended” submanifold of higher dimension.
Besides, it is also of interest to consider isometric deformations of a submanifold that
take place in a possibly different codimension.

To make precise the preceding discussion we need to introduce some new concepts.

A pair of isometric immersions f : Mn → Qn+p
c and f̂ : Mn → Qn+q

c is said to
extend isometrically when there exist an isometric embedding j : Mn ↪→ Nn+` into a
Riemannian manifold Nn+`, 0 < ` ≤ min{p, q}, and a pair of isometric immersions
F : Nn+` → Qn+p

c and F̂ : Nn+` → Qn+q
c such that f = F ◦ j and f̂ = F̂ ◦ j, that is,

such that the following diagram commutes:

Mn Nn+` (1)

Qn+p
c

Qn+q
c

f

f̂

F

F̂

j �
��

@
@R

��
��

��1

PPPPPPq

-��

An isometric immersion f̂ : Mn → Qn+q
c is called a genuine deformation of a

given isometric immersion f : Mn → Qn+p
c if there exists no open subset U ⊂ Mn

along which the restrictions f |U and f̂ |U extend isometrically. Since in this case f is
also a genuine deformation of f̂ , we refer to {f, f̂} simply as a genuine pair.

Notice that a pair {f, f̂} being genuine for p = 1 = q just means that there
exists no open subset U ⊂ Mn such that the restrictions f |U and f̂ |U are congruent.
Therefore, the problem of determining the hypersurfaces of dimension n ≥ 3 of Qn+1

c

that admit genuine deformations in Qn+1
c is precisely the one studied in Chapter 11.

342
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The concept of a genuine deformation leads naturally to a weaker notion of rigidity
than that considered in Chapter 4. Namely, an isometric immersion f : Mn → Qn+p

c

is said to be genuinely rigid in Qn+q
c , for a given q, if for any isometric immersion

f̂ : Mn → Qn+q
c there exists an open dense subset of Mn such that f and f̂ extend

isometrically along each connected component of Mn.

For instance, by the Beez-Killing theorem, the isometric inclusion i : U → Rn+1

of an open subset U ⊂ Sn, n ≥ 3, is rigid in the usual sense. On the other hand, one
can produce many isometric immersions f : U → Rn+p, p ≥ 2, just by composing i
with an isometric immersion h : V → Rn+p of an open subset V containing i(U). It is a
natural problem whether an isometric immersion f : U → Rn+p, for a given p ≥ 2, must
necessarily be given in this way, at least when restricted to the connected components
of an open dense subset of U . In terms of the concept of genuine rigidity, this amounts
to asking whether i is genuinely rigid in Rn+p.

One of the main results of this chapter shows that, in low codimension, there are
strong restrictions on the metric and the geometry of a submanifold that admits genuine
deformations. Several applications of that result are discussed. In particular, simple
sufficient conditions for genuine rigidity of an isometric immersion f : Mn → Qn+p

c

are derived. For instance, it is shown that f must be genuinely rigid in Qn+q
c if the

Ricci curvature of Mn is everywhere greater than c and the codimensions p and q
satisfy some restrictions. As a very particular case, this implies the genuine rigidity
of the inclusion i : U ⊂ Sn → Rn+1 in Rn+p for p ≤ n − 2. More generally, sufficient
conditions are given on an isometric immersion f : Mn → Qn+p

c which assure that any
isometric immersion f̂ : Mn → Qn+q

c with q ≥ p must be, locally on an open dense
subset of Mn, a composition of f with an isometric immersion h : U → Qn+q

c of an
open subset U ⊂ Qn+p

c containing f(M). As another application, isometric immersions
f : Mn → Qn+p

c for which Mn also admits an isometric immersion f̂ : Mn → Qn+q
c̃ with

c̃ 6= c are studied. A notion of a genuine pair {f, f̂} is introduced for this case, and it
is shown that, under some assumptions on p and q, such a pair can always be produced
by means of a genuine pair of isometric immersions into space forms with the same
constant sectional curvature.

When studying the possible isometric deformations of a compact Euclidean sub-
manifold with codimension greater than one, one is naturally led to consider iso-
metric extensions as in (1) of a pair of isometric immersions f : Mn → Rn+p and
f̂ : Mn → Rn+q that may have singular points, but only on j(M). This leads to a
weaker notion of genuine isometric deformations, called genuine isometric deforma-
tions in the singular sense, and hence to a stronger version of genuine rigidity. We
devote a section to discussing these concepts, which will play a key role in the study of
isometric deformations of compact Euclidean submanifolds with codimension greater
than one in Chapter 13. In fact, the necessity of considering isometric extensions that
may have singular points arises already in the study of local isometric deformations.
Examples of Euclidean submanifolds with codimension two that are genuinely rigid
but not genuinely rigid in the singular sense are provided.

The final section of this chapter is devoted to the description of submanifolds
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that have a nonparallel first normal bundle of low rank. As seen in Chapter 2, the
codimension of an isometric immersion f : Mn → Qn+p

c can be reduced to q < p
whenever its first normal spaces form a parallel subbundle N1 of rank q of its normal
bundle. It is then a natural problem to study what happens when N1 is a proper
subbundle of the normal bundle that is not parallel. Although apparently unrelated
to the main subject of this chapter, the proofs of the results of that section use similar
techniques, namely, the study of conditions under which a given submanifold can be
isometrically extended to a ruled submanifold.

Finally, we point out that, for reasons of simplicity, several statements and most
proofs in this chapter are given for Euclidean submanifolds, but can easily be adapted
to submanifolds of the sphere and the hyperbolic space.

12.1 Ruled extensions

As a first step towards finding necessary conditions for a submanifold in a space
form to admit genuine isometric deformations, in this section we derive restrictions
imposed on a submanifold that admits an isometric extension to a ruled submanifold
with certain properties.

An isometric immersion F : N → Qm
c is said to be Rr-ruled, or simply r-ruled,

if there exists an r-dimensional smooth integrable distribution Rr ⊂ TN whose leaves
are mapped diffeomorphically by F onto open subsets of totally geodesic submanifolds
of the ambient space. The leaves of Rr, as well as their images by F , are called the
rulings of F .

If F : N → Rm is an Rr-ruled isometric immersion, then at each point x ∈ N the
normal space NFN(x) splits orthogonally as

NFN(x) = LR(x)⊕ L⊥R(x),

where
LR(x) = span{αF (Z,X) : Z ∈ Rr(x) and X ∈ TxN}.

Assume that `R = dimLR is constant, and hence that LR is a smooth normal subbun-
dle. Clearly, it may happen that L⊥R be trivial, that is, LR may coincide with the whole
normal bundle NFN . If otherwise, then the following important observation holds.

Proposition 12.1. The normal subbundle L⊥R is parallel along Rr in Rm.

Proof: Since R ⊂ N(αF
L⊥R

), it follows from the Codazzi equation

∇XAηT − Aη∇XT − A∇⊥XηT = ∇TAηX − Aη∇TX − A∇⊥T ηX

that
〈A∇⊥T ηX,S〉 = 0



Chapter 12. Genuine deformations 345

for all η ∈ Γ(L⊥R), S, T ∈ Γ(R) and X ∈ X(N). This shows that L⊥R is parallel along
Rr in the normal connection. Therefore

∇̃T ξ = −f∗AξT +∇⊥T ξ
= ∇⊥T ξ ∈ Γ(L⊥R)

for all ξ ∈ Γ(L⊥R), where ∇̃ stands for the connection of Rm. �

Let j : Mn → N be an isometric immersion and set f = F ◦ j : Mn → Rm. The
normal bundle of f splits orthogonally as

NfM = F∗NjM ⊕ j∗NFN

and we have
αf (X, Y ) = F∗α

j(X, Y ) + αF (j∗X, j∗Y ) (12.1)

for all and X, Y ∈ X(M) (see Exercise 1.6).
Assume that the subspaces

R(j(x)) ∩ j∗TxM

have constant dimension d and let D ⊂ TM be the distribution defined by

j∗D(x) = R(j(x)) ∩ j∗TxM.

Denote by P the subbundle L⊥R regarded as a subbundle of NfM , that is, P = j∗L⊥R. It
follows from Proposition 12.1 that P is parallel along D in Rm. Moreover, from (12.1)
we obtain

〈αf (T,X), ζ〉 = 〈αF (j∗T, j∗X), ζ〉 = 0

for all T ∈ Γ(D), X ∈ X(M) and ζ ∈ Γ(P ). Therefore D ⊂ N(αfP ).
Notice that if R = N(αF

L⊥R
), that is, if

R⊥(y) = span{AξX : X ∈ TyN and ξ ∈ L⊥R(y)}

for all y ∈ N , then also D = N(αfP ) if

R⊥(j(x)) = span{Aξj∗X : X ∈ TxM and ξ ∈ L⊥R(j(x))}

for all x ∈Mn, in particular if j is transversal to the rulings.

In the sequel we prove that, conversely, any isometric immersion f : Mn → Rm

for which there exist subbundles D of TM and P of NfM such that D = N(αfP ) and P
is parallel along D in the normal connection (hence in Rm) admits a (possibly trivial)
isometric extension to a R-ruled isometric immersion F : N → Rm with a nontrivial
subbundle L⊥R. As a first step, under these assumptions we prove the following.

Lemma 12.2. The distribution D is integrable.
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Proof: First notice that

0 = R̃(Y, Z)µ = ∇̃Y ∇̃Zµ− ∇̃Z∇̃Y µ− ∇̃[Y,Z]µ

for all Z, Y ∈ Γ(D) and µ ∈ Γ(P ), where R̃ is the curvature tensor of Rm. Since P is
parallel along D in Rm, it follows that

∇̃[Y,Z]µ ∈ Γ(P )

and, in particular, that
Aµ[Y, Z] = 0.

Thus [Y, Z] ∈ Γ(D), and hence D is integrable. �

Now consider the orthogonal splittings

TM = D ⊕ E, NfM = L⊕ P

and define γ : Γ(E)× Γ(P )→ Γ(E ⊕ L) by

γ(Y, µ) = (∇̃Y µ)E⊕L

= −f∗AµY + (∇⊥Y µ)L. (12.2)

It is easily seen that γ is C∞(M)-linear in both variables, hence we can regard γ as a
section of Hom2(E,P ;E ⊕ L). Observe that

E(x) = span{AµY : µ ∈ P (x) and Y ∈ E(x)}

for all x ∈Mn. Hence, the subspace Γ(x) ⊂ f∗E(x)⊕ L(x) given by

Γ(x) = S(γ)(x) (12.3)

satisfies
n− d = dimE(x) ≤ dim Γ(x) ≤ n− d+ `, (12.4)

where ` is the rank of L.
In the sequel, we assume that

dim Γ(x) = k (12.5)

is constant on Mn. Then the affine vector bundle π : Λ→Mn of rank r = n−d+ `−k
defined by the orthogonal splitting

Γk ⊕ Λr = f∗E
n−d ⊕ L` (12.6)

satisfies
Λ(x) ∩ f∗TxM = {0}
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for all x ∈Mn. In fact, if Z ∈ TxM is such that f∗Z ∈ Λ(x), then Z ∈ E(x) and

0 = 〈f∗Z, ∇̃Xµ〉 = −〈AµZ,X〉

for all µ ∈ Γ(P ) and X ∈ TxM . Thus Z ∈ D(x), and hence Z = 0.
By the above, the affine subspaces

R(x) = D(x)⊕ Λ(x)

form an affine vector bundle over Mn of rank d+ r = n+ `− k.

Lemma 12.3. The affine vector bundle R is parallel in Rm along the leaves of D.

Proof: It suffices to show that the orthogonal complement Γ⊕P of R in Rm is parallel
in Rm along the leaves of D. First observe that

Γ⊕ P = span{∇̃Xµ : X ∈ TM and µ ∈ Γ(P )}.

Thus, from R̃(Y, Z)µ = 0 we obtain

∇̃Y ∇̃Xµ = ∇̃X∇̃Y µ+ ∇̃[Y,X]µ ∈ Γ⊕ P

for all µ ∈ Γ(P ), Y ∈ Γ(D) and X ∈ X(M). �

Define F : Nn+r → Rm as the restriction of the map

λ ∈ Λ 7→ f(π(λ)) + λ

to a tubular neighborhood Nn+r of the 0-section j : Mn ↪→ Nn+r of Λ where that map
is an embedding. Hence f = F ◦ j and

Tj(x)N = j∗TxM ⊕ Λ(x) (12.7)

for any x ∈Mn.
By Lemma 12.3, the immersion F is R-ruled, where R(λ) = R(π(λ)). From

〈∇̃Xλ, µ〉 = −〈λ, ∇̃Xµ〉 = 0

for all λ ∈ Γ(Λ), µ ∈ Γ(P ) and X ∈ TM , it follows that P ⊂ NFN , where

P(λ) = P (π(λ)).

Moreover,
R = N(αFP ).

In fact, the inclusion R ⊂ N(αFP ) holds because P is constant along R. For the opposite
inclusion, observe that

αFP |TM×TM = αP .

From (12.7) we see that R = N(αFP ) on j(M). Finally, observe that the dimension
of N(αFP ) can only decrease along R ⊂ Nn+r from its value on j(M) if Nn+r is taken
small enough.

Taking into account (12.4), the preceding facts can be summarized as follows.
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Proposition 12.4. Assume that (12.5) holds. Then F : Nn+r → Rm is a R-ruled
extension of f and

j∗D(x) = Rd+r(j(x)) ∩ j∗TxM

for all x ∈Mn. Moreover, there is an orthogonal splitting

NFN = L⊕ P

such that rank L = `− r, R = N(αFP ) and P is parallel along R in Rm. Furthermore,
the following assertions hold:

(i) If k = n− d+ ` (r = 0) then f is D-ruled and does not extend.

(ii) If k = n− d (r = `) then R is the relative nullity distribution of F .

12.2 Pairs of ruled extensions

The aim of this section is to provide sufficient conditions for a pair of isometric
immersions to admit simultaneous R-ruled isometric extensions satisfying some addi-
tional properties. For that, we adapt the extension procedure developed in the previous
section to this situation.

First we find necessary conditions.

Let F : Nn+r → Rn+p and F̂ : Nn+r → Rn+q be R-ruled isometric immersions,
where R ⊂ Nn+r is a smooth integrable distribution. By the Gauss equations of F
and F̂ ,

〈αF (T,X), αF (S, Y )〉 = 〈αF̂ (T,X), αF̂ (S, Y )〉

for all T, S ∈ Γ(R) and X, Y ∈ X(N). Thus the map TR : Γ(LFR)→ Γ(LF̂R), given by

TR(αF (T,X)) = αF̂ (T,X) (12.8)

for all T ∈ Γ(R) and X ∈ X(M), determines a vector bundle isometry between LFR and

LF̂R. Notice that (12.8) implies that

AFζ |R = AF̂TRζ |R

for all ζ ∈ Γ(LR).
Let us assume that the stronger condition

AFζ = AF̂TRζ

is satisfied for all ζ ∈ Γ(LR), that is,

TR(αFLR(X, Y )) = αF̂
L̂R

(X, Y )
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for all X, Y ∈ X(M). Using the Codazzi equations for F and F̂ , and the fact that LR
and L̂R are parallel in the normal connection along R, one can easily verify that

〈F∇⊥ZαF (T,X), αF (S, Y )〉 = 〈F̂∇⊥ZαF̂ (T,X), αF̂ (S, Y )〉

for all T, S ∈ Γ(R) and X, Y, Z ∈ X(M), that is,

TR((F∇⊥Xζ)LR) = (F̂∇⊥XTRζ)L̂R

for all ζ ∈ Γ(LR) and X ∈ X(M).
Now let j : Mn → Nn+r be an isometric immersion and let f : Mn → Rn+p and

f̂ : Mn → Rn+q be defined by f = F ◦ j and f̂ = F̂ ◦ j. Then Lj = F∗NjM and

L̂j = F̂∗NjM are subbundles of NfM and Nf̂M , respectively, and Tj : Γ(Lj)→ Γ(L̂j),
given by

TjF∗ξ = F̂∗ξ

for all ξ ∈ Γ(NjM), defines a vector bundle isometry between Lj and L̂j.

Consider the orthogonal splittings of the normal bundles of f and f̂ as

NfM = Lj ⊕ j∗LFR ⊕ P and Nf̂M = L̂j ⊕ j∗LF̂R ⊕ P̂ ,

where
P = j∗(LFR)⊥ and P̂ = j∗(LF̂R)⊥.

Denote
L = Lj ⊕ j∗LFR and L̂ = L̂j ⊕ j∗LF̂R

and let T : Γ(L)→ Γ(L̂) be given by

T|Lj = Tj and T|j∗LFR = TR.

Then T is a vector bundle isometry between L and L̂ such that

α̂L̂(X, Y ) = F̂∗α
j(X, Y ) + αF̂

L̂R
(j∗X, j∗Y )

= TjF∗α
j(X, Y ) + TRα

F
LR

(j∗X, j∗Y )

= T(F∗α
j(X, Y ) + αFLR(j∗X, j∗Y ))

= TαL(X, Y )

where α = αf , α̂ = αf̂ and X, Y ∈ X(M). On the other hand, from

f∇⊥XF∗ξ = F∗
j∇⊥Xξ + αF (j∗X, ξ)

and
f̂∇⊥XF̂∗ξ = F̂∗

j∇⊥Xξ + αF̂ (j∗X, ξ)
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for all X ∈ X(M) and ξ ∈ Γ(NjM) (see Exercise 1.6), it follows that

(f̂∇⊥XTF∗ξ)L̂ =
(
f̂∇⊥XF̂∗ξ

)
L̂

= F̂∗
j∇⊥Xξ + αF̂

L̂R
(j∗X, ξ)

= TjF∗
j∇⊥Xξ + TRα

F
LR

(j∗X, ξ)

= T(f∇⊥XF∗ξ)L.

Similarly, from
f∇⊥Xζ = −F∗(AFζ j∗X)NjM +F∇⊥j∗Xζ

for all X ∈ X(M) and ζ ∈ Γ(NFN), and the corresponding formula for f̂ , we obtain

(f̂∇⊥XTζ)L̂ = −F̂∗(AF̂Tζj∗X)NjM + (F̂∇⊥j∗XTRζ)L̂R
= −TjF∗(AFζ j∗X)NjM + TR(F∇⊥j∗Xζ)LR

= T(f∇⊥Xζ)L

for all X ∈ X(M) and ζ ∈ Γ(LFR). Thus T is a parallel vector bundle isometry with
respect to the induced connections.

Assume as in the previous section that the subspaces

R(j(x)) ∩ j∗TxM

have constant dimension d and let D ⊂ TM be the distribution defined by

j∗D(x) = R(j(x)) ∩ j∗TxM.

As before,
D ⊂ N(αP ) ∩N(α̂P̂ )

and both L and L̂ are parallel in the normal connection along D. Moreover, we actually
have

D = N(αP ) ∩N(α̂P̂ )

if we assume that
R = N(αFL⊥R

) ∩N(αF̂
L̂⊥R

)

and that j is transversal to the rulings.

Conversely, let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric immersions. As-
sume that there exist a vector bundle isometry T : L` → L̂` between normal subbundles
L` ⊂ NfM and L̂` ⊂ Nf̂M of rank ` such that the tangent subspaces

D(x) = N(αL⊥(x)) ∩N(α̂L̂⊥(x))

form a tangent subbundle of rank d and the pair (T, Dd) satisfies the following two
conditions:
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(C1) The vector bundle isometry T is parallel with respect to the

induced connections and preserves the second fundamental forms.

(C2) The vector subbundles L` and L̂` are parallel along Dd in the

normal connections.

(12.9)

Notice that condition (C1) is equivalent to the vector bundle isometry

T̂ : f∗TM ⊕ L→ f̂∗TM ⊕ L̂,

given by
T̂(f∗X + ξ) = f̂∗X + Tξ,

being parallel with respect to the connections on f∗TM ⊕ L and f̂∗TM ⊕ L̂ induced
from those on f ∗TRn+p and f̂ ∗TRn+q, respectively.

Consider the orthogonal splitting

TM = D ⊕ E

and, for each x ∈ Mn, let Γ(x) ⊂ E(x) ⊕ L(x) and Γ̂(x) ⊂ E(x) ⊕ L̂(x) be given by
(12.3) for f and f̂ , respectively. Denote by Λ(x) the maximal subspace of E(x)⊕L(x)

such that Λ(x) is orthogonal to Γ(x) and T̂(Λ(x)) is orthogonal to Γ̂(x). Finally, assume
that the subspaces Λ(x) have constant dimension and thus form a vector subbundle of
rank r of TM ⊕ L.

As in the previous section, define isometric extensions F : Nn+r → Rn+p of f and
F̂ : Nn+r → Rn+q of f̂ , both ruled by R = D⊕Λ, up to parallel identification along Λ.

Proposition 12.5. The immersions F and F̂ are isometric R-ruled extensions of f
and f̂ , respectively. Moreover, there are smooth orthogonal splittings

NFN = L⊕ P and NF̂N = L̂⊕ P̂

and a vector bundle isometry T : L→ L̂ such that:

(i) rank L = rank L− r.

(ii) R = N(αFP ) ∩N(α̂F̂
P̂

).

(iii) P and P̂ are parallel along the rulings in Rm.

(iv) The vector bundle isometry T is parallel with respect to the induced connections
and preserves the second fundamental forms.
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Proof: We will only prove that F and F̂ , given by

F (λ) = f(π(λ)) + λ and F̂ (λ) = f̂(π(λ)) + T̂(λ),

induce the same metric on Nn+r. The remaining assertions follow from the arguments
in the proof of Proposition 12.4.

Let X denote both a tangent vector at π(λ) ∈Mn and its horizontal lift to TλN .
Choose a section of Λ through λ along a curve in Mn through π(λ) and tangent to X,
also denoted by λ. Then

‖F∗(λ)X‖ = ‖f∗X + ∇̃Xλ‖
= ‖f∗X + (∇̃Xλ)f∗TM⊕L‖
= ‖f̂∗X + (∇̃X T̂(λ))f̂∗TM⊕L̂‖

= ‖f̂∗X + ∇̃X T̂(λ)‖
= ‖F̂∗(λ)X‖

where in the second and fourth equalities we have used that ∇̃Xλ ∈ Γ(f∗TM ⊕L) and

∇̃X T̂(λ) ∈ Γ(f̂∗TM ⊕ L̂) for all λ ∈ Γ(Λ), by the definition of Λ. On the other hand,
the equality

‖F∗(λ)V ‖ = ‖F̂∗(λ)V ‖
holds trivially if V is a vertical vector at λ ∈ Λ. �

12.2.1 Constructing pairs of ruled extensions

We show next how to construct a pair (T, Dd) satisfying conditions (12.9) in the
previous section for a pair of isometric immersions into Euclidean spaces.

In the sequel, several vector subspaces will be pointwise defined either as images
or kernels of certain tensor fields on a submanifold. To avoid cumbersome repetition,
whenever necessary we agree that we are always working restricted to a connected
component of an open dense subset of the submanifold where these subspaces have
constant dimensions, and hence form smooth vector subbundles.

Given isometric immersions f : Mn → Rn+p and f̂ : Mn → Rn+q with second
fundamental forms α and α̂, respectively, endow the vector bundle NfM ⊕Nf̂M with
the indefinite metric of signature (p, q) given by

〈〈(ξ, ξ̂), (η, η̂)〉〉NfM⊕Nf̂M = 〈ξ, η〉NfM − 〈ξ̂, η̂〉Nf̂M ,

and its vector subbundle

S(α)⊕ S(α̂) ⊂ NfM ⊕Nf̂M

with the induced metric. Then consider the bilinear map

α⊕ α̂ : X(M)× X(M)→ Γ(S(α)⊕ S(α̂)),
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which we also regard as a section of Hom2(TM, TM ; S(α)⊕ S(α̂)).
Let Ω ⊂ S(α)⊕ S(α̂)) be the vector subbundle with isotropic fibers defined by

Ω = S(α⊕ α̂) ∩ S(α⊕ α̂)⊥.

The argument in the proof of Lemma 4.21 shows that there are orthogonal splittings

S(α) = Γ⊕ Σ and S(α̂) = Γ̂⊕ Σ̂ (12.10)

and a smooth vector bundle isometry L : Σ→ Σ̂ such that

Ω = {(η,Lη) : η ∈ Σ}

and α̂Σ̂ = L ◦ αΣ.
In the sequel, we define pairs of vector subbundles:

(D2, L2) ⊂ (D1, L1) ⊂ (D0, L0) and (D2, L̂2) ⊂ (D1, L̂1) ⊂ (D0, L̂0)

where Dj ⊂ TM and Lj, L̂j ⊂ Σ, with the following properties: The maps

Lj = L|Lj : Lj → L̂j, 0 ≤ j ≤ 2, (12.11)

are vector bundle isometries satisfying α̂L̂j = Lj ◦ αLj , and

Dj = N(αL⊥j ⊕ α̂L̂⊥j ), 0 ≤ j ≤ 2, (12.12)

where
NfM = Lj ⊕ L⊥j and Nf̂M = L̂j ⊕ L̂⊥j .

The procedure for the construction is to go from one pair to the next by requir-
ing an additional condition, so that the final pairs (D2, L2) and (D2, L̂2) will satisfy
conditions (12.9).

First, define the vector subbundles D0 ⊂ TM and L0 ⊂ Σ by

D0 = N(αΓ ⊕ α̂Γ̂) and L0 = S(α|D0×TM).

Define L̂0 in a similar way and observe that (12.11) and (12.12) hold for j = 0. The
next step is to define a vector subbundle L1 of L0 by requiring that

L0(∇⊥Xη)L0 = (∇̂⊥XL0(η))L̂0

for all η ∈ Γ(L1). For that, consider the map K : X(M) → Γ(Λ2(L0)) whose value at
X ∈ X(M) is the skew-symmetric tensor K(X) given by

K(X)η = L0(∇⊥Xη)L0 − (∇̂⊥XL0(η))L̂0
.

It is clear that K gives rise to a section of Hom(TM ; Λ2(L0)).
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Proposition 12.6. The tensor K has the following properties:

(i) K(Z) = 0 if Z ∈ Γ(D0).

(ii) K(X)α(Y, Z) = K(Y )α(X,Z) if either X, Y ∈ Γ(D0) or Z ∈ Γ(D0).

(iii) 〈K(X)α(Y, Z), α̂(T, Z)〉 = 0 if Z ∈ Γ(D0).

Proof: Comparing the Σ-components of the Codazzi equation for f and f̂ gives

L(∇⊥Xα(Y, Z))Σ − (∇̂⊥X α̂(Y, Z))Σ̂ = L(∇⊥Y α(X,Z))Σ − (∇̂⊥Y α̂(X,Z))Σ̂

where we have used that α̂Σ = T ◦ αΣ. If either X, Y ∈ Γ(D0) or Z ∈ Γ(D0), then

K(X)α(Y, Z) = K(Y )α(X,Z),

which proves part (ii). Let us denote

〈K(X1)α(X2, X3), α̂(X4, X5)〉 = (X1, X2, X3, X4, X5).

Then

(Y, Z1, Z2, Z3, X) = −(Y, Z3, X, Z1, Z2) = −(X,Z3, Y, Z1, Z2) = (X,Z1, Z2, Z3, Y )

= (Z2, Z1, X, Z3, Y ) = −(Z2, Z3, Y, Z1, X) = −(Z3, Z2, Y, Z1, X)

= (Z3, Z1, X, Z2, Y ) = (Z1, Z3, X, Z2, Y ) = −(Z1, Z2, Y, Z3, X)

= −(Y, Z1, Z2, Z3, X)

= 0

for all Z1, Z2, Z3 ∈ Γ(D0), and this proves part (i). Finally,

(X, Y, Z, T, Z) = (Y,X,Z, T, Z) = −(Y, T, Z,X,Z) = −(T, Y, Z,X,Z)

= (T,X,Z, Y, Z) = (X,T, Z, Y, Z) = −(X, Y, Z, T, Z)

= 0,

and this proves part (iii). �

We can now define L1 as the vector subbundle of L0 whose fiber at x ∈Mn is

L1(x) = ∩X∈TxM kerK(X),

and let D1 ⊂ D0 be the tangent subbundle given by (12.12). To conclude, let L2 be
the vector subbundle of L1 such that

Γ(L2) = {δ ∈ Γ(L1) : ∇⊥Y δ ∈ Γ(L0) and ∇̂⊥YL1(δ) ∈ Γ(L̂0) for all Y ∈ Γ(D0)}

and let D2 ⊂ D1 be defined again by (12.12). For simplicity, set (D2, L2) = (D,L).

Next we discuss a basic property of the tangent distributions defined above.
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Proposition 12.7. The distributions D0 and D1 satisfy

[D1, D0] ⊂ D0, (12.13)

that is, [Y, Z] ∈ Γ(D0) for all Y ∈ Γ(D1) and Z ∈ Γ(D0).

Proof: Let Z1, Z2 ∈ Γ(D0). Taking the inner product of both sides of the Codazzi
equation

(∇⊥Z1
α)(Z2, U) = (∇⊥Z2

α)(Z1, U)

with µ ∈ Γ(L⊥0 ) yields

〈∇⊥Z1
α(Z2, U)−∇⊥Z2

α(Z1, U), µ〉 = 〈αL⊥0 ([Z1, Z2], U), µ〉. (12.14)

The difference between the Codazzi equations of f and f̂ for δ ∈ Γ(L0) gives

〈A∇⊥Z δY − Â∇̂⊥ZL0(δ)Y,X〉 = 〈A∇⊥Y δZ − Â∇̂⊥Y L0(δ)Z,X〉.

It follows using part (i) of Proposition 12.6 that

〈∇⊥Z1
δ, αL⊥0 (X, Y )〉 − 〈∇̂⊥Z1

L0(δ), α̂L̂⊥0 (X, Y )〉 = 〈α̂(Z1, X),K(Y )δ〉

for all Z1 ∈ Γ(D0). Choose δ = α(Z2, U) ∈ Γ(L0) with Z2 ∈ Γ(D0). Then

〈∇⊥Z1
α(Z2, U), αL⊥0 (X, Y )〉 − 〈∇̂⊥Z1

α̂(Z2, U), α̂L̂⊥0 (X, Y )〉 = 〈α̂(Z1, X),K(Y )α(Z2, U)〉.

Take Z2 ∈ Γ(D1). Then the right-hand side of the above equation vanishes, and using
(12.14) for both immersions we obtain

〈αL⊥0 ([Z1, Z2], U), αL⊥0 (X, Y )〉 − 〈α̂L̂⊥0 ([Z1, Z2], U), α̂L̂⊥0 (X, Y )〉 = 0.

Denoting β = αΓ ⊕ α̂Γ̂, this is equivalent to

〈〈β([Z1, Z2], U), S(β)〉〉 = 0.

By Lemma 4.21, the subspace S(β) is nondegenerate, and the proof follows easily. �

Proposition 12.8. The pair (T = L|L` , D) defined on an open dense subset of Mn

satisfies conditions (12.9).

Proof: The isometry T preserves the second fundamental forms and the normal con-
nections since L1 = L|L1 already has these properties. Thus it remains to show that L
is parallel along D in the normal connection for both immersions.

We first argue that L0 is parallel along D in the normal connection, that is,

∇⊥Zµ ∈ Γ(L0) for all Z ∈ Γ(D) and µ ∈ Γ(L0). (12.15)

Observe that
S(αL⊥∩L0

|
D0×TM

) = L⊥ ∩ L0. (12.16)
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The Codazzi equation and (12.13) yield

(∇⊥Y αL⊥∩L1
(Z,X))L⊥0 = (∇⊥ZαL⊥∩L0

(Y,X))L⊥0 (12.17)

for all Z ∈ Γ(D1), Y ∈ Γ(D0) and X ∈ X(M). The left-hand side vanishes if Z ∈ Γ(D)
and (12.15) follows from (12.16) and the definition of L.

We show next that

∇⊥Zδ ∈ Γ(L1) for all Z ∈ Γ(D) and δ ∈ Γ(L). (12.18)

Define R ⊂ L0 by the orthogonal splitting

L0 = L1 ⊕R. (12.19)

The skew-symmetry of K(X) gives

R = span{K(X)µ : X ∈ X(M) and µ ∈ Γ(R)}. (12.20)

By the Ricci equation,

〈R⊥(X,Z)δ, µ〉 = 〈R̂⊥(X,Z)L0(δ),L0(µ)〉

for all δ, µ ∈ Γ(L0). It follows that

〈∇⊥Zδ,∇⊥Xµ〉 − 〈∇̂⊥ZL0(δ), ∇̂⊥XL0(µ)〉 = 〈∇⊥Xδ,∇⊥Zµ〉 − 〈∇̂⊥XL0(δ), ∇̂⊥ZL0(µ)〉

for all δ ∈ Γ(L1) and µ ∈ Γ(R). Part (i) of Proposition 12.6 and (12.15) give

〈L0(∇⊥Zδ), K(X)µ〉 = 0

for all Z ∈ Γ(D), δ ∈ Γ(L), µ ∈ Γ(R) and X ∈ X(M), and (12.18) follows from (12.20).
The Ricci equation yields

〈R⊥(Y, Z)δ, ξ〉 = 〈[Aξ, Aδ]Y, Z〉 = 0

for all Y, Z ∈ Γ(D0) and ξ ∈ Γ(L⊥0 ). Then (12.13), (12.15) and (12.18) give

〈∇⊥Y∇⊥Zδ, ξ〉 = 0

for all Y ∈ Γ(D0), Z ∈ Γ(D), δ ∈ Γ(L) and ξ ∈ Γ(L⊥0 ). By (12.18) and the definition
of L, it follows that L and L̂ = T(L) are parallel along D in the normal connections.�

12.3 Genuine isometric deformations

The main result of this section describes the geometric structure of a genuine pair
of isometric immersions. First we prove a lemma that will also be useful in the study
of genuine pairs of isometric immersions in the singular sense in Section 12.8.

Given vector bundles E and F over M , with F endowed with an indefinite metric
〈〈 , 〉〉, and φ ∈ Hom2(E, TM ;F ), we say that a vector subbundle H of E is isotropic
with respect to φ if

〈〈φ(γ, Y ), φ(γ, Y ))〉〉 = 0

for all γ ∈ Γ(H) and Y ∈ X(M).
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Lemma 12.9. Let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric immersions
such that there exists a vector bundle isometry T : L0 → L̂0 between vector subbundles
L0 ⊂ NfM and L̂0 ⊂ Nf̂M satisfying T ◦ αL0 = α̂L̂0

. Let L1 be a vector subbundle of
L0 such that

(∇̂⊥XT(ξ))L̂0
= T(∇⊥Xξ)L0

for all X ∈ X(M) and ξ ∈ Γ(L1). Then the following assertions hold:

(i) The map φ : Γ(f∗TM ⊕ L1)× X(M)→ Γ(L⊥0 ⊕ L̂⊥0 ), defined by

φ(f∗X + ξ, Y ) =
(

(∇̃Y (f∗X + ξ))L⊥0 , (∇̃Y (f̂∗X + T(ξ))L̂⊥0

)
(12.21)

gives rise to a section of the vector bundle Hom2(f∗TM⊕L1, TM ;L⊥0 ⊕ L̂⊥0 ) such
that the bilinear form φ(x) is flat for all x ∈ Mn with respect to the indefinite
inner product on L⊥0 (x)⊕ L̂⊥0 (x) given by

〈〈(ξ, ξ̂), (η, η̂)〉〉L⊥0 (x)⊕L̂⊥0 (x) = 〈ξ, η〉L⊥0 (x) − 〈ξ̂, η̂〉L̂⊥0 (x).

(ii) If S is an isotropic vector subbundle of f∗TM ⊕ L1 with respect to φ such that
S ∩ f∗TM = {0}, then the maps F : S → Rn+p and F̂ : S → Rn+q, defined by

F (δ) = f(π(δ)) + δ and F̂ (δ) = f̂(π(δ)) + T̂(δ),

are isometric immersions on a neighborhood of the 0-section.

Proof: (i) It is easily checked that φ is C∞-bilinear; hence it gives rise to a section of

Hom2(f∗TM ⊕ L1, TM ;L⊥0 ⊕ L̂⊥0 ). Let T̂ : f∗TM ⊕ L1 → f̂∗TM ⊕ L̂0 be defined by

T̂(f∗X + ξ) = f̂∗X + T(ξ).

By the assumption on T, we have

(∇̃X T̂(δ))f̂∗TM⊕L̂0
= T̂(∇̃Xδ)f∗TM⊕L0 (12.22)

for all δ ∈ Γ(f∗TM ⊕ L1). From

〈R̃(Y, Z)δ, ζ〉 = 0 = 〈R̃(Y, Z)T̂(δ), T̂(ζ)〉

we obtain

〈∇̃Y δ,∇̃Zζ〉 − 〈∇̃Y ζ, ∇̃Zη〉 = Z〈∇̃Y δ, ζ〉 − Y 〈∇̃Zδ, ζ〉+ 〈∇̃[Y,Z]δ, ζ〉

and

〈∇̃Y T̂(δ),∇̃Z T̂(ζ)〉−〈∇̃Y T̂(ζ), ∇̃Z T̂(η)〉 = 〈∇̃Y T̂(δ), T̂(ζ)〉 − Y 〈∇̃Z T̂(δ), T̂(ζ)〉
+ 〈∇̃[Y,Z]T̂(δ), T̂(ζ)〉
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for all Y, Z ∈ X(M) and δ, ζ ∈ Γ(f∗TM ⊕ L1). By (12.22), the right-hand sides of the
preceding equations coincide. Hence

〈∇̃Y δ,∇̃Zζ〉 − 〈∇̃Y ζ, ∇̃Zη〉 = 〈∇̃Y T̂(δ),∇̃Z T̂(ζ)〉 − 〈∇̃Y T̂(ζ), ∇̃Z T̂(η)〉.

Since, again by (12.22),

〈(∇̃Y δ)L0 ,(∇̃Zζ)L0〉 − 〈(∇̃Y ζ)L0 , (∇̃Zη)L0〉 =

〈(∇̃Y T̂(δ))L̂0
,(∇̃Z T̂(ζ))L̂0

〉 − 〈(∇̃Y T̂(ζ))L̂0
, (∇̃Z T̂(η))L̂0

〉,

it follows that
〈〈φ(δ, Y ), φ(ζ, Z)〉〉 − 〈〈φ(ζ, Y ), φ(δ, Z)〉〉 = 0.

Thus φ(x) is flat with respect to 〈〈 , 〉〉 for all x ∈Mn.

(ii) As in the proof of Proposition 12.5, let X denote both a tangent vector at π(δ) ∈
Mn and its horizontal lift to TδS. Choose a section of S through δ along a curve in
Mn through π(δ) and tangent to X, also denoted by δ. Then

‖F∗(δ)X‖2 = ‖f∗X + (∇̃Xδ)f∗TM⊕L‖2 + ‖(∇̃Xδ)L⊥‖2

= ‖f̂∗X + (∇̃X T̂(δ))f̂∗TM⊕L̂‖
2 + ‖(∇̃X T̂(δ))L̂⊥‖

2

= ‖F̂∗(δ)X‖2

where in the second equality we have used (12.22) and the flatness of φ. If V is a
vertical vector at δ ∈ S, then the equality

‖F∗(δ)V ‖ = ‖F̂∗(δ)V ‖

holds trivially. Since S ∩ f∗TM = {0}, then F and F̂ induce the same metric on a
neighborhood of the 0-section. �

Theorem 12.10. Let f : Mn → Rn+p and f̂ : Mn → Rn+q form a genuine pair of
isometric immersions. Along each connected component of an open dense subset of
Mn, let (T, Dd) be the pair given by Proposition 12.8. If min {p, q} ≤ 5 and p+ q < n,
then

d ≥ n− p− q + 3` (12.23)

and the immersions f and f̂ are mutually Dd-ruled.

Proof: With notations as in the previous section, we successively obtain estimates of
the ranks of D0, D1 and D.

Step 1. If d0 = rank D0 and `j = rank Lj, j = 0, 1, then

d0 ≥ n− p− q + 2`0 + `1. (12.24)

Define σ : X(M)× X(M)→ Γ(L⊥0 ⊕ L̂⊥0 ) by

σ(X, Y ) = (αL⊥0 (X, Y ), α̂L̂⊥0 (X, Y )),
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also seen as a section of Hom2(TM, TM ;L⊥0 ⊕ L̂⊥0 ). Given Y ∈ X(M), denote

CY = φ( , Y ) : Γ(f∗TM ⊕ L1)→ Γ(L⊥0 ⊕ L̂⊥0 )

where φ is given by (12.21), and

GY = σ( , Y ) : X(M)→ Γ(L⊥0 ⊕ L̂⊥0 ).

Take Y ∈ RE(φ), that is, Y (x) ∈ RE(φ(x)) for all x ∈ Mn, and define a vector
subbundle of f∗TM ⊕ L1 by H = kerCY . By Proposition 4.6,

φ(x)(V, Z) ⊂ ImφY (x) ∩ (ImφY (x))⊥

for all V ∈ H(x) and Z ∈ TxM , that is, the subbundle H is isotropic with respect to
φ. Since f and f̂ form a genuine pair, it follows from part (ii) of Lemma 12.9 that H
must be a tangent subbundle. Therefore

kerCY = kerGY , (12.25)

and hence
rank ImCY = rank ImGY + `1. (12.26)

Since φ(x) is a flat bilinear form for all x ∈ Mn by part (i) of Lemma 12.9, the
fibers of the subbundles ImCY and S(σ|H×TM) of L⊥0 ⊕ L̂⊥0 are orthogonal subspaces.
Thus

rank ImCY + rank S(σ|H×TM) ≤ p+ q − 2`0. (12.27)

We have seen that β = αΓ ⊕ α̂Γ̂ is flat and that S(β) is nondegenerate. Denote

BY = β( , Y ) : TM → Γ⊕ Γ̂.

Take Y ∈ RE(φ) ∩RE(β) and set K = kerBY . From Lemma 4.25 we obtain

d0 ≥ n− rank ImBY − rank S(β|K×TM). (12.28)

It follows using (12.25) that

rank ImGY + rank H = rank ImBY + rank K. (12.29)

From (12.26) to (12.29) we obtain

d0 ≥ n− p− q + 2`0 + `1 + rank S(σ|H×TM)− rank S(β|K×TM) + rank K − rank H.

Clearly H ⊂ K. Thus (12.24) has been proved unless H 6= K and

rank S(σ|H×TM)− rank S(β|K×TM) + rank K − rank H < 0. (12.30)

Assume the latter situation. We may also assume that σ|H×TM 6= 0. Otherwise H =
N(σ) = D0, and we obtain (12.24) from (12.26) and (12.27). Hence (12.30) gives

rank S(β|K×TM) > rank S(σ|H×TM) + rank K − rank H ≥ 2. (12.31)
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Set σ = β ⊕ β0, where necessarily β0 6= 0. Thus `0 < rank Σ where Σ is given by
(12.10). Hence

rank Γ < p− `0 ≤ p− `1 and rank Γ̂ < q − `0 ≤ q − `1.

By Proposition 4.6, K is an isotropic subbundle of TM with respect to β. Therefore

rank S(β|K×TM) < min {p, q} − `1. (12.32)

From (12.31), (12.32) and p ≤ 5 we see that `1 ≤ 1. Lemma 4.20 now yields

d0 ≥ n− rank S(β)

≥ n− p− q + 2`0 + 2

≥ n− p− q + 2`0 + `1,

and that is (12.24).

Remark 12.11. Lemma 4.20 gives the estimate d0 ≥ n − p − q + 2`0. The stronger
estimate (12.24) required the use of the more elaborate flat bilinear form φ and the
assumption that f and f̂ form a genuine pair.

Step 2. If d1 = rank D1, then
d1 ≥ d0 − `0 + `1. (12.33)

For R defined by (12.19), set rank R = r = `0 − `1. We need to argue for
1 ≤ r ≤ 5. Notice that R = S(γ), where

γ = αR|TM×D0 .

Take Z ∈ RE(γ) ⊂ D0 and set m = rank VZ , where VZ = γ(TM,Z). We show that

1 ≤ m ≤ [r/2], (12.34)

where [ ] denotes the entire part function. Let k0 be the minimal number of elements
Z1, . . . , Zk0 ∈ RE(γ) such that

R = S(γ|TM×span{Z1,...,Zk0
}) =

k0∑
j=1

VZj . (12.35)

Clearly, r ≥ m+ k0 − 1. Suppose m > [r/2]. Then

k0 ≤ [(r + 1)/2].

Since r ≤ 5, it is easy to see that

U = ∩k0
j=1VZj 6= 0.
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Part (iii) of Proposition 12.6 yields

K(X)VZ ⊂ V ⊥Z ⊂ R.

It follows using (12.35) that

K(X)U ⊂ ∩k0
j=1V

⊥
Zj

= 0.

Thus U ⊂ R ∩ L1 = 0, and this is a contradiction that proves (12.34).
Set

T (X) = γ(X, ) : D0 → R.

That D1 = N(γ) is equivalent to

D1 = ∩X∈TM kerT (X). (12.36)

Fix Z ∈ RE(γ). Then (4.8) gives

R =
m∑
i=1

ImT (Xi),

where X1, . . . , Xm ∈ TM are such that

VZ = span{γ(Xi, Z), 1 ≤ i ≤ m}.

Let {Y1, . . . , Ym0} ⊂ {X1, . . . , Xm} be a subset with the minimum number of elements
satisfying

R =

m0∑
j=1

ImT (Yj). (12.37)

By part (ii) of Proposition 12.6,

K(X)γ(Yj, Z) = K(Yj)γ(X,Z) (12.38)

for any Z ∈ D0. From (12.20), (12.37) and (12.38) we obtain

R =

m0∑
j=1

ImK(Yj)

which is equivalent to
∩1≤j≤m0 kerK(Yj) = 0. (12.39)

Using (12.38) we see that

Z ∈ ∩m0
j=1 kerT (Yj) if and only if K(Yj)γ(X,Z) = 0

for 1 ≤ j ≤ m0. It now follows from (12.39) that (12.36) can be replaced by

D1 = ∩1≤j≤m0 kerT (Yj). (12.40)
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Suppose a nonsingular K(Y ) exists. By (12.39), this happens if m0 = 1. We have

K(Y )γ(X, kerT (Y )) = K(X)γ(Y, kerT (Y )) = 0. (12.41)

Thus kerT (Y ) ⊂ D1. Hence

d1 ≥ rank kerT (Y ) ≥ d0 − r,

and (12.33) holds.
Since [r/2] ≥ m ≥ m0, to conclude the proof it suffices to argue for the case in

which m0 = 2, r ≥ 4 and all the K(Y ) are singular. After taking linear combinations,
if necessary, we see from (12.39) that there are Y1, Y2 such that rank K(Yj) = 4. Hence
r = 5. Moreover,

rank kerT (Y1) ≥ d0 − r + 1 (12.42)

since ImT (Y1) 6= R by (12.37). From (12.41) we have

K(Y1)γ(Y2, kerT (Y1)) = 0,

and (12.33) follows from (12.40) and (12.42).

Step 3. We first give a characterization of Dd and then prove the estimate (12.23).

If L` = L0 then (12.16) gives Dd = D1 = D0, and (12.23) follows from (12.24).
Thus we may assume that αL⊥∩L0

|
D0×TM

does not vanish. By Proposition 4.8, there

exists a subbundle of minimal rank V k
0 ⊂ TM , with 1 ≤ ρ ≤ `0 − `− k − 1, such that

S(αL⊥∩L0
|
D0×V0

) = L⊥ ∩ L0 (12.43)

and such that the subbundle G defined by

G = N(αL⊥∩L0
|
D0×V0

)

satisfies
rank G ≥ d0 − k(ρ− 1)− 1. (12.44)

Hence
1 ≤ k ≤ `0 − `− ρ+ 1. (12.45)

We now prove that
Dd = G ∩D1. (12.46)

The inclusion Dd ⊂ G is clear. For the opposite one, first observe that the left-hand
side of (12.17) vanishes if Z ∈ G and X ∈ V0. It follows from (12.43) and the definition
of L` that L0 is parallel along G in the normal connections for both immersions. Now
(12.17) yields

∇⊥Y αL⊥∩L0
(Z,X) ∈ Γ(L0)
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for all Y ∈ Γ(D0), Z ∈ Γ(G) and X ∈ X(M), and similarly for f̂ . But

αL⊥∩L0
(Z,X) ∈ Γ(L1)

since Z ∈ Γ(D1). Thus, by the definition of L` we have

αL⊥∩L0
(Z,X) = 0

for all Z ∈ Γ(G) and X ∈ X(M), that is, G ⊂ Dd, and (12.46) has been proved.
We show next that

d ≥ n− p− q + 2 `+ `1. (12.47)

From (12.46) we have
d0 ≥ rank G+ d1 − d,

hence (12.44) gives
d ≥ d1 − k(ρ− 1)− 1. (12.48)

It follows from the definition of D1 that

Dd = N(αL⊥∩L1
|
D1×V0

).

Proposition 4.8 yields
d ≥ d1 − k1(ρ1 − 1)− 1

with 1 ≤ k1 ≤ k and ρ1 ≤ `1 − `. Thus

d ≥ d1 − k(`1 − `− 1)− 1. (12.49)

From (12.48) and (12.49) we obtain

d ≥ d1 −min {k(ρ− 1) + 1, k(`1 − `)}.

It follows from (12.24) and (12.33) that

d ≥ n− p− q + `0 + 2`1 −min {k(ρ− 1) + 1, k(`1 − `)}.

To prove (12.47), we have to verify that

min {k(ρ− 1) + 1, k(`1 − `)} ≤ `0 + `1 − 2`, (12.50)

where 1 ≤ k ≤ `0 − `− ρ+ 1 from (12.45) and 1 ≤ ρ ≤ `0 − ` ≤ 5.
Observe that (12.50) holds unless

k(ρ− 1) ≥ `0 + `1 − 2` and (k − 2)(`1 − `) ≥ `0 − `1 + 1. (12.51)

Thus, for (12.50) to fail me must have 3 ≤ k ≤ 5, ρ ≥ 2 and `1 − ` ≥ 1. Hence

2 ≤ ρ ≤ `0 − `− k + 1 ≤ 6− k.

Therefore, it remains to analyze the cases in which (k, ρ) is either (4, 2) or (3, 3) or
(3, 2). In the first two cases `0 = 5 and ` = 0, whereas in the third case `0 − ` ≥ 4.
But this is in contradiction with (12.51). The estimate on d now follows from (12.47),
since `1 ≥ `.

To conclude the proof observe that, if f and f̂ were not Dd-ruled, by Proposi-
tion 12.5 they would admit nontrivial simultaneous R-ruled isometric extensions, in
contradiction with the fact that they form a genuine pair. �
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Remarks 12.12. (i) That ` = 0 just means that the foliation Dd is of relative nullity
for both immersions.

(ii) Notice that it is not assumed that the second fundamental form spans the full
normal space as it is usually required for rigidity results. See Exercise 12.11.

Let f : Mn → Rn+p be Dd-ruled. At x ∈Mn, consider the orthogonal splitting

NfM(x) = LD(x)⊕ L⊥D(x)

where
LD(x) = span{α(Z,X) : Z ∈ Dd(x) and X ∈ TxM}.

Assume that `D = rank LD is constant, and hence that LD is a smooth normal sub-
bundle. If the isometric immersion f̂ : Mn → Rn+q is also Dd-ruled, it follows from the
Gauss equation that there is a unique vector bundle isometry TD : LD → L̂D such that

α̂|D×TM = TD ◦ α|D×TM .

By Proposition 12.1, the pair (T, D) satisfies condition (C2). However, in general
condition (C1) does not have to be satisfied. The next result implies that this is indeed
the case if the pair {f, f̂} is genuine, p ≤ 5 and p+ q < n.

Corollary 12.13. Let f : Mn→ Qn+p
c and f̂ : Mn → Qn+q

c form a genuine pair of
isometric immersions with p ≤ 5 and p+q < n. Then, along each connected component
of an open dense subset of Mn, the isometric immersions f and f̂ are mutually Dd-
ruled with d ≥ n− p− q + 3`D and the pair (T, D) satisfies conditions (12.9).

Proof: The proof follows from Theorem 12.10 since LD ⊂ L` by the definition of LD.
�

Remark 12.14. For some additional information in regard to the above result, see
Exercises 12.8 and 12.9.

The estimate given by Theorem 12.10 is sharp, as shown by the following example.

Example 12.15. As discussed in Chapter 5, there are plenty of genuine deformations

gn : U ⊂ Sn → R2n−1

of the standard inclusion i : U → Rn+1 of an open subset U ⊂ Sn. If

gnj : Uj ⊂ Snj → R2nj−1

is such an isometric immersion for 1 ≤ j ≤ r, then the product immersion

g = gn1 × · · · × gnr × id : U1 × · · · × Ur × Rk → Rn+q

is a genuine deformation of the product in1×· · ·×inr× id of inclusions with the identity
map for which the equality holds in (12.23).
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The next example is for codimensions p = q = 2. The estimate (12.23) is also
sharp, but the rulings no longer come from a factor. The example also shows that
the notion of isometric extensions is indeed a matter for pairs. In fact, one may have
different extensions F for different isometric deformations f̂ of f . Moreover, it may
happen that a given pair {f, f̂} extends isometrically but there exists another isometric
deformation of f which is genuine.

Example 12.16. Let
i : Mn = Nn+1

1 ∩Nn+1
2 ↪→ Rn+2

be the transversal intersection of distinct Sbrana-Cartan hypersurfaces

fj : Nn+1
j → Rn+2, 1 ≤ j ≤ 2.

Assume that the relative nullity leaves of the hypersurfaces are transversal along every
point of Mn. Hence, the index of relative nullity of i is n − 4 everywhere. Now
consider two additional isometric immersions gj : Mn → Rn+2 determined by isometric

deformations f̂j of fj, j = 1, 2. It is not difficult to prove that the isometric extension

of the pairs of immersions i and gj of Mn recreates fj and f̂j. Thus the extension
of i depends on gj. Moreover, the immersion g2 must be a genuine deformation of g1

since, otherwise, their second fundamental forms would have to coincide on a normal
subbundle, and that is not the case.

Example 12.17. The complete complex ruled real Kaehler submanifolds in codimen-
sion two and rank four in Euclidean space given in [114] have locally an associated
one-parameter family of genuine deformations. These submanifolds are ruled and the
rulings have codimension two.

12.4 Genuine rigidity

Theorem 12.10 has several strong consequences of both local and global nature
in terms of the concept of genuine rigidity. First, one has the following basic sufficient
condition for genuine rigidity.

Theorem 12.18. Let f : Mn → Qn+p
c be an isometric immersion and let q be a

positive integer such that p+ q < n. If min {p, q} < 5 and f is not (n−p−q)-ruled on
any open subset of Mn, then f is genuinely rigid in Qn+q

c .

Proof: Immediate from Theorem 12.10. �

The next simple applications of Theorem 12.10 provide further sufficient condi-
tions for genuine rigidity.

Theorem 12.19. Let f : Mn → Rn+p be an isometric immersion of a compact man-
ifold and let q be a positive integer such that p + q < n. If min {p, q} < 5, then there
exists an open subset U ⊂Mn such that f |U is genuinely rigid in Rn+q.
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Proof: By Corollary 1.6, there exist an open subset U ⊂Mn and a smooth unit normal
vector field ξ along U such that Aξ is definite. Therefore f cannot be ruled on any
open subset of U . �

Theorem 12.20. Let f : Mn → Qn+p
c be an isometric immersion and let q be a positive

integer such that p + q < n. If min {p, q} < 5 and RicM > c then f is genuinely rigid
in Rn+q.

Proof: By Exercise 3.14, the isometric immersion f cannot be ruled on any open subset
by the assumption on the Ricci curvature. �

Theorem 12.21. Let f : Mn → Qn+p+1
c be an isometric immersion and let q be a

positive integer such that p + q + 1 < n and min {p + 1, q} < 5. If f(M) is contained
in an umbilical hypersurface Qn+p

c̃ of Qn+p+1
c , c̃ > c, then f is genuinely rigid in Qn+q

c .

Proof: The isometric immersion f cannot be ruled on any open subset. �

Either of the two previous theorems has the following immediate consequence.

Corollary 12.22. The umbilical inclusion i : U → Qn+1
c of an open subset U ⊂ Qn

c̃ ,
c̃ > c, is genuinely rigid in Qn+p

c if p ≤ n− 2.

The preceding result was shown to be false for p = n − 1 in Chapter 5. In
particular, this implies that the bound for q in Theorems 12.20 and 12.21 is sharp.

In the following and final result of this section, the integer ` stands for the rank
of the subbundle L constructed in Proposition 12.8.

Theorem 12.23. Let f : Mn → Qn+p
c and f̂ : Mn → Qn+q

c form a genuine pair of
isometric immersions with p ≤ 5 and p + q < n. If the extrinsic curvature of Mn

is nonpositive at any point, then f and f̂ have common relative nullity subspaces of
dimension ν ≥ n− p− q + 2`.

Proof: It was shown in Proposition 6.14 that if Mn has nonpositive extrinsic curvature
and f has an asymptotic subspace Dd, then ν ≥ d − s, where s = rank γ(D, Y ) for
γ = α|D×D⊥ and Y ∈ RE(γ). By Theorem 12.10 we have S(γ) ⊂ L`, and we obtain the
estimate for the relative nullity from the one for d. Observe that the relative nullity
subspace contained in Dd must be shared by f̂ since it coincides with the set of vectors
in Dd that belong to the nullity subspace of the curvature tensor of Mn. �

12.5 Compositions

The main result of this section gives sufficient conditions on an isometric immer-
sion f : Mn → Qn+p

c which assure that any isometric immersion f̂ : Mn → Qn+q
c with

q ≥ p must be, locally on an open dense subset of Mn, a composition of f with an
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isometric immersion h : U → Qn+q
c of an open subset U ⊂ Qn+p

c containing f(M). In
particular, for p = q it recovers the rigidity Theorem 4.23.

The following general result combines Theorem 12.23 with an assumption on the
s-nullities for large s including the relative nullity index.

Proposition 12.24. Let f : Mn → Qn+p
c , p ≤ 5, be an isometric immersion and let

q ≥ p be a positive integer. For an integer 1 ≤ k ≤ p, assume that

νfs ≤ n+ p− q − 2s− 1 for all k ≤ s ≤ p (12.52)

at any point of Mn. If f̂ : Mn → Qn+q
c is an isometric immersion, then there exists

an open dense subset of Mn along each connected component of which the immersions
f and f̂ have (possibly trivial) isometric R-ruled extensions F : Nn+r → Qn+p

c and
F̂ : Nn+r → Qn+q

c satisfying

rank R ≥ n+ 2p− q − 3(k − 1) ≥ 4 + p− k

and the conclusions of Proposition 12.5.

Proof: Theorem 12.10 applies and gives (possibly trivial) isometric R-ruled local ex-
tensions F and F̂ of maximal dimension defined on a manifold Nn+r with 0 ≤ r ≤ p.
By Theorem 12.23, there exists a vector bundle isometry T : L` → L̂` between vector
subbundles L` ⊂ NFN and L̂` ⊂ NF̂N of rank 0 ≤ ` ≤ p− r such that

αF̂
L̂`

= T ◦ αFL`

and
rank R ≥ n− p− q + 3(r + `).

Thus D = R ∩ TM satisfies

rank D ≥ rank R− r ≥ n− p− q + 2r + 3`.

Therefore
νfp−r−` ≥ n− p− q + 2r + 3` (12.53)

if p− r− ` ≥ 1. By (12.52), this is not possible if k ≤ p− r− `. Thus r+ ` ≥ p−k+ 1,
and we obtain

rank R ≥ n+ 2p− q − 3(k − 1).

To conclude the proof we use that n+ p− q − 2k − 1 ≥ 0 from (12.52) for s = k. �

Remark 12.25. In the above result, as well as in the following one, one must have
n ≥ p+ q + 1 for the inequality (12.52) to hold for s = p.

We can now state and prove the result on compositions referred to in the beginning
of this section.
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Theorem 12.26. Let f : Mn → Qn+p
c with p ≤ 5 be an isometric immersion and let

q ≥ p be a positive integer. At any point of Mn, assume that

νfs ≤ n+ p− q − 2s− 1 for all 1 ≤ s ≤ p. (12.54)

For q − p ≥ 5, replace the assumption for s = 1 by νf1 ≤ n − 2(q − p) + 1. Then any
isometric immersion f̂ : Mn → Qn+q

c is a composition along each connected component
of an open dense subset of Mn.

Proof: All we have to prove is that r = p. As in the proof of the last result, we see
that (12.53) holds if ` < p− r. Since this is in contradiction with (12.54), we conclude

that ` = p− r. Hence α̂F̂ = T ◦ αF and rank R ≥ n+ 2p− q.
Suppose that r < p. For any normal vector field η 6= 0 to F , the subspace D is

asymptotic for Aη along Mn, and thus

rank Aη ≥ 2(n− rank D).

From rank D ≥ n− (q − p) + 1 we obtain νf1 ≥ n− 2(q − p) + 2, a contradiction. �

The following special case of the preceding result extends Corollary 12.22.

Corollary 12.27. Let f : Mn → Qn+1
c and g : Mn → Qn+q

c , q ≥ 2, be isometric
immersions. Assume that the rank of f satisfies ρ ≥ q + 2 at any point of Mn. If
q ≥ 6, assume further that Mn does not contain an open (n−q+2)-ruled subset for
both immersions. Then g is a composition along each connected component of an open
dense subset of Mn.

12.6 Submanifolds of two space forms

The concept of a genuine pair of isometric immersions f : Mn → Qn+p
c and

f̂ : Mn → Qn+q
c can be extended to the case in which f and f̂ take values in space

forms with distinct curvatures.

First, the pair of isometric immersions f : Mn → Qn+p
c and f̂ : Mn → Qn+q

c̃ is
said to extend isometrically if there exist an isometric embedding j : Mn ↪→ Nn+` into
a Riemannian manifold Nn+`, 0 < ` ≤ min{p, q}, and a pair of isometric immersions
F : Nn+` → Qn+p

c and F̂ : Nn+` → Qn+q
c̃ such that

f = F ◦ j and f̂ = F̂ ◦ j.

The pair {f, f̂} is then said to be genuine if there exists no open subset U ⊂Mn along
which the restrictions f |U and f̂ |U extend isometrically.

The following result states that, under some assumptions on the codimensions,
genuine pairs of isometric immersions into space forms with distinct curvatures are
always produced by means of genuine pairs of isometric immersions into space forms
with the same constant sectional curvature.
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Theorem 12.28. Let f : Mn → Qn+p
c̃ and g : Mn → Qn+q

c form a genuine pair of
isometric immersions with c̃ > c. Assume that p + q < n − 1 and min {p + 1, q} ≤ 5.
Then there exist, locally on an open and dense subset of Mn, a Riemannian manifold
Nn+1 that admits a genuine pair of isometric embeddings F : Nn+1 → Qn+p+1

c and
G : Nn+1 → Qn+q

c , with F transversal to the inclusion j : Qn+p
c̃ → Qn+p+1

c , and an
isometry ψ : Mn → Ln = F (Nn+1) ∩ j(Qn+p

c̃ ) such that

f = j−1 ◦ ψ and g = G ◦ F−1 ◦ ψ,

where j−1 and F−1 stand for the inverses of j and F , respectively, regarded as maps
onto their images.

Proof: Set f̄ = j◦f . By Theorem 12.21, the isometric immersion f̄ is genuinely rigid in
Qn+q
c . Therefore, for each connected component U of an open and dense subset of Mn,

there exist a Riemannian manifoldNn+` and isometric embeddings F : Nn+` → Qn+p+1
c ,

G : Nn+` → Qn+q
c and k : U → Nn+` such that f̄ |U = F ◦ k and g|U = G ◦ k.

If F was not transversal to j along an open subset W ⊂ Nn+`, there would exist
F̄ : W → Qn+p

c̃ such that F |W = j ◦ F̄ . But then on W̃ = k−1(W ) we would have
f |W̃ = F̄ ◦ k|W̃ and g|W̃ = G ◦ k|W̃ , contradicting the fact the pair {f, g} is genuine.

Hence, we can assume that F is transversal to j, so that

Ln+`−1 = F (Nn+`) ∩ j(Qn+p
c̃ )

is a manifold. If ` > 1, defining L̄n+`−1 = F−1(Ln+`−1) and F̄ = F |L̄, we would have
F̄ = j ◦ F̃ for some isometric embedding F̃ : L̄n+`−1 → Qn+p

c̃ . Then f |U = F̃ ◦ k and
g|U = G ◦ k, contradicting again the fact that the pair {f, g} is genuine.

Thus ` = 1. Moreover, the pair {F,G} is genuine. Otherwise, there would exist
a Riemannian manifold Nn+s, s ≥ 2, and isometric embeddings F̂ : Nn+s → Qn+p+1

c ,
Ĝ : Nn+s → Qn+q

c and h : Nn+1 → Nn+s such that F = F̂ ◦ h and G = Ĝ ◦ h. Arguing
as in the preceding paragraph, with F and G replaced by F̂ and Ĝ, respectively, and
with k replaced by k ◦ h, we would reach again a contradiction with the fact that the
pair {f, g} is genuine.

Therefore
ψ = j ◦ f |U : U → Ln = F (Nn+1) ∩ j(Qn+p

c̃ )

is an isometry, and hence f |U = j−1 ◦ψ as stated. Moreover, from ψ = j ◦ f |U = F ◦ k
it follows that k = F−1 ◦ ψ, hence g|U = G ◦ k = G ◦ F−1 ◦ ψ. �

Corollary 12.29. Let f : Mn → Qn+p
c̃ and g : Mn → Qn+1

c be isometric immersions
with c̃ > c. Assume that n ≥ 4 and p < n − 2. Then there exist, locally on an
open and dense subset of Mn, an isometric embedding H : U → Qn+p+1

c of an open
subset U ⊂ Qn+1

c , transversal to the inclusion j : Qn+p
c̃ → Qn+p+1

c , and an isometry
ψ : Mn → Ln = H(U) ∩ j(Qn+p

c̃ ) such that

f = j−1 ◦ ψ and g = H−1 ◦ ψ,

where j−1 and H−1 stand for the inverses of j and H, respectively, regarded as maps
onto their images.
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Corollary 12.29 explains why there must exist a principal curvature λ of g with
multiplicity greater than or equal to n − p and a principal normal η ∈ NfM(x) such
that Eη = Eλ (see Exercise 4.3). The common eigenspaces arise by the intersections of
the relative nullity leaves of H, which have dimension at least n− p+ 1, with j(Qn+p

c̃ ).

The next lemma shows what else may happen if p = n− 2.

Lemma 12.30. Let f : Mn → Qn+1
c and f̂ : Mn → Q2n−2

c̃ be isometric immersions
with c̃ > c. Then, at each point x ∈Mn, one of the following possibilities holds:

(i) There exist a principal curvature λ of f with multiplicity greater than or equal to
two and a principal normal η ∈ Nf̂M(x) such that Eη = Eλ.

(ii) There exists an orthonormal basis of TxM that simultaneously diagonalizes the
second fundamental forms of f and f̂ .

Proof: Let F̂ : Mn → Qn+p+1
c be given by F̂ = i ◦ f̂ , where i : Qn+p

c̃ → Qn+p+1
c is an

umbilical inclusion. Note that the second fundamental form of F̂ at x ∈Mn is

αF̂ (X, Y ) = i∗α
f̂ (X, Y ) +

√
c̃− c 〈X, Y 〉 ζ (12.55)

for all X, Y ∈ TxM , where ζ is one of the unit vectors normal to i at f̂(x). Define

W = NfM(x)⊕NF̂M(x)

and endow W with the Lorentzian inner product 〈〈 , 〉〉 defined by

〈〈ξ + ν, ξ̃ + ν̃〉〉 = −〈ξ, ξ̃〉+ 〈ν, ν̃〉

for all ξ, ξ̃ ∈ NfM(x) and ν, ν̃ ∈ NF̂M(x). Now define β : TxM × TxM → W by

β(X, Y ) = αf (X, Y )⊕ αF̂ (X, Y ).

Then β is a flat bilinear form and N(β) = {0} by (12.55). Assume first that S(β) is
degenerate, that is, that there is a nonzero light-like vector e ∈ S(β)∩S(β)⊥. Thus one
can write S(β) = V ⊕ span{e} with V space-like, and if ē ∈ V ⊥ is a light-like vector
such that 〈e, ē〉 = 1, then the bilinear form

β̃ = β − 〈β, ē〉e

takes values in V and is also flat. From Lemma 4.10 we conclude that

dimN(β̃) ≥ n− dimV = 2.

Decompose e as
e = N + cosϕζ + sinϕi∗δ
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where N ∈ NfM(x) and δ ∈ Nf̂M(x) are unit vectors. Then λ =
√
c̃− c/ cosϕ is a

principal curvature of f and η =
√
c̃− c tanϕ δ is a principal normal of f̂ at x such

that Eλ = N(β̃) = Eη.
Now suppose that S(β) is nondegenerate. Since N(β) = {0}, it follows from

Lemmas 4.10 and 4.14 that S(β) = W . Moreover,

〈〈β( , ), ζ〉〉 =
√
c̃− c 〈 , 〉 (12.56)

by (12.55); hence β satisfies the assumptions of Theorem 5.2. By Theorem 5.2 there

exists a basis of TxM that diagonalizes β, and hence both αf (x) and αf̂ (x). By (12.56)
such basis is orthogonal. �

By Lemma 12.30, if f : M3 → Q4
c and f̃ : M3 → Q4

c̃ are isometric immersions
with c̃ 6= c, then at each point x ∈ M3 either f and f̃ have principal curvatures with
multiplicity two with common eigenspaces or there exists an orthonormal basis of TxM
that simultaneously diagonalizes the second fundamental forms of f and f̃ . The reader
is asked to verify that f and f̃ are given by the construction of Corollary 12.29 if the
first possibility holds everywhere. The next result characterizes the pairs {f, f̃} in the
second and most interesting case.

Theorem 12.31. Let f : M3 → Q4
c be a simply connected holonomic hypersurface

whose associated pair (v, V ) satisfies

〈v, v〉 = 1, 〈v, V 〉 = 0 and 〈V, V 〉 = c− c̃, (12.57)

where 〈 , 〉 is an inner product with Lorentzian signature. Then M3 admits an isometric
immersion into Q4

c̃, which is unique up to congruence.
Conversely, if f : M3 → Q4

c is a hypersurface with three distinct principal curva-
tures for which there exists an isometric immersion f̃ : M3 → Q4

c̃ with c̃ 6= c, then f is
locally a holonomic hypersurface whose associated pair (v, V ) satisfies (12.57).

Proof: Write

〈(x1, x2, x3), (y1, y2, y3)〉 =
3∑
i=1

δixiyi, (12.58)

where (δ1, δ2, δ3) is the signature of 〈 , 〉, and define

Ṽj = (−1)j+1δj(viVk − vkVi), 1 ≤ i 6= j 6= k ≤ 3, i < k. (12.59)

Thus Ṽ = (Ṽ1, Ṽ2, Ṽ3) is the unique vector in R3, up to sign, such that the vectors
v, |C|−1/2V and |C|−1/2Ṽ with C = c− c̃, form an orthonormal basis of R3 with respect
to 〈 , 〉. Therefore the matrix

D = (v, |C|−1/2V, |C|−1/2Ṽ )

satisfies DδDt = δ, where

δ = diag(1, C/|C|,−C/|C|).
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It follows that

vivj + C|C|−2ViVj − C|C|−2ṼiṼj = 0, 1 ≤ i 6= j ≤ 3,

or equivalently, that
cvivj + ViVj = c̃vivj + ṼiṼj.

Substituting the preceding equation into equation (iii) of (1.26) yields

∂hij
∂ui

+
∂hji
∂uj

+ hkihkj + ṼiṼj + c̃vivj = 0.

On the other hand, differentiating

3∑
i=1

δiv
2
i = 1 and

3∑
i=1

δiV
2
i = c− c̃

and using equations (i) and (iv) of (1.26), respectively, give

δi
∂vi
∂ui

+ δjhijvj + δkhikvk = 0 (12.60)

and

δi
∂Vi
∂ui

+ δjhijVj + δkhikVk = 0, 1 ≤ i 6= j 6= k 6= i ≤ 3. (12.61)

Now, differentiating (12.59) and using (12.60) and (12.61) together with equations (i)
and (iv) of (1.26), we obtain

∂Ṽj
∂ui

= hijṼi, 1 ≤ i 6= j ≤ 3.

By Proposition 1.13, there exists an immersion f̃ : M3 → Q4
c̃ with induced metric

ds2 =
3∑
i=1

v2
i du

2
i

and second fundamental form

α̃ =
3∑
i=1

Ṽividu
2
i .

Thus M3 admits an isometric immersion into Q4
c̃ .

Conversely, let f : M3 → Q4
c be a hypersurface for which there exists an isometric

immersion f̃ : M3 → Q4
c̃ . By Lemma 12.30, there exists an orthonormal frame e1, e2, e3

of M3 of principal directions of both f and f̃ . Let λ1, λ2, λ3 and µ1, µ2, µ3 be the
principal curvatures of f and f̃ correspondent to e1, e2 and e3, respectively. Assume
that λ1 < λ2 < λ3, and that the unit normal vector field to f has been chosen so that
λ1 < 0. The Gauss equations for f and f̃ yield

c+ λiλj = c̃+ µiµj, 1 ≤ i 6= j ≤ 3.
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Thus
µiµj = C + λiλj, 1 ≤ i 6= j ≤ 3, (12.62)

where C = c− c̃. It follows that

µ2
j =

(C + λjλi)(C + λjλk)

C + λiλk
, 1 ≤ j 6= i 6= k 6= j ≤ 3. (12.63)

By (1.19) and (1.20), the Codazzi equations for f and f̃ are, respectively,

ei(λj) = (λi − λj)〈∇ejei, ej〉, i 6= j, (12.64)

(λj − λk)〈∇eiej, ek〉 = (λi − λk)〈∇ejei, ek〉, i 6= j 6= k, (12.65)

and

ei(µj) = (µi − µj)〈∇ejei, ej〉, i 6= j, (12.66)

(µj − µk)〈∇eiej, ek〉 = (µi − µk)〈∇ejei, ek〉, i 6= j 6= k. (12.67)

Multiplying (12.67) by µj and using (12.63) and (12.65) give

(λi − λj)(λj − λk)
C + λiλk

〈∇eiej, ek〉 = 0, i 6= j 6= k.

Since the principal curvatures λ1, λ2 and λ3 are distinct, it follows that

〈∇eiej, ek〉 = 0, 1 ≤ i 6= j 6= k 6= i ≤ 3. (12.68)

Computing 2µjei(µj), first by differentiating (12.63) and then by multiplying (12.66)
by 2µj, and using (12.62), (12.63) and (12.64) give

(C + λjλk)(λk − λj)ei(λi) + (C + λiλk)(λk − λi)ei(λj)
+ (C + λiλj)(λi − λj)ei(λk) = 0. (12.69)

Now let {ω1, ω2, ω3} be the dual frame of {e1, e2, e3}, and define one-forms γj,
1 ≤ j ≤ 3, by

γj =

√
δj

(λj − λi)(λj − λk)
C + λiλk

ωj, 1 ≤ j 6= i 6= k 6= j ≤ 3,

where δj = yj/|yj| for yj = (λj−λi)(λj−λk)/(C+λiλk). By (12.63), either all the three
numbers C+λjλi, C+λjλk and C+λiλk are positive or two of them are negative and
the remaining one is positive. Since λ1, λ2, λ3 have been chosen so that λ1 < λ2 < λ3

and λ1 < 0, we must have C+λ1λ3 < 0 if C+λ1λ2 < 0. Hence, there are three possible
cases:

(i) C + λiλj > 0, 1 ≤ i 6= j ≤ 3.

(ii) C + λ1λ2 < 0, C + λ1λ3 < 0 and C + λ2λ3 > 0.
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(iii) C + λ1λ2 > 0, C + λ1λ3 < 0 and C + λ2λ3 < 0.

Notice that (δ1, δ2, δ3) equals (1,−1, 1) in case (i), (1, 1,−1) in case (ii) and
(−1, 1, 1) in case (iii).

We claim that (12.69) are precisely the conditions for the one-forms γj to be
closed. To prove this, set

xj =
√
δjyj, 1 ≤ j ≤ 3,

so that γj = xjωj. It follows from (12.68) that

dγj(ei, ek) = eiγj(ek)− ekγj(ei)− γj([ei, ek])
= 0.

On the other hand, using (12.64) we obtain

dγj(ei, ej) = eiγj(ej)− ejγj(ei)− γj([ei, ej])
= ei(xj) + xj〈∇ejei, ej〉

= ei(xj) + xj
ei(λj)

λi − λj
·

Hence, closedness of γj is equivalent to

ei(xj) =
xj

λj − λi
ei(λj), 1 ≤ i 6= j ≤ 3,

which can also be written as

2(λj − λk)ei(λj) = ei(yj)(C + λiλk).

The preceding equation is in turn equivalent to

2(λj − λk)(C + λiλk)ei(λj) = (ei(λj)− ei(λi)(λj − λk)(C + λiλk)

+ (λj − λi)(ei(λj)− ei(λk))(C + λiλk)

− (λj − λi)(λj − λk)((ei(λi)λk + λiei(λk)),

which is the same as (12.69).
Therefore each point x ∈ M3 has an open neighborhood V where there exist

functions uj ∈ C∞(V ), 1 ≤ j ≤ 3, such that duj = γj, and V can be chosen small
enough so that Φ = (u1, u2, u3) is a diffeomorphism of V onto an open subset U ⊂ R3,
that is, (u1, u2, u3) are local coordinates on V . From

δij = duj(∂/∂ui) = xjωj(∂/∂ui)

it follows that ∂/∂ui = viei, with vi = 1/xi.
Now notice that

3∑
j=1

δjv
2
j =

3∑
i,k 6=j=1

C + λiλk
(λj − λi)(λj − λk)

= 1,
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3∑
j=1

δjvjVj =
3∑
j=1

δjλjv
2
j =

3∑
i,k 6=j=1

λj(C + λiλk)

(λj − λi)(λj − λk)
= 0

and
3∑
j=1

δjV
2
j =

3∑
j=1

δjλ
2
jv

2
j =

3∑
i,k 6=j=1

λ2
j(C + λiλk)

(λj − λi)(λj − λk)
= C.

It follows that the pair (v, V ) satisfies (12.57) with respect to the Lorentzian inner
product (12.58). �

12.7 Genuine conformal deformations

In this section we discuss an extension of the notion of genuine deformation to
the conformal realm, and provide a similar description as in the isometric case of the
geometric nature of a submanifold that admits conformal genuine deformations.

12.7.1 Reduction to the isometric case

To describe the geometric structure of a genuine pair of conformal immersions
f : Mn → Rn+p and f̄ : Mn → Rn+q, the strategy is to reduce the problem to the case
of genuine pairs of isometric immersions, by endowing Mn with the metric induced by
f and considering the isometric light cone representative

f̂ = I(f̄) : Mn → Vn+q+1 ⊂ Ln+q+2

of f̄ . However, when trying to apply to the pair {f, f̂} the procedure developed in
Section 12.2 to construct simultaneous ruled isometric extensions of f and f̂ , some
technical difficulties arise. These are due to the fact that, because f̂ takes values in
Lorentzian space, it may happen that, in the notations of Section 12.2.1, the projections
of

Ω = Ω(f, f̂) = S(α⊕ α̂) ∩ S(α⊕ α̂)⊥ ⊂ S(α)⊕ S(α̂)

onto NfM and Nf̂M be not injective. This accounts for the two possibilities in Propo-
sition 12.32 below, for the proof of which the reader is referred to the article [186],
where he can find the details on how one can adapt the procedure of Section 12.2 to
the case in which such projections are not injective.

In the next statement, that an isometric immersion F : Nn → Lm is conical means
that tF (x) ∈ F (N) for any x ∈ Nn if t is close to 1.

Proposition 12.32. Let f : Mn→ Rn+p and f̂ : Mn → Vn+q+1 ⊂ Ln+q+2 be isometric
immersions. Assume that p+q ≤ n−1 and min {p, q} ≤ 5. Then, along each connected
component of an open dense subset of Mn, one of the following possibilities holds:

(i) There exists a vector bundle isometry T : L` → L̂` between vector subbundles L` and
L̂` of NfM and Nf̂M , respectively, such that the tangent subspaces

D(x) = N(αL⊥(x)) ∩N(α̂L̂⊥(x))
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form a tangent subbundle of rank d, the pair (T, Dd) satisfies conditions (12.9),and
the immersions f and f̂ have (possibly trivial) maximal mutually ∆s0

0 -ruled isometric
extensions F ′ : Nn+r0

0 → Rn+p and F̂ : Nn+r0
0 → Ln+q+2, 1 ≤ r0 ≤ `, with

s0 ≥ n− p− q − 2 + 3`.

(ii) Setting f ′ = I(f) : Mn → Vn+p+1 ⊂ Ln+p+2, there exists a vector bundle isometry
T : L` → L̂` between vector subbundles L` and L̂` of Nf ′M and Nf̂M , respectively, such
that the tangent subspaces

D(x) = N(α′L⊥(x)) ∩N(α̂L̂⊥(x))

form a tangent subbundle of rank d, the pair (T, Dd) satisfies conditions (12.9), and the
immersions f ′ and f̂ have mutually ∆s0

0 -ruled isometric Lorentzian conical extensions
F ′ : Nn+r0

0 → Ln+p+2 and F̂ : Nn+r0
0 → Ln+q+2 such that 〈F ′, F ′〉 = 〈F̂ , F̂ 〉, with

s0 ≥ n− p− q + 3`− 4, 2 ≤ r0 ≤ `.

Moreover, there are smooth orthogonal splittings

NF ′N0 = L`−r0
0 ⊕ L⊥ and NF̂N0 = L̂`−r0

0 ⊕ L̂⊥

and a vector bundle isometry T0 : L0 → L̂0 such that

∆0 = N(αF
′

L⊥0
) ∩N(α̂F̂

L̂⊥0
)

and the pair (T0,∆0) satisfies conditions (12.9).

12.7.2 Conformally ruled extensions of conformal pairs

A conformal immersion f : Mn → Rn+p is said to be Dd-conformally ruled if Mn

carries an integrable d-dimensional distribution Dd ⊂ TM such that the restriction
f |σ : σ → Rn+p of f to each leaf σ of Dd is umbilical. The same definition applies for
a conformal immersion into a semi-Riemannian flat space.

Given a Dd-conformally ruled conformal immersion f : Mn → Rn+p with confor-
mal factor ϕ ∈ C∞(M) of a Riemannian manifold, for each x ∈ Mn let η(x) be the
component in NfM(x) of the mean curvature vector of the restriction of f to the leaf
of D through x ∈ Mn. Let θf = θf (x) : TxM × TxM → NfM(x) be the symmetric
bilinear form defined by

θf (Z,X) =
1

ϕ
(αf (Z,X)− 〈Z,X〉η(x))

and consider the subspace of the normal space NfM(x) of f at x given by

LcD(x) = LcD(f)(x) = span{θf (Z,X) : Z ∈ Dd(x) and X ∈ TxM}.
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We always work on open subsets where the dimension of LcD(x) is constant, in
which case such subspaces form a smooth subbundle of NfM that we denote by LcD(f),
or simply LcD when it is clear to which immersion it refers to.

In the following result, for a conformal immersion f : Mn → Rn+p of a Rieman-
nian manifold and its isometric light cone representative F = I(f) : Mn → Vn+p+1 ⊂
Ln+p+2, the map φ : NfM → V stands for the vector bundle isometry given by part
(i) of Proposition 9.17 onto the vector subbundle V of NFM , and ζ ∈ Γ(NFM),
ψ ∈ Γ(T ∗M ⊗ T ∗M) for the vector field and symmetric bilinear form given by (9.30)
and (9.34), respectively.

Lemma 12.33. Let f : Mn → Rn+p be a conformal immersion with conformal factor
ϕ ∈ C∞(M) of a Riemannian manifold, and let F = I(f) : Mn → Vn+p+1 ⊂ Ln+p+2

be its isometric light cone representative. If F is ∆-conformally ruled, then so is f .
Moreover, the following assertions hold:

(i) The components ηf and ηF in NfM and NFM , respectively, of the mean curvature
vector fields of the leaves of ∆ for f and F are related by

ηf =
1

ϕ
ρF + Hf (12.70)

where φ(ρF ) = ηFV .

(ii) The symmetric bilinear forms

θf =
1

ϕ
(αf − 〈 , 〉fηf ) and θF = αF − 〈 , 〉FηF

are related by

θF (Z,X) = φ(θf (Z,X))− (ψ(Z,X) + 〈ηF , ζ〉〈Z,X〉)F. (12.71)

(iii) The bundle map Υ = φ−1◦π|L̂ : L̂→ NfM , where π : NFM → V is the orthogonal

projection, is a vector bundle isometry of L̂ = Lc∆(F ) onto L = Lc∆(f) that is

parallel with respect to the induced connections on L̂ and L and satisfies

Υ ◦ θF
L̂

= θfL.

Proof: (i) If F is ∆-conformally ruled, then

αF (Z,W ) = 〈Z,W 〉ηF (12.72)

for all Z,W ∈ Γ(∆). Decompose

ηF = φ(ρF ) + 〈ηF , ζ〉F + 〈ηF , F 〉ζ (12.73)



378 12.7. Genuine conformal deformations

according to the orthogonal decomposition NFM = V ⊕V ⊥. Using (9.32), (12.72) and
(12.73) we obtain

φ(βf (Z,W ))− ψ(Z,W )F − 〈Z,W 〉ζ = αF (Z,W )

= 〈Z,W 〉ηF

= 〈Z,W 〉(φ(ρF ) + 〈ηF , ζ〉F + 〈ηF , F 〉ζ).

It follows that
βf (Z,W ) = 〈Z,W 〉ρF (12.74)

for all Z,W ∈ Γ(∆), and that
〈ηF , F 〉 = −1. (12.75)

Equation (12.74) yields

αf (Z,W ) = 〈Z,W 〉f (ϕ−1ρF + Hf )

for all Z,W ∈ Γ(∆), which implies that f is ∆-conformally ruled and that (12.70)
holds.

(ii) Using (9.32), (12.73) and (12.75) we obtain

θF (Z,X) = αF (Z,X)− 〈Z,X〉ηF

= φ(βf (Z,X))− ψ(Z,X)F − 〈Z,X〉ζ − 〈Z,X〉(φ(ρF ) + 〈ηF , ζ〉F − ζ)

= φ(βf (Z,X)− 〈Z,X〉ρF )− (ψ(Z,X) + 〈ηF , ζ〉〈Z,X〉)F,

and (12.71) is a consequence of

βf (Z,X)− 〈Z,X〉ρF = ϕ−1(αf (Z,X)− 〈Z,X〉fHf )− ϕ−2〈Z,X〉fρF

= ϕ−1(αf (Z,X)− 〈Z,X〉f (Hf + ϕ−1ρF ))

= θf (Z,X)

for all Z,X ∈ X(M).

(iii) It follows from (12.71) that

Υ(θF (Z,X)) = θf (Z,X)

for all Z ∈ Γ(∆) and X ∈ X(M). On the other hand, since φ : NfM → V is a vector
bundle isometry and the position vector field F is light-like and orthogonal to V , then

〈θF (Z,X), θF (W,Y )〉 = 〈θf (Z,X), θf (W,Y )〉

for all Z,W ∈ Γ(∆) and X, Y ∈ X(M). Thus Υ is a vector bundle isometry. Now,

〈Υ(θF
L̂

(Z,X)), θf (W,Y )〉 = 〈Υ(θF
L̂

(Z,X)),Υ(θF (W,Y ))〉
= 〈θF

L̂
(Z,X), θF (W,Y )〉

= 〈θF (Z,X), θF (W,Y )〉
= 〈θf (Z,X), θf (W,Y )〉
= 〈θfL(Z,X), θf (W,Y )〉
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for all Z,X, Y ∈ X(M) and W ∈ Γ(∆). Hence Υ ◦ θF
L̂

= θfL. Finally, using that φ is
a vector bundle isometry that is parallel with respect to the induced connection on V
by part (i) of Proposition (9.17), we have

〈f∇⊥XΥ(ξ),Υ(η)〉 = 〈φ f∇⊥XΥ(ξ), φΥ(η)〉
= 〈F∇⊥XφΥ(ξ), φΥ(η)〉
= 〈F∇⊥Xπ(ξ), π(η)〉
= 〈F∇⊥Xξ, η〉
= 〈(F∇⊥Xξ)L̂, η〉
= 〈Υ((F∇⊥Xξ)L̂),Υ(η)〉

for all ξ, η ∈ L̂, where the fourth equality is due to the fact that ξ differs from π(ξ)
by a multiple of F by (12.71) and F is a parallel light-like normal vector field. We
conclude that

(f∇⊥XΥ(ξ))L = Υ((F∇⊥Xξ)L̂),

that is, Υ is parallel with respect to the induced connections on L̂ and L. �

Theorem 12.34. Let f : Mn→ Rn+p and f̄ : Mn → Rn+q be conformal immersions
with p + q ≤ n− 3 and min {p, q} ≤ 5. Then, locally on an open dense subset of Mn,
the pair {f, f̄} extends conformally (possibly trivially) to a mutually ∆s-conformally
ruled pair of immersions F : Nn+r→ Rn+p and F̄ : Nn+r→ Rn+q such that

∆s = N(θFL⊥) ∩N(θF̄
L̄⊥),

where L = Lc∆(F ) and L̄ = Lc∆(F̄ ). Moreover, there exists a parallel vector bundle
isometry T : L→ L̄ such that T ◦ θFL = θF̄

L̄
and

s ≥ n− p− q + 3(`c + r),

where `c = rank L = rank L̄.

Proof: Endow Mn with the metric induced by f and apply Proposition 12.32 to the
pair of isometric immersions f and f̂ = I(f̄) : Mn → Vn+q+1 ⊂ Ln+q+2. Assume first
that assertion (i) in Proposition 12.32 holds on a certain connected component V of an
open and dense subset of Mn, and write V = Mn for simplicity. Thus there exists a
vector bundle isometry T : L` → L̂` between vector subbundles L` and L̂` of NfM and
Nf̂M , respectively, such that the tangent subspaces

D(x) = N(αL⊥(x)) ∩N(α̂L̂⊥(x))

form a subbundle of rank d, the pair (T, Dd) satisfies conditions (12.9), and the immer-
sions f and f̂ have (possibly trivial) maximal mutually ∆s0

0 -ruled isometric extensions
F ′ : Nn+r0

0 → Rn+p and F̂ : Nn+r0
0 → Ln+q+2, 1 ≤ r0 ≤ `, with

s0 ≥ n− p− q − 2 + 3`.
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Moreover, there are smooth orthogonal splittings

NF ′N0 = L`0
0 ⊕ L⊥ and NF̂N0 = L̂`0

0 ⊕ L̂⊥,

with `0 = `− r0, and a vector bundle isometry T0 : L0 → L̂0 such that

∆0 = N(αF
′

L⊥0
) ∩N(α̂F̂

L̂⊥0
),

and the pair (T0,∆0) satisfies conditions (12.9).
Since Nn+r0

0 is Riemannian and F̂ is ruled, the immersion F̂ must be transversal
to the light cone. By restricting to an open subset if necessary, we may assume that F̂
is an embedding, and hence that

N = F̂−1(F̂ (N0) ∩ Vn+q+1) ⊇Mn

is an (n+ r0 − 1)-dimensional manifold.
Set F = F ′ ◦ i and F̄ = C(F̂ ◦ i) : N → Rn+q, where i : N → N0 is the inclusion

map. Then {F, F̄} is a conformal pair, F ◦j = f and F̄ ◦j = f̄ , where j is the inclusion
of M into N , and hence {F, F̄} is a conformal extension of {f, f̄}. Moreover, F and
F̄ are mutually ∆s-conformally ruled, where s = s0 − 1 and ∆s is the distribution on
N defined by F̂∗(∆

s) = F̂∗(∆0) ∩ TVn+q+1. Therefore

s ≥ n− p− q + 3(`0 + r)

with r = r0 − 1, and hence the estimate on s will follow once we prove that `0 ≥ `c.
First observe that, from

αF̂◦i(Z,X) = αF̂ (i∗Z, i∗X) + F̂∗α
i(Z,X)

for all Z,X ∈ X(N), we obtain

L̂ = Lc∆(F̂ ◦ i) ⊂ L̂0 ⊕ span{F̂∗η = ηF̂◦i},

where η(x) is the component in TxN0∩NiN(x) of the mean curvature vector at x ∈ N
of the leaf of ∆s through x. On the other hand, since F̂ ◦ i = I(F̄ ), then Lemma
12.33 can be applied to F̄ and F̂ ◦ i. In particular, from (12.71) it follows that φ(L̄) ⊂
L̂⊕ span{F̂ ◦ i}; hence

φ(L̄) ⊂ L̂0 ⊕ span{ηF̂◦i} ⊕ span{F̂ ◦ i}. (12.76)

Now, by (12.75) we have

〈ηF̂◦i, F̂ ◦ i〉 = −1.

Thus the subspace W on the right-hand side of (12.76) is Lorentzian. Therefore the
subspace φ(L̄) is a Riemannian subspace of W that is orthogonal to the null vector
F̂ ◦ i ∈ W ; hence φ(L̄) has codimension at least two in W . We conclude that

`c = rank L̄ ≤ `0,
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as we wished.
We now show that there exists a vector bundle isometry T : L→ L̄ that is parallel

with respect to the induced connections on L and L̄ and satisfies

T ◦ θFL = θF̄
L̄
.

First extend T0 to a vector bundle map T1 between the vector subbundles

L1 = L0 ⊕ span{ηF = F ′∗η} and L̂1 = L̂0 ⊕ span{ηF̂◦i = F̂∗η}

of NFN and NF̂◦iN , respectively, by setting

T1|L0 = T0 and T1(ηF ) = ηF̂◦i.

Since F ′ and F̂ are isometric, the vector bundle map T1 is an isometry, which is easily
seen to be parallel and satisfy

∆ = N(αF
L⊥1

) ∩N(αF̂◦i
L̂⊥1

) and αF̂◦i
L̂1

= T1 ◦ αFL1
.

Moreover, since L ⊂ L1, the restriction T = T1|L : L → L̂ defines a parallel vector

bundle isometry such that θF̂◦i
L̂

= T ◦ θFL .

Composing T with the vector bundle isometry Υ: L̂ → L̄ given by part (iii) of
Lemma 12.33 yields the desired vector bundle isometry T : L→ L̄.

Now suppose that assertion (ii) in Proposition 12.32 holds on some connected
component of an open and dense subset of Mn, which we also denote by Mn for
simplicity. In this case, setting f ′ = I(f) : Mn → Vn+p+1 ⊂ Ln+p+2, there exists a
vector bundle isometry T : L` → L̂` between vector subbundles L` and L̂` of Nf ′M and
Nf̂M , respectively, such that the tangent subspaces

D(x) = N(α′L⊥(x)) ∩N(α̂L̂⊥(x))

form a tangent subbundle of rank d, the pair (T, Dd) satisfies conditions (12.9), and the
immersions f ′ and f̂ have mutually ∆s0

0 -ruled isometric Lorentzian conical extensions
F ′0 : Nn+r0

0 → Ln+p+2 and F̂0 : Nn+r0
0 → Ln+q+2 such that 〈F ′0, F ′0〉 = 〈F̂0, F̂0〉 with

s0 ≥ n− p− q + 3`− 4, 2 ≤ r0 ≤ `. (12.77)

Moreover, there are smooth orthogonal splittings

NF ′0
N0 = L`−r0

0 ⊕ L⊥ and NF̂0
N0 = L̂`−r0

0 ⊕ L̂⊥

and a vector bundle isometry T0 : L0 → L̂0 such that

∆0 = N(α
F ′0
L⊥0

) ∩N(α̂F̂0

L̂⊥0
)

and the pair (T0,∆0) satisfies conditions (12.9).
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Since f ′ is tangent to F ′0, the light-like vector w is nowhere normal to F ′0. Thus
F ′0 is transversal to the degenerate hyperplane

H = Hn+p+1 = {v ∈ Ln+p+2 : 〈v, w〉 = 1},

and we locally define

Nn+r0−1
1 = F ′−1

0 (F ′0(N0) ∩H) ⊂ Nn+r0
0 , ∆s0−1

1 = ∆s0
0 ∩ TN1,

and F ′1 = F ′0|N1 , F̂1 = F̂0|N1 . Now, F ′1 is transversal to Vn+p+1; hence we may locally
define

Nn+r = F ′−1
1 (F ′1(N1) ∩ Vn+p+1) ⊂ Nn+r0−1

1 , ∆s = ∆s0−1
1 ∩ TN,

and F ′ = F ′1|N , F̂ = F̂1|N with s = s0 − 2, r = r0 − 2.
Since F ′(N) ⊂ H∩Vn+p+1 = En+p, there is F : N → Rn+p such that F ′ = Ψ ◦F .

On the other hand, using that 〈F ′0, F ′0〉 = 〈F̂0, F̂0〉, it follows that F̂ takes values in
Vn+q+1, and we may define F̄ = C(F̂ ) : N → Rn+q. Then, as in the nondegenerate
case, we see that {F, F̄} is a conformal pair, F ◦ j = f and F̄ ◦ j = f̄ , where j is the
inclusion of M into N ; hence {F, F̄} is a conformal extension of {f, f̄}. Moreover, F
and F̄ are mutually ∆s-conformally ruled.

The estimate on s follows as in the previous case. From (12.77) we have

s = s0 − 2 ≥ n− p− q + 3(`0 + r),

so it suffices to show that `0 ≥ `c. As before,

L′ = Lc∆(F ′) ⊂ L0 ⊕ span{F ′1∗η}

where η(x) is the component in TxN1 ∩ NiN(x), with i : N → N1 the inclusion, of
the mean curvature vector at x ∈ N of the leaf of ∆s through x. On the other hand,
φ(L) ⊂ L′ ⊕ span{F ′}, hence

φ(L) ⊂ L0 ⊕ span{F ′1∗(η)} ⊕ span{F ′}. (12.78)

Arguing as before, we see that the subspace W on the right-hand side of (12.78) is
Lorentzian. Therefore φ(L) is a Riemannian subspace of W that is orthogonal to the
null vector F ′ ∈ W , hence it has codimension at least two in W .

It remains to prove the existence of a parallel vector bundle isometry T : L→ L̄

such that
T ◦ θFL = θF̄

L̄
.

Let ξ′ and ξ̂ be unit vector fields spanning F ′0∗TN0 ∩ NF ′1
N1 and F̂0∗TN0 ∩ NF̂1

N1,
respectively, and set

L1 = L0 ⊕ span{ξ′} ⊂ NF ′1
N1 and L̂1 = L̂0 ⊕ span{ξ̂} ⊂ NF̂1

N1.

Extend the parallel vector bundle isometry T0 : L0 → L̂0 to T1 : L1 → L̂1 by defining

T1|L0 = T0 and T1(ξ′) = ξ̂.
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Now set

L2 = L1 ⊕ span{ηF ′} ⊂ NF ′N and L̂2 = L̂1 ⊕ span{ηF̂} ⊂ NF̂N,

and extend T1 to T2 : L2 → L̂2 by setting

T2|L1 = T1 and T2(ηF ′) = ηF̂ .

Since ηF ′ = F ′1∗η and ηF̂ = F̂1∗η belong to TN1, it is easily seen that T2 is also a
parallel vector bundle isometry with

∆s = N(αF
′

L⊥2
) ∩N(αF̂

L̂⊥2
)

and αF̂
L̂2

= T2 ◦ αF
′

L2
. Moreover, since L ⊂ L2, the restriction T = T2|L : L→ L̂ defines

a parallel vector bundle isometry such that θF̂
L̂

= T ◦ θF ′L′ .

To obtain the desired vector bundle isometry T : L → L̄, it suffices to compose
T with the vector bundle isometry Υ: L̂ → L̄ obtained by applying part (iii) of
Lemma 12.33 to F̄ and F̂ = I(F̄ ). �

12.7.3 Geometric structure of a genuine conformal pair

Given conformal immersions f : Mn → Rn+p and f̄ : Mn → Rn+q, the pair {f, f̄}
is said to extend conformally when there exist a conformal embedding j : Mn → Nn+r,
with r ≥ 1, and conformal immersions F : Nn+r → Rn+p and F̄ : Nn+r → Rn+q such
that f = F ◦ j and f̄ = F̄ ◦ j.

A conformal immersion f̄ : Mn → Rn+q is called a genuine conformal deformation
of a given conformal immersion f : Mn → Rn+p if there exists no open subset U ⊂Mn

along which the restrictions f |U and f̄ |U extend conformally. Since, in this case, the
immersion f is also a genuine conformal deformation of f̄ , we refer to {f, f̂} simply as
a genuine conformal pair. The next result follows immediately from Theorem 12.34.

Corollary 12.35. Let f : Mn→ Rn+p and f̄ : Mn → Rn+q form a genuine conformal
pair with p+q ≤ n−3 and min {p, q} ≤ 5. Then, along each connected component of an
open dense subset of Mn, the immersions f and f̄ are mutually conformally Dd-ruled
with

Dd = N(βf
L⊥

) ∩N(β f̄
L̄⊥

),

where L = LcD(f) and L̄ = LcD(f̄). Moreover, there exists a parallel vector bundle

isometry T : L→ L̄ such that θf̄
L̄

= T ◦ θfL, and

d ≥ n− p− q + 3`cD,

where `cD = rank L = rank L̄.

A conformal immersion f : Mn → Rn+p is genuinely conformally rigid in Rn+q

for a fixed integer q > 0 if, for any given conformal immersion f̄ : Mn → Rn+q, there
is an open dense subset U ⊂ Mn such that the pair {f |U , f̄ |U} extends conformally.
Theorem 12.35 implies the following criterion for genuine conformal rigidity.
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Corollary 12.36. Let f : Mn → Rn+p be a conformal immersion and let q be a positive
integer with p+ q ≤ n− 3 and min {p, q} ≤ 5. If f is not (n−p−q)–conformally ruled
on any open subset of Mn, then f is genuinely conformally rigid in Rn+q.

12.7.4 Compositions of conformal immersions

Theorem 12.34 yields the following conformal version of Theorem 12.26 in terms
of the conformal s-nullities introduced in Section 9.9.

Corollary 12.37. Let f : Mn → Rn+p be a conformal immersion and let q be a positive
integer with p ≤ q ≤ n− p− 3. Suppose that p ≤ 5 and that f satisfies

νcs ≤ n+ p− q − 2s− 1 for all 1 ≤ s ≤ p.

For q ≥ p + 5, assume further that νc1 ≤ n − 2(q − p) + 1. Then, for any conformal
immersion f̄ : Mn → Rn+q, there exists an open dense subset V ⊆ Mn such that the
restriction of f̄ to any connected component U of V is a composition f̄ |U = h ◦ f |U of
f |U with a conformal immersion h : W ⊂ Rn+p → Rn+q of an open subset W ⊃ f(U).

Proof: Given a conformal immersion f̄ : Mn → Rn+q, Theorem 12.34 applies and yields,
locally on an open dense subset of Mn, a (possibly trivial) conformal extension {F, F̄}
of {f, f̄} to a mutually ∆s-conformally ruled pair of immersions F : Nn+r → Rn+p and
F̄ : Nn+r → Rn+q, 0 ≤ r ≤ p, with

s ≥ n− p− q + 3(`c + r)

where `c = rank Lc∆(F ) = rank Lc∆(F̄ ). It suffices to prove that r = p.
First we show that Lc∆(F )⊥ = {0}. Assume otherwise that s′ = rank Lc∆(f)⊥ > 0.

If D = ∆ ∩ TM , then

rank D = rank ∆− r ≥ n− p− q + 2r + 3`c.

Since D ⊂ N(θf
Lc∆(F )⊥

), using that `c = p− r − s′ we would have

νcs′ ≥ n− p− q + 2r + 3`c

= n− p− q + 2r + 2(p− r − s′) + `c

= n+ p− q − 2s′ + `c,

contradicting the assumption on νcs for 1 ≤ s ≤ p. Therefore

s ≥ n+ 2p− q.

Now assume that r < p. Since F is ∆-conformally ruled, there exists η ∈ Γ(NFN)
such that

αF (Z,W ) = 〈Z,W 〉ηF
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for all Z,W ∈ Γ(∆). In particular, for any unit normal vector field ξ ∈ Γ(NFN) we
obtain

〈(Afξ − 〈ξ, ηF 〉I)T, S〉 = 0

for all T, S ∈ Γ(D). Since rank D = s− r ≥ n− (q− p) + 1, then νc1 ≥ n− 2(q− p) + 2,
and this is a contradiction with the assumption on νc1. �

Notice that for p = q the preceding corollary reduces to Theorem 4.23. For p = 1,
it yields the following conformal version of Corollary 12.27.

Corollary 12.38. Let f : Mn → Rn+1 be an immersion and let q be a positive integer
such that 1 ≤ q ≤ n − 4. If q ≤ 5, suppose that f has no principal curvature of
multiplicity greater than n− q − 2. If q ≥ 6, assume further that f is not (n− q + 2)-
conformally ruled on any open subset. Then any immersion f̄ : Mn → Rn+q conformal
to f is locally a composition, that is, there exists an open dense subset V ⊆ Mn such
that the restriction of f̄ to any connected component U of V satisfies

f̄ |U = h ◦ f |U

where h : W ⊂ Rn+1 → Rn+q is a conformal immersion of an open subset W ⊃ f(U).

12.7.5 Genuine conformal pairs from isometric ones

The main result of this section gives a geometric way to construct conformal gen-
uine pairs by means of isometric ones, explaining the similitude between Theorem 12.35
and its isometric counterpart, namely, Theorem 12.10.

Let Nn+1 be a Riemannian manifold. Assume that there exist an isometric im-
mersion F ′ : Nn+1 → Rn+p and an isometric embedding F̂ : Nn+1 → Ln+q+2 transversal
to the light cone Vn+q+1. Set

Mn = F̂−1(F̂ (Nn+1) ∩ Vn+q+2)

and let i : Mn → Nn+1 be the inclusion map. Then the immersions f = F ′ ◦ i and
f̄ = C(F̂ ◦ i) induce conformal metrics on Mn. The next result states that any genuine
conformal pair {f, f̄} of immersions f : Mn → Rn+p and f̄ : Mn → Rn+q with suffi-
ciently low codimensions p and q is locally produced in this way by means of a genuine
isometric pair {F ′, F̂} as above.

Theorem 12.39. Assume that f : Mn→ Rn+p, p ≥ 1, and f̄ : Mn → Rn+q form a
genuine conformal pair with p + q ≤ n − 3 and min {p, q} ≤ 5. Suppose further that
f̄ is nowhere conformally congruent to an immersion that is isometric to f . Then,
locally on an open dense subset of Mn, there exist a Riemannian manifold Nn+1

that admits an isometric immersion F ′ : Nn+1 → Rn+p and an isometric embedding
F̂ : Nn+1 → Ln+q+2 transversal to the light cone Vn+q+1, and a conformal diffeomor-
phism i : Mn → F̂−1(F̂ (Nn+1)∩Vn+q+1) such that {F ′, F̂} is a genuine isometric pair,
f = F ′ ◦ i and f̄ = C(F̂ ◦ i).
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Proof: Endow Mn with the metric induced by f and apply Proposition 12.32 to the
pair of isometric immersions f and f̂ = I(f̄) : Mn → Vn+q+1 ⊂ Ln+q+2. Assume that
assertion (i) in Proposition 12.32 holds on a certain connected component V of an
open and dense subset of Mn, and write V = Mn for simplicity. Thus the immer-
sions f and f̂ have (possibly trivial) maximal mutually ∆s0

0 -ruled isometric extensions
F ′ : Nn+r0

0 → Rn+p and F̂ : Nn+r0
0 → Ln+q+2, 1 ≤ r0 ≤ `.

As in the proof of Theorem 12.34, since F̂ is transversal to the light cone, by
restricting to an open subset, if necessary, we may assume that F̂ is an embedding, so
that

N̄ = F̂−1(F̂ (N) ∩ Vn+q+1) ⊃Mn

is an (n + r − 1)-dimensional manifold. As before, setting F = F ′ ◦ i and F̄ =
C(F̂ ◦ i) : N̄ → Rn+q, where i : N̄ → N is the inclusion map, we see that {F, F̄} is a
conformal pair, F ◦ j = f and F̄ ◦ j = f̄ , where j is the inclusion of M into N̄ . Thus
{F, F̄} is a conformal extension of {f, f̄}.

Since {f, f̄} is a genuine conformal pair, we must have r = 1, hence N̄ = Mn,
F ◦ i = f and C(F̂ ◦ i) = f̄ . A similar argument shows that any isometric extension
of the pair {F ′, F̂} would give a conformal extension of the pair {f, f̄}, hence {F ′, F̂}
must be a genuine isometric pair.

We refer the reader to [186] for the details on how one can reach the same con-
clusion under the assumption that assertion (ii) in Proposition 12.32 holds, for in this
case one needs to use some of the arguments in the proof of Proposition 12.32, which
we have omitted. �

Remark 12.40. The assumption that f̄ is nowhere locally conformally congruent to
an immersion that is isometric to f is always satisfied if f is genuinely isometrically
rigid in Rn+q, for instance if Mn does not carry any ruled open subset with rulings of
dimension at least n − p − q. In particular, this is always the case after composing f
with a suitable inversion of Rn+p.

For p = 1, Theorem 12.39 says that any hypersurface f : Mn→ Rn+1 that admits
a genuine conformal (but not isometric) deformation in Rn+q can be locally produced
as the intersection with the light cone Vn+q+1 of an (n+1)-dimensional flat submanifold
of Ln+q+2 transversal to Vn+q+1.

Corollary 12.41. Let f : Mn → Rn+1 and f̄ : Mn → Rn+q form a conformal pair,
with q ≤ n− 4. Assume that there exists no open subset Mn along which f̄ either is
a composition or is conformally congruent to an isometric deformation of f . Then,
locally on an open dense subset of Mn, there exist an isometric embedding F̄ : U ⊂
Rn+1 → Ln+q+2 transversal to the light cone Vn+q+1 and a conformal diffeomorphism
τ : Mn → M̄n = F̄−1(F̄ (U)∩Vn+q+1) ⊂ U such that f = i ◦ τ and f̄ = C(F̄ ◦ τ), where
i : M̄n → U is the inclusion map.

In the particular case q = 1, the preceding corollary provides a nonparametric de-
scription of Cartan’s conformally deformable hypersurfaces, a parametric classification
of which will be given in Chapter 17.



Chapter 12. Genuine deformations 387

Another important special case of Theorem 12.39 occurs when q = 0. In this
situation, we have a conformally flat submanifold f : Mn → Rn+p, which clearly forms
a genuine conformal pair with any conformal diffeomorphism f̄ : Mn → U ⊂ Rn onto
an open subset of Rn. Theorem 12.39 then provides a geometric construction of all con-
formally flat Euclidean submanifolds with dimension n ≥ 4 and codimension p ≤ n− 3
free of flat points. See Theorem 16.10 for a precise statement and a direct proof of this
result.

12.8 Singular genuine deformations

When studying the possible isometric deformations of a compact Euclidean sub-
manifold with codimension two, one is naturally led to consider isometric extensions
that may have singular points, that is, that may fail to be immersions at some points.
In fact, the necessity of allowing singularities in isometric extensions arises already in
the study of local isometric deformations, as discussed at the end of this section.

The isometric immersions f : Mn → Rn+p and f̂ : Mn → Rn+q are said to admit
singular isometric extensions when there exist an embedding j : Mn ↪→ Nn+` into a
manifold Nn+`, 0 < ` ≤ min{p, q}, and maps F : Nn+` → Rn+p and F̂ : Nn+` → Rn+q,
which are isometric immersions on Nn+` r j(M), such that f = F ◦ j and f̂ = F̂ ◦ j
as in (1). Thus the maps F and F̂ may have common singular points, but these are
necessarily contained in j(M).

An isometric immersion f̂ : Mn → Rn+q is called a genuine deformation in the
singular sense of a given isometric immersion f : Mn → Rn+p if there exists no open
subset U ⊂ Mn along which the restrictions f |U and f̂ |U admit singular isometric
extensions. In this case, since f is also a singular genuine deformation of f̂ , we refer
to {f, f̂} simply as a genuine pair in the singular sense.

In order to derive necessary conditions for an isometric immersion f : Mn → Rn+p

to admit a genuine deformation f̂ : Mn → Rn+q in the singular sense, we first prove
the next two propositions.

Proposition 12.42. Let f : Mn → Rm be an isometric immersion and let π : D →Mn

be a tangent vector subbundle of rank d > 0. Assume that there does not exist an open
subset U ⊂Mn and X ∈ Γ(D|U) such that the map F : U × R→ Rm given by

F (x, t) = f(x) + tf∗X(x)

is an immersion on some open neighborhood of U ×{0} except on U ×{0} itself. Then
for any x ∈ Mn there is an open neighborhood V of the origin in D(x) such that
f∗(x)V ⊂ f(M). In particular, f is d-ruled along each connected component of an
open dense subset of Mn.

Proof: Given X ∈ Γ(D), define F : Mn × R→ Rm by

F (x, t) = f(x) + tf∗X(x).
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For each t ∈ R, define Tt ∈ Γ(End(TM)) by

Tt = I + tK

where K ∈ Γ(End(TM)) is given by K(Z) = ∇ZX. Then

F∗∂/∂t = f∗X and F∗Z = f∗Tt(Z) + tα(X,Z) (12.79)

for all Z ∈ X(M). By the assumption, for any x ∈ Mn there must exist a sequence
(xj, tj) → (x, 0), with tj 6= 0 for all j, such that rank F∗(xj, tj) = n. Since Tt → I as
t → 0, it follows from (12.79) that, for j large enough, there exists Yj ∈ TxjM such
that

F∗(xj, tj)Yj = f∗X.

By the second equation in (12.79), this is equivalent to

TtjYj = X(xj) and α(Yj, X(xj)) = 0. (12.80)

Let U be an open neighborhood of x with compact closure where ‖K‖ < c for some
c > 1. If t ∈ I = (−1/c2, 1/c2), then at any point of U we have

‖tK‖ ≤ 1/c < 1.

Since

Tt

N∑
i=0

(−t)iKi = I + (−tK)N+1,

it follows that Tt is invertible on U for any t ∈ I, with

T−1
t =

∑
i≥0

(−t)iKi. (12.81)

By (12.80), for j sufficiently large we have

α(T−1
tj
X(xj), X(xj)) = 0. (12.82)

We claim that α(S, X) = 0, where

S = span{X,K(X), K2(X), . . .}.

Assume otherwise, and let k be the first integer such that α(Kk(X), X) 6= 0. Choose
x ∈Mn such that α(Kk(X(x)), X(x)) 6= 0. It follows from (12.81) and (12.82) that∑

i≥k

(−tj)iα(KiX(xj), X(xj)) = 0.

Dividing all terms by tkj and letting j → +∞ we obtain

α(KkX(x), X(x)) = 0.
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This is a contradiction, and the claim is proved.

We see from (12.81) that T−1
t (X) ∈ S on U for any t ∈ I. From the claim and

the second equation in (12.79) we obtain

F∗T
−1
t (X) = f∗X.

Thus rank F∗ = n on U × I, and hence F (U × I) = f(U), that is, f(U) contains the
segment tf∗X for t ∈ I. �

Proposition 12.43. Let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric immer-
sions, and let T : L→ L̂ be a parallel vector bundle isometry between vector subbundles
L ⊂ NfM and L̂ ⊂ Nf̂M that preserves the second fundamental forms. Let

φ : Γ(f∗TM ⊕ L)× X(M)→ Γ(L⊥ ⊕ L̂⊥)

be defined by (12.21), with L1 = L = L0, and set ` = rank L. For each x ∈Mn, define
φY (x) = φ(x)( · , Y ), where Y ∈ RE(φ(x)) is a right regular element of φ(x). Then, on
any open subset where

ρ(x) = dimφY (f∗TxM ⊕ L(x)) (12.83)

takes a constant value ρ, the map x 7→ D(x) = ker φY (x) defines an isotropic smooth
subbundle with respect to φ of rank

d = n+ `− ρ ≥ n− p− q + 3`. (12.84)

Proof: The bilinear form φ(x) is flat for any x ∈Mn by Lemma 12.9; hence Proposition
4.6 implies that

φ(x)(D(x), TxM) ⊂ ImφY (x) ∩ (ImφY (x))⊥.� (12.85)

Theorem 12.44. Under the assumptions of Theorem 12.44, suppose in addition that
f and f̂ form a genuine pair in the singular sense. Then any isotropic subbundle D
of f∗TM ⊕ L of rank d with respect to φ is a tangent subbundle, and the isometric
immersions f and f̂ are mutually d-ruled along each connected component of an open
dense subset of Mn, with d = n+ `− ρ ≥ n− p− q + 3`.

Proof: If D was not a tangent subbundle, there would exist an open subset of Mn

along which D would decompose orthogonally as

D = D ∩ f∗TM ⊕ Λ

for some nontrivial subbundle Λ of L. But in this case f |U and f̂ |U would admit regular
ruled isometric extensions by Lemma 12.9 applied to L1 = L = L0. This contradicts
the assumption that f and f̂ form a genuine pair. Applying Proposition 12.42 to the
distribution D constructed in Proposition 12.43 yields the last assertion. �
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Remarks 12.45. (i) Proposition 12.43 and Theorem 12.44 still hold if ` = 0, that is,

if T = 0 and φ = φ0 = αf ⊕ αf̂ .
(ii) Unlike is the case in Theorem 12.10, the estimate of the dimension of the rulings
in Theorem 12.44 does not make use of Lemma 4.20.

An isometric immersion f : Mn → Rn+p is called genuinely rigid in the singular
sense in Rn+q, for a given q, if for any isometric immersion f̂ : Mn → Rn+q there exists
an open dense subset of Mn along each connected component of which f and f̂ admit
singular isometric extensions.

Examples of Euclidean submanifolds of codimension two that are genuinely rigid
but not genuinely rigid in the singular sense can be constructed as follows.

Let f : Nn → Rn+1, n ≥ 3, be a Sbrana-Cartan hypersurface locally parametrized,
in terms of the Gauss parametrization, by the map ψ : Λ→ Rn+1 defined on the normal
bundle Λ = NgL of a surface g : L2 → Sn and given by

ψ(y, w) = γg + g∗∇γ + w.

By part (i) of Proposition 7.19, the map ψ is regular at (y, w) ∈ Λ if and only if the
self-adjoint operator

Pw(y) = γ(y)I + Hess γ(y)− Aw
on TyL is nonsingular. For any y ∈ L2, the operator

P0(y) = γ(y)I + Hess γ(y)

is nonsingular. At y ∈ L2, take w ∈ NgL(y) in the open dense subset where Aw 6= 0
and consider the line ψ(y, tw) with t ∈ R. Clearly, the operator Ptw(y) is singular
either for 0, 1 or 2 values of t. Thus the submanifold parametrized by ψ has the same
number of singular points along that line. Whenever we have a constant number 1 or
2 of singular points along each line, the subset Σn−1 of Nn of singular points forms
a smooth hypersurface in Λ. In that case, P has constant rank one along Σn−1 and
h = ψ|Σ is an immersion. In this situation, the Gauss parametrization ψ provides a
singular extension of h. Notice that the normal bundle of h is

NhΣ = span{ϕ,Z}

where span{Z} = ker P . Since ϕ is constant along the leaves of relative nullity of the
hypersurface, it follows that rank Ahϕ = 1. Moreover, it is easy to see that rank AhZ ≤ 2
and that the index of relative nullity is n − 3 at any point. Under the isometric
deformation of f , the tensor AhZ remains the same, since it depends only on the metric
of Nn, whereas Ahϕ is determined by the second fundamental form of f and thus has to
change, inducing an isometric deformation of h. Therefore h is not genuinely rigid in
the singular sense. On the other hand, it was shown in [184] that there are examples
of submanifolds in codimension two as above that are genuinely rigid.
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12.9 Nonparallel first normal bundle

The results of this section show that the geometric structure of an isometric
immersion that carries a nonparallel first normal bundle of low rank must satisfy strong
conditions.

For a 1-regular isometric immersion f : Mn → Rm such that dimN1 = p < m− n,
define φ : Γ(N⊥1 )× X(M)→ Γ(N1) by

φ(µ,X) = (∇⊥Xµ)N1 .

Since φ is clearly C∞-bilinear, it can be regarded as a section of Hom2(N⊥1 , TM ;N1).
For each x ∈ Mn, denote by s(x) > 0 the dimension of the vector subspace

S(x) ⊂ N1(x) given by

S(x) = span{φ(µ,X) : µ ∈ N⊥1 (x) and X ∈ TxM}.

Notice that if s(x) = s is constant, then the subspaces S(x) form a smooth normal
vector subbundle S = Sf of N1.

Theorem 12.46. Let f : Mn → Rm be a 1-regular locally substantial connected sub-
manifold such that p < m − n and s(x) = s is constant with 0 < s < n. If also s ≤ 6
then one of the following possibilities holds:

(i) s = p and f has index of relative nullity νf ≥ n− p.

(ii) s = 1 < p and f has a flat extension F : Nn+p−1 → Rm with index of relative
nullity νF = n+ p− 2 and such that NF

1 is nonparallel of rank one.

(iii) 1 < s < p and there is an open dense subset of Mn, the union of open subsets
Uk,d with d ≥ n− s and n− d ≤ k ≤ q = n− d+ p− s, such that:

(a) f |Uq,d is d-ruled and Sf is parallel in Rm along the rulings, and

(b) f |Uk,d, k < q, has a (n + p − k − s)-ruled extension F : Nn+q−k → Rm with NF
1

nonparallel of rank p+ k− q and SF parallel along the rulings. If k = n− d, then
the rulings are the relative nullity leaves of F .

Moreover, if s = 2 then Uk,d = ∅ for k ≥ 5.

Proof: In the sequel we define several tangent and normal subspaces and assume, for
the sake of simplicity, that they have constant dimension and thus form subbundles of
the tangent and normal bundles.

First we show that φ satisfies

N(φ) = N(αS). (12.86)

Notice that
Y ∈ N(φ) if and only if A∇⊥Y µX = 0
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for all µ ∈ Γ(N⊥1 ) and X ∈ X(M). Also,

Y ∈ N(αS) if and only if A∇⊥XµY = 0

for all µ ∈ Γ(N⊥1 ) and X ∈ X(M). Thus (12.86) follows from the Codazzi equation

A∇⊥XµY = A∇⊥Y µX

for all µ ∈ Γ(N⊥1 ) and X, Y ∈ X(M).

Assertion: The normal subbundle P = S⊕N⊥1 is parallel along D = N(αS) in Rm.

Let µ1 ∈ Γ(N⊥1 ) be a unit vector field such that µ1 ∈ RE(φ), and set

φµ1 = φ(µ1, ).

Let s1 be the rank of the subbundle S1 ⊂ S defined by

S1(x) = φµ1(TxM).

Then the tangent subspaces
D1(x) = ker φµ1(x)

form a tangent subbundle of rank n− s1 such that D ⊂ D1.
By the Ricci equation,

∇⊥Y∇⊥Xµ1 −∇⊥X∇⊥Y µ1 −∇⊥[Y,X]µ1 = 0

for all X, Y ∈ X(M). If Y ∈ Γ(D1), it follows that

∇⊥Y (∇⊥Xµ1)S1 +∇⊥Y (∇⊥Xµ1)N⊥1 = ∇⊥X∇⊥Y µ1 +∇⊥[Y,X]µ1 ∈ Γ(P )

for any X ∈ X(M). By Proposition 4.6, also the second term on the left-hand side
belongs to Γ(P ). Hence ∇⊥Y δ ∈ Γ(P ) for all δ ∈ Γ(S1) and Y ∈ Γ(D1), and the
assertion follows.

By the assertion, we are under the assumptions of Proposition 12.4. Hence there
is a R-ruled extension F : Nn+r → Rm of f defined along a tubular neighborhood of
the 0-section of the affine bundle π : Λr →Mn given by (12.6). The rulings are

R(λ) = D(π(λ))⊕ Λ(π(λ))

and satisfy R = N(αFP ), where P(λ) = P (π(λ)) ⊂ NFN . Moreover, the subbundle
P(λ) is parallel in Rm along the rulings, but clearly not parallel along TN . If r = 0,
then f is already ruled, and the dimension of the rulings cannot be increased by the
extension procedure.

Assertion: The rank of D satisfies

rank D ≥ n− s. (12.87)
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As above, let µ1 ∈ Γ(N⊥1 ) be a unit vector field such that µ1 ∈ RE(φ) and
s1 = rank S1. Since the assertion holds if s1 = s, suppose that s1 < s and consider the
orthogonal splitting

S = S1 ⊕ S⊥1 .

Let ψ : Γ(N⊥1 )× X(M)→ Γ(S⊥1 ) be the map defined by

ψ(µ,X) = (∇⊥Xµ)S⊥1 ,

which gives rise to a section of Hom2(N⊥1 , TM ;S⊥1 ). Take µ2 ∈ RE(φ) ∩ RE(ψ) and
set

t = rank ψ(µ2, TM).

Then S2 = φµ2(TM) satisfies

rank (S1 + S2) = s1 + t and rank S1 ∩ S2 = s1 − t.

It follows using Proposition 4.6 that

rank D1 ∩D2 ≥ rank D1 − rank S1 ∩ S2

≥ n− 2s1 + t (12.88)

where D2 = ker φµ2 . If t = s1, then S1 ∩ S2 = 0. Thus D1 = D2. In particular, (12.87)
holds if s1 = 1, since this forces t = 1. Therefore we may assume that s1 ≥ 2.

We first analyze the case t = 1. In this case, H = ker ψ(µ2, ) has rank n − 1.
The Codazzi equation gives

A∇⊥Zµ2
X = A∇⊥Xµ2

Z = 0

for all Z ∈ Γ(D1) and X ∈ Γ(H). This implies that rank φµ2(D1) ≤ 1. Otherwise,
there would exist a two-dimensional plane in S2 such that the corresponding shape
operators would have the same kernel of codimension one. But then a vector in this
plane would belong to N⊥1 , and this is a contradiction. It follows that

rank D1 ∩D2 ≥ n− s1 − 1.

If S = S1 + S2, then (12.87) holds, since s = s1 + 1 and D = D1 ∩ D2. If
otherwise, we just repeat the process and obtain subspaces S1, . . . , Sm and D1, . . . , Dm,
m = s− s1 + 1, such that S = S1 + · · ·+ Sm and

rank D1 ∩ · · · ∩Dm ≥ n− s1 −m+ 1

= n− s.

Then D = D1 ∩ · · · ∩Dm, and (12.87) follows.
We may assume that t ≥ 2. We argue for the case s = 6, the other cases being

similar and easier. If t = s1, then s1 = 2, 3. In these cases, we have seen that D1 = D2,
and thus (12.87) holds. Hence, we may assume that s1 > t ≥ 2. Therefore, it remains



394 12.9. Nonparallel first normal bundle

to consider the cases (s1, t) = (3, 2) and (s1, t) = (4, 2). In the latter case, S = S1 +S2,
and (12.87) follows from (12.88). In the first case,

rank (S1 + S2) = 5, rank S1 ∩ S2 = 1 and rank D1 ∩D2 ≥ n− 4.

We now repeat the process and obtain S3 such that

S = S1 + S2 + S3 and rank Si ∩ Sj = 1 if 1 ≤ i 6= j ≤ 3.

In this case, it is clear that rank D ≥ n− 5, and this proves the assertion.

To conclude the proof of the theorem, first assume that s = p. Then (12.86) and
(12.87) imply that νf ≥ n− p.

Suppose that s < p. For each positive integer d, let Ud denote the interior of
the subset of all x ∈ Mn such that the subspace D(x) has dimension d. By (12.87),
d ≥ n − s. By the lower semi-continuity of the dimension, the set ∪dUd is open and
dense in Mn. Now let Uk,d be the interior of the subset of all x ∈ Ud such that the
subspace Γ(x) given by (12.3) has dimension k. Then (12.4), with ` = p − s, gives
n − d ≤ k ≤ q. Again by the lower semi-continuity of the dimension, ∪kUk,d is open
and dense in Ud.

In view of (12.86) and the parallelism of P along D in Rm, Proposition 12.4
applies to f |Uk,d . If k = q, by part (i) we see that f |Uq,d is d-ruled and that P (hence
S) is constant in Rm along the rulings. If k < q, it follows that f admits a ruled
extension F : Nn+r → Rm, r = n − d + ` − k = q − k, with rulings of dimension
n+`−k = n+p−k−s. Moreover, there is an orthogonal splitting NFN = L⊕P, where
P is the parallel extension (in Rm) of P along the rulings, such that rank L = p−s−r.
In particular,

rank NF
1 = p− r = p+ k − q.

Finally, if k = n−d, by part (ii) the rulings of F coincide with the leaves of its relative
nullity distribution .

The global assertion in (ii) for the case 1 = s < p is due to the fact that s = 1
implies d = 1, and also k = 1, as follows from (12.2). It is also a consequence of (12.2)
that k ≤ 4 if s = 2; hence in this case Uk,d = ∅ for k ≥ 5. �

Notice that the submanifolds in the condition of Theorem 12.46 are either ruled
or extend to ruled ones with nonparallel N1. In that respect, observe that the ruled
extensions in part (ii) and item (b) of part (iii) are as the submanifolds in part (i) and
item (a) of part (iii), respectively.

Remark 12.47. Without the regularity assumptions, the statement of Theorem 12.46
holds on connected components of an open dense subset of the manifold.

We say that the submanifold in Theorem 12.46 does not extend if the extension
procedure is trivial, which is the case in part (i) of Proposition 12.4.

Corollary 12.48. Assume that f in Theorem 12.46 does not extend along any open
subset. Then s ≥ 2 and the submanifold is d-ruled with d ≥ n− s.
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For a ruled Euclidean submanifold, it follows from Exercise 3.14 that the Ricci
curvature satisfies Ric(X) ≤ 0 for any vector X tangent to a ruling, with equality if
and only if X belongs to the relative nullity subspace. Hence, we have the following
immediate consequence of Theorem 12.46.

Corollary 12.49. Under the assumptions of Theorem 12.46, cases (i) and (a) of (iii)
cannot occur if RicM > 0. If RicM ≥ 0 then f |Uq,d in case (a) of (iii) satisfies νf = d.

To illustrate Theorem 12.46 we discuss next the cases p = 1, 2 and 3.

Example 12.50. The case p = 1. Here the only possibility is that s = 1, and hence
νf = n− 1. In particular, the manifold Mn is flat.

Submanifolds as above can be easily described parametrically. Consider the image
under the normal exponential map of a parallel normal subbundle of the normal bundle
of a curve with nonvanishing curvature.

Example 12.51. The case p = 2. We only have the following two possibilities:

(i) s = 2, and hence νf = n− 2.

(ii) s = 1, in which case f admits a flat extension F : Nn+1 → Rm such that νF = n
and NF

1 is nonparallel of rank one.

Example 12.52. The case p = 3. One of the following possibilities holds:

(i) s = 3 and f satisfies νf ≥ n− 3.

(ii) s = 1 and f has a flat extension F : Nn+2 → Rm such that νF = n + 1 and NF
1

is nonparallel of rank one.

(iii) s = 2 < k = 3, in which case f is (n − 2)-ruled and S is constant along the
rulings.

(iv) s = 2 = k and f has an extension F : Nn+1 → Rm such that νF = n− 1 and NF
1

has rank two.

Observe that F in part (ii) of Example 12.51 and in Example 12.52 is as f given
in Example 12.50. Also, the extension F in (iv) of Example 12.52 is as f in part (i) of
Example 12.51.
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12.10 Notes

The results on genuine isometric deformations and genuine isometric rigidity given
in this chapter are due to Dajczer-Florit [99]. The proof of Theorem 12.10 given here
considerably simplifies the original one in [99]. The consequences of that theorem
related to compositions of isometric immersions were previously obtained by Dajczer-
Tojeiro [133] and Dajczer-Florit [98]. The results on genuine isometric deformations in
the singular sense are due to Florit-Guimarães [185], and those on genuine conformal
deformations to Florit-Tojeiro [186]. Corollary 12.38 on compositions of conformal im-
mersions and the result in Exercise 12.16 were previously obtained by Dajczer-Tojeiro
[138], [140], respectively.

Classifying the genuinely deformable submanifolds of space forms and their de-
formations, both in the local and global cases, is a very difficult problem even in
codimension two. In that codimension, only the compact case has already been solved
by Dajczer-Gromoll [113] and extended to other cases by Theorem 13.21 due to Florit-
Guimarães [185] to be given in the next chapter. For the local problem, it follows
from Theorem 4.23 that one may divide its study in three distinct cases, depending on
whether the submanifold has rank two, three or four. The simplest case of submani-
folds of rank two has been considered in several papers and is quite well understood;
see [100], [107], [121], [122] and [184]. For submanifolds of higher rank the classifica-
tion problem remains wide open. In this case, all that is known so far is the result
for complete minimal Kaehler submanifolds due to Dajczer-Gromoll [114] and the two
families of minimal examples of rank four in Euclidean space and sphere constructed
by Dajczer-Vlachos [156], [152], respectively.

Going in another direction, it follows from Corollary 12.27 that a Euclidean hy-
persurface of dimension n ≥ 3 is genuinely rigid in Rn+2 unless its rank is less than
or equal to three. Another viewpoint for rigidity results of this sort was considered by
Moore [258], based on the notion of isometric homotopy. Euclidean hypersurfaces with
rank two that admit genuine deformations in codimension two have been classified by
Dajczer-Florit-Tojeiro [107], extending the Sbrana-Cartan theory of Chapter 11 to this
situation. The classification of Euclidean hypersurfaces with rank three that admit
genuine deformations in codimension two is still an open problem.

With respect to Euclidean submanifolds that admit genuine conformal deforma-
tions, apart from the classification by Cartan [65] of the hypersurfaces f : Mn → Rn+1

of dimension n ≥ 5 that admit genuine conformal deformations f̃ : Mn → Rn+1, which
is the subject of Chapter 17, the only other classification result up to now for such
a class of submanifolds is the description due to Chion-Tojeiro [88] of the Euclidean
hypersurfaces of dimension n ≥ 6 that carry a principal curvature of multiplicity n− 2
and admit genuine conformal deformations f̃ : Mn → Rn+2, extending to the conformal
realm the aforementioned result of [107]. Notice that, by Corollary 12.38, a Euclidean
hypersurface of dimension n ≥ 6 is genuinely conformally rigid in Rn+2 if all of its
principal curvatures have multiplicity less than or equal to n− 4.

The study of Riemannian manifolds of dimension n ≥ 4 that admit isometric
immersions into space forms with distinct curvatures was initiated do Carmo-Dajczer
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[55], where the result in Exercise 4.3 was obtained. The geometric classification given
by Corollary 12.29 of hypersurfaces of dimension n ≥ 4 of Qn+1

c that also admit an
isometric immersion into Qn+p

c̃ with c < c̃ and p < n−2 was obtained by Dajczer-Tojeiro
[133]. The dual case c > c̃ was also treated by Dajczer-Tojeiro [135]. The existence
of hypersurfaces of dimension three of Q4

c with three distinct principal curvatures that
also admit an isometric immersion into Q4

c̃ with c 6= c̃ and are not produced by the
construction in Corollary 12.29 was observed in [133], where Lemma 12.30 was proved.
The characterization of such hypersurfaces given by Theorem 12.31 is due to Canevari-
Tojeiro [52], and explicit parametrized examples have been produced by means of the
Ribaucour transformation by Canevari-Tojeiro [53].

The characterization of the submanifolds that carry a nonparallel first normal
bundle of low rank is due to Dajczer-Tojeiro [148]. Examples of submanifolds as in
part (i) of Examples 12.51 have been studied by Dajczer-Florit [97] and Dajczer-Morais
[121], where a parametric classification has been obtained in most cases.

12.11 Exercises

Exercise 12.1. Let f : Mn → Rn+p, p ≤ 5, be an isometric immersion and let
q < n− p be a positive integer. If RicM ≥ 0 and νf < n− p− q at any point show that
f is genuinely rigid in Rn+q.

Exercise 12.2. Let f : Mn → Rn+p, 2 ≤ p ≤ 3, be an isometric immersion. If
νf < n− 2p at any point, show that f is genuinely rigid in Rn+p.

Exercise 12.3. Let g : Mn → Rn+1 be a simply connected nowhere surface-like ruled
hypersurface without flat points.

(i) Prove that the family {fγ}γ∈Γ of ruled isometric immersions fγ : Mn → Rn+2 is
parametrized by the set Γ of triples of smooth arbitrary functions in an interval.

(ii) Show that if f : Mn → Rn+2 is a ruled simply connected submanifold without flat
points then Mn admits an isometric immersion as a ruled hypersurface.

Hint for (i): From the assumptions and the Sbrana-Cartan classification, all the fγ’s
have the same rulings. Thus there are smooth orthonormal frames {X, Y } of ∆⊥ and
{ξ, η} of NfM such that the second fundamental form is of the form

Aξ|∆⊥ =

[
a b
b 0

]
and Aη|∆⊥ =

[
λ 0
0 0

]
(12.89)

where b > 0 is given by b2 = −K(X, Y ) 6= 0, λ ≥ 0 and the subspaces R = span{Y }⊕∆
are tangent to the rulings. It follows from the Codazzi equation for Aη that ξ and η
are parallel in the normal connection along the rulings. Then any ruled isometric
immersion f̃ : Mn → Rn+2 is determined by three smooth functions

{a, λ, ψ = 〈∇⊥Xξ, η〉}
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such that (12.89) satisfies the Codazzi and Ricci equations. In fact, these equations
are

Y (a) = 〈∇XX, Y 〉a+X(b)

Y (λ) = 〈∇XX, Y 〉λ+ bψ

Y (ψ) = 〈∇XX, Y 〉ψ − b
and


Z(a) = 〈∇XX,Z〉a+ 〈∇XY, Z〉b
Z(λ) = 〈∇XX,Z〉λ
Z(ψ) = 〈∇XX,Z〉ψ

where Z ∈ R. It follows that {a, λ, ψ} can be arbitrarily prescribed along an integrable
curve of X, and then they are completely determined.

Exercise 12.4. Show that any element f ∈ {fγ}γ∈Γ in Exercise 12.3 with λ 6= 0 is a
composition f = F ◦ g, where F : U ⊂ Rn+1 → Rn+2 is a flat hypersurface. Verify that
the extension of f is locally defined by F : Mn × (−ε, ε)→ Rn+2 given by

F (x, t) = f(x) + t(ψf∗X + λξ).

Exercise 12.5. Let g : Mn → Rn+1 be a ruled hypersurface as in Exercise 12.3 and
let f ∈ {fλ}λ∈Λ be such that λ 6= 0 in (12.89) and the functions a for both submanifolds
differ. Then let f̂ = h◦g be a composition, where h : U ⊂ Rn+1 → Rn+2 is an isometric
immersion, such that g(M) ⊂ U and the generic condition νf̃ = n−3 is satisfied. Show

that the pair f, f̂ is genuine.

Exercise 12.6. Show that any isometric immersion f : Mn → Rn+2, n ≥ 5, with
index of relative nullity ν ≤ n− 5 at any point, is genuinely rigid in Rn+2.

Exercise 12.7. Check that the proof of Theorem 12.23 yields the stronger estimate

d ≥ n− p− q + 2 `+ `1.

Exercise 12.8. Give a direct proof that TD in Corollary 12.13 is parallel.

Exercise 12.9. Show that in Corollary 12.13 one also has

Dd = N(αL⊥D) ∩N(αL̂⊥D
).

Hint: Use that LD ⊂ L`.

Exercise 12.10. Under the hypotheses of Theorem 12.10, prove the estimate

d ≥ n− p− q + 2`.

Hint: Instead of (12.24) use the estimate given in Remark 12.11.

Exercise 12.11. Assume that the isometric immersions f and f̂ considered in the
statement of Theorem 12.10 are 1-regular. Verify that the proof still works if we replace

p and q in the estimate (12.23) of d by the ranks of N f
1 and N f̂

1 .
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Exercise 12.12. Extend Theorem 12.19 to the case of nonflat ambient space forms.

Hint: Use Exercise 6.2.

Exercise 12.13. Let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric immersions
and let T : L` → L̂` be a parallel vector bundle isometry between vector subbundles of
NfM and Nf̂M that preserves the second fundamental forms.

(i) Prove that the bilinear form φ : Γ(f∗TM ⊕ L) × X(M) → Γ(L⊥ ⊕ L̂⊥) given by
(12.21) is a Codazzi tensor, that is, if we define

(∇̄Xφ)(ξ, Y ) = ∇̄Xφ(ξ, Y )− φ((∇̃Xξ)L⊕TM , Y )− φ(ξ,∇XY )

then
(∇̄Xφ)(ξ, Y ) = (∇̄Y φ)(ξ,X)

where ∇̄ is the Levi-Civita connection on L⊥ ⊕ L̂⊥.

(ii) Let U ⊂Mn be an open subset where the nullity subspaces N(φ)(x) ⊂ TxM have
constant dimension. Show that the distribution x ∈ U 7→ N(φ)(x) is smooth and
integrable and that the image subspaces S(φ) are parallel along the leaves.

Exercise 12.14. Let f : Mn → Rn+p be an isometric immersion and let q be a positive
integer such that p+q < n. If Mn has positive Ricci curvature show that f is genuinely
rigid in the singular sense in Rn+q.

Exercise 12.15. Let h : Ln → Rm be a regular isometric immersion such that Nh
2 is

nonparallel. Let M2n denote TL with the zero section of π : TL → Ln excluded, and
let f : M2n → Rm be the immersion given by

f(X) = h(π(X)) + h∗X.

Show that the following facts hold:

(i) f∗TM = h∗TL⊕Nh
1 .

(ii) N f
1 = Nh

2 is not parallel.

Prove that any such f is as in part (i) of Theorem 12.46.

Exercise 12.16. Let f, g : Mn → Rn+2, n ≥ 7, be conformal immersions. Sup-
pose that νcf ≤ n − 5 everywhere. Prove that there exists an open and dense subset
W ⊂ Mn such that, for each connected component U of W, either f |U and g|U are
conformally congruent or there exist conformal nowhere conformally congruent hy-
persurfaces f̄ , ḡ : Nn+1 → Rn+2 and a conformal immersion i : U → Nn+1 such that
f |U = f̄ ◦ i and g|U = ḡ ◦ i.



Chapter 13

Deformations of complete
submanifolds

The main theorems of this chapter are of global nature and show that complete
Euclidean submanifolds with low codimension that allow isometric deformations are
rather special. A first basic result in this direction is a theorem due to Sacksteder,
which asserts that any compact Euclidean hypersurface f : Mn → Rn+1, n ≥ 3, is
isometrically rigid, provided that the subset of totally geodesic points of f does not
disconnect Mn. Even if that subset disconnects the manifold, only discrete isometric
deformations are possible. In fact, any such deformation is a reflection with respect
to an affine hyperplane. The corresponding versions of that result for hypersurfaces of
the sphere and the hyperbolic space are also discussed.

The conclusion in Sacksteder’s theorem does not hold for complete hypersurfaces.
However, in this case it turns out that continuous isometric deformations can occur
only along completely ruled subsets called ruled strips, as long as no open subset of
the hypersurface is a cylinder over a surface in R3 or over a hypersurface of R4 of a
special type that carries a one-dimensional relative nullity distribution with complete
leaves. The proof of this result is preceded by a description of the geometric structure
of complete Euclidean submanifolds whose rank is at most two.

A far-reaching extension of Sacksteder’s theorem is then discussed. Namely, it
is shown that any isometric immersion f : Mn → Rn+p of a compact Riemannian
manifold is genuinely rigid in the singular sense in Rn+q if p+ q ≤ min{4, n− 1}. This
is derived by first showing the general fact that, for any other isometric immersion
f̂ : Mn → Rn+q with p + q ≤ n − 1 of a compact Riemannian manifold, there exists
an open dense subset of Mn along each connected component of which f and f̂ either
admit singular isometric extensions or are mutually Dd-ruled with d ≥ n− p− q + 3.

13.1 The Sacksteder theorem

The main result of this section asserts that a compact (respectively, complete)
hypersurface f : Mn → Qn+1

c with n ≥ 3 and c ≤ 0 (respectively, n ≥ 4 and c > 0) is

400
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rigid, except for some trivial discrete isometric deformations that can only occur when
the subset of totally geodesic points of f disconnects Mn.

A key role in the proof of Sacksteder’s result will be played by Theorem 7.9. We
will also need the next fact for submanifolds of spheres.

Lemma 13.1. Let f : Mn → Smc be an isometric immersion, and let D be a smooth
totally geodesic distribution on an open subset U ⊂Mn such that D(x) ⊂ ∆(x) for all
x ∈ U . If there exists a geodesic ray γ : [0,∞) → U such that γ′(0) ∈ D(γ(0)), then
the splitting tensor Cγ′(0) of D cannot have real eigenvalues.

Proof: Let γ : [0,∞) → U be a geodesic ray such that T = γ′(0) ∈ D(γ(0)). Assume
that

CTY0 = λY0

for some λ ∈ R and 0 6= Y0 ∈ D⊥(γ(0)). From the proof of Theorem 7.7, there exists
a unique vector field Y = Y (t) along γ such that Y (0) = Y0, Y (t) ∈ D⊥(γ(t)) for all
t ∈ [0,∞), and

D

dt
Y + Cγ′Y = 0. (13.1)

Moreover, Y is also a solution of the differential equation

D2

dt2
Y + cY = 0.

The solution of the preceding equation with initial conditions

Y (0) = Y0 and
DY

dt
(0) = −Cγ′Y (0) = −λY0

is
Y (t) =

(
cos
√
c t−

(
λ/
√
c
)

sin
√
c t
)
Y0(t)

where Y0(t) is the parallel transport of Y0 along γ. But then Y (t) has a zero, which
contradicts the fact that a solution of (13.1) never vanishes if it is nonzero at some
point. �

As pointed out before the statement of Theorem 1.11, given isometric immersions
f, f̂ : Mn → Qn+1

c there always exists a vector bundle isometry φ : NfM → Nf̂M ,
regardless of Mn being orientable or not. Moreover, φ and −φ are the only such vector
bundle isometries. We assume that one of them has been fixed, and whenever we write
Â = A on a subset of Mn we mean that the shape operators Aξ and Âφξ of f and f̂ ,
respectively, coincide at every point of that subset.

Theorem 13.2. Let f : Mn → Qn+1
c be an isometric immersion of a compact (re-

spectively, complete) Riemannian manifold with n ≥ 3 and c ≤ 0 (respectively, n ≥ 4
and c > 0). Then, for any other isometric immersion f̂ : Mn → Qn+1

c , the following
assertions hold:
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(i) The set B of totally geodesic points of f coincides with that of f̂ .

(ii) On each connected component of M \B either A = Â or A = −Â.

In particular, if B does not disconnect Mn, then f is rigid.

Proof: We use the notations in Theorem 7.9. Consider the open subset

M3 = {x ∈Mn : ν∗(x) ≤ n− 3}.

If c ≤ 0 then M3 is nonempty by Corollary 1.6 and Exercise 6.2. If c > 0, the statement
is trivially satisfied if ν∗(x) = n for all x ∈ Mn, that is, if both f and f̂ are totally
geodesic. If this is not the case, we claim that M3 is also nonempty if n ≥ 4. Assume
otherwise. Then the minimum value ν∗0 of ν∗(x) = dim ∆∗(x), for x ∈ Mn, is either
n− 1 or n− 2.

We first prove that, for any point x in an open subset where ν∗ is everywhere equal
to either n − 1 or n − 2, there always exists T ∈ ∆∗(x) such that the splitting tensor
CT of ∆∗ has a real eigenvalue. This is clear if n ≥ 2 and ν∗ = n − 1. Suppose that
ν∗ = n − 2 and suppose otherwise that CT has no real eigenvalues for all T ∈ ∆∗(x).
If T1, . . . , Tn−2 is a basis of ∆∗(x), then for all Z ∈ ∆∗(x)⊥ and a, a1, . . . , an−2 ∈ R the
equation

0 = aZ +
n−2∑
i=1

aiCTiZ = aZ + CΣiaiTiZ

implies a = a1 = · · · = an−2 = 0. Hence Z,CT1Z, . . . , CTn−2Z are linearly independent
in ∆∗(x)⊥, which is a contradiction if n ≥ 4.

Now let U be the open subset where ν∗ attains its minimum value ν∗0 . Given
any x ∈ U and T ∈ ∆∗(x) such that CT has a real eigenvalue, let γ : [0,∞) → Mn

be a geodesic ray with γ(0) = x and γ′(0) = T . Then γ(t) ∈ U for all t ∈ [0,∞) by
Corollary 7.10, in contradiction with Lemma 13.1. This completes the proof that M3

is nonempty if c > 0 and n ≥ 4.
By the Beez-Killing rigidity theorem, on each connected component of M3 the

hypersurfaces f and f̃ differ by an isometry of Qn+1
c . Thus Â = A or Â = −A on each

such component, and hence Â(x) = ±A(x) at any x ∈ M̄3, where we denote by S̄ the
closure of a subset S ⊂Mn.

Set M2 = Mn r M̄3 and consider the open subset

U2 = {x ∈M2 : ν∗(x) = n− 2}.

Let x ∈ U2 and let L be the maximal leaf of ∆∗|U2 through x. Let γ : R → Mn be a
geodesic such that γ(0) = x and γ′(0) = T ∈ ∆∗(x), where T is chosen so that CT has
a real eigenvalue if c > 0. By the compactness of Mn for c ≤ 0, and by Lemma 13.1 for
c > 0, there must exist b > 0 such that γ([0, b)) ⊂ L but γ(b) /∈ U2. Since γ(b) ∈ M2

by Theorem 7.9, we must have γ(b) ∈ M̄3, and therefore Â = ±A at γ(b). But also
by Theorem 7.9, the splitting tensor Cγ′ of ∆∗ extends smoothly to t = b, and the
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differential equation (7.6) holds on [0, b]. By the uniqueness of solutions of (7.6) with
a given initial condition, we conclude that A = ±Â at x.

Now set M1 = M2 r Ū2 and

U1 = {x ∈M1 : ν∗(x) = n− 1}.

By the same argument as above we see that A = ±Â at x, and this concludes the
proof. �

A description of the set of isometric deformations of a compact hypersurface
f : Mn → Rn+1 of dimension n ≥ 3 follows from the assertion in part (ii) of Theo-
rem 13.2 and the next fact.

Proposition 13.3. Let f : Mn → Rn+1 be any isometric immersion and let S be a
connected component of the subset of totally geodesic points. Then f(S) is contained
in an n-dimensional affine subspace of Rn+1 tangent to f along S.

Proof: We use the fact that if ϕ : Nn → R is a smooth function on a differentiable
manifold Nn and B is a connected subset of Nn all of whose points are critical for ϕ,
then ϕ must be constant on B. This is because ϕ(B) is an interval in R, which by
Sard’s theorem must contain regular values of ϕ unless it reduces to a point.

Let ϕa ∈ C∞(M) be given by ϕa = 〈N, a〉, where N is a unit normal vector
field along f and a is any constant vector field in Rn+1. Since dϕa = 0 at every point
of S, the above fact implies that ϕa is constant on S. Thus N has a constant value
N0 ∈ Rn+1 along S. Applying the preceding fact again for ψ ∈ C∞(M) given by
ψ = 〈f,N0〉 implies that also ψ is constant on S, and the conclusion follows. �

Corollary 13.4. Let f : Mn → Rn+1 be an isometric immersion of a compact Rie-
mannian manifold of dimension n ≥ 3. Then any isometric immersion f̂ : Mn → Rn+1

is congruent to the composition of f with reflections with respect to affine hyperplanes
containing connected components of a separating set S of totally geodesic points of f .

Remark 13.5. Theorem 13.2 is false for c > 0 and n = 3. The universal cover of
the three-dimensional hypersurface in S4 given in Exercise 7.14 is a complete minimal
hypersurface with constant index of relative nullity ν = 1 that is not rigid as seen in
Exercise 11.5.

13.2 Ruled submanifolds

Section 13.4 will provide an extension of Theorem 13.2 to the case of complete
Euclidean hypersurfaces of dimension n ≥ 3. With that goal in mind, in this section
we discuss some general properties of complete ruled submanifolds with constant index
of relative nullity.

Let Nn denote a Riemannian manifold, possibly with boundary ∂N . An isometric
immersion f : Nn → Rn+p is called ruled if Nn admits a smooth integrable distribution
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D of codimension one whose leaves (rulings) are tangent along ∂N and such that f
maps each leaf onto an open subset of an affine subspace of Rn+p. If all the rulings are
complete manifolds, then f is said to be completely ruled. A connected component of
a completely ruled submanifold is called a ruled strip. Thus the rulings in each ruled
strip form an affine vector bundle over a curve with or without end points.

Let f : Nn → Rn+p be a ruled submanifold. Take a unit speed curve c : I → Nn

perpendicular to the rulings, let dc/ds = T0, T1, . . . , Tn−1 be an orthonormal frame
field along c such that T1, . . . , Tn−1 are parallel with respect to the induced connection
in c∗D, and let N1, . . . , Np be a parallel orthonormal frame of c∗NfN with respect to
the induced connection. Hence, denoting T̃i = f∗Ti for 0 ≤ i ≤ n − 1, there exist ϕi,
βij, γj ∈ C∞(I), 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ p, such that

∇̃d/dsT̃0 = −
∑

i ϕiT̃i +
∑

j γjNj

∇̃d/dsT̃i = ϕiT̃0 +
∑

j βijNj

∇̃d/dsNj = −γjT̃0 −
∑

i βijT̃i.

(13.2)

The vector field
ϕ = −

∑
i

ϕiTi = ∇T0T0

along c is the curvature vector of c in Nn. On the other hand,

β(Ti) =
∑
j

βijNj = α(T0, Ti),

whereas
γ =

∑
j

γjNj = α(T0, T0)

is the mean curvature vector field of f along c, since

α(Ti, Tk) = 0, 1 ≤ i, k ≤ n− 1.

We may parametrize f(N) near c̃ = f ◦ c by means of the map F : I × Rn−1 →
Rn+p, given by

F (s, t) = c̃(s) +
n−1∑
i=1

tiT̃i(s), (13.3)

restricted to a neighborhood of I×{0}. Conversely, if ϕi, βij, γj ∈ C∞(I) are arbitrarily
prescribed for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ p, then (13.2) has a solution frame field,
which is unique up to a fixed orthogonal transformation. Defining

c̃(s) =

∫ s

s0

T̃0(r) dr,

the map F given in (13.3) provides, at regular points (in particular near I × {0}), a
parametrization of a smooth ruled submanifold.
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Lemma 13.6. The map (13.3) is regular at any point where the ruled submanifold
f : Nn → Rn+p is defined.

Proof: In order to decide where F is singular, at a point (s, t) we compute

Ftj = T̃j, Fs = (1− 〈ϕ, T 〉)T̃0 + β(T ) (13.4)

where T =
∑

i tiTi. Thus F has maximal rank if and only if Fs 6= 0, that is, if

‖Fs‖2 = (1− 〈ϕ, T 〉)2 + ‖β(T )‖2 > 0. (13.5)

Hence F has precisely one singular point on each line in a direction T that is not
perpendicular to ϕ and lies in the kernel of β. For each s ∈ I, the set of singular points
of F in {s} × Rn−1 is either empty or an affine hyperplane in the kernel of β, that is,
in the relative nullity of f along c(s).

Consider now any open neighborhood W of I × {0} in I × Rn−1 such that

Ws = W ∩ {s} × Rn−1

is star-shaped with respect to s × 0 and F maps Ws into the ruling through c(s) for
all s ∈ I. Then the exponential map F |Ws is injective in Nn by construction, and we
show next that it must have maximal rank.

Take t ∈ Rn−1 such that t ∈ Ws on some open interval I0 ⊂ I. The field T is
parallel along c in the bundle of rulings, and

c̄(s) = c(s) + T (s)

is the reparametrization c̄ = c1 ◦ψ of the unit-speed trajectory c1 : I0 → Nn orthogonal
to the rulings such that c1(s0) = c̄(s0) for some s0 ∈ I0, where ψ is the C1 arc-length
function of c̄ on I0, measured from s0. If T1 is parallel in the bundle of rulings along
c1 with T1(s0) = −T (s0), then T1 ◦ ψ = −T on I0. Since

c = c1 ◦ ψ + T1 ◦ ψ

is regular, hence ψ′ 6= 0. But this means that Fs 6= 0 in (13.4), and F is regular. �

Proposition 13.7. Let f : Nn → Rm be a ruled submanifold. Suppose that f has
constant index of relative nullity ν ≤ n − 2 and that the leaves of relative nullity are
complete. Then every point in Nn has an open neighborhood W such that f |W extends
uniquely to a smoothly ruled strip with constant index of relative nullity ν. If Nn is
simply connected, then f extends globally to a ruled strip.

Proof: We show that the index of relative nullity of f is constant along a ruling if it is
at most n− 2 somewhere. It suffices to consider the parametrization (13.3). Let αF be
the second fundamental form of F at (s, t) and let U be a parallel vector field tangent
to the rulings, that is, U =

∑
i uiTi, where u = (u1, . . . , un−1) is constant. By (13.2),

αF (∂/∂s, U) = (〈ϕ,U〉T0 + β(U))⊥ (13.6)
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where the normal component is obtained by subtracting the projection in the direction
of Fs. With

L(U) = 〈ϕ,U〉T0 + β(U),

we see that Fs given by (13.4) is in the image of L if and only if rank L = rank β + 1.
We conclude that

rank αF (∂/∂s, ) = rank β

is constant on the ruling. Now, ker β is the relative nullity of f exactly where β is not
identically zero, that is, where ν ≤ n− 2. �

13.3 Submanifolds of rank at most two

The main result of this section is a description of the complete submanifolds of
dimension n ≥ 3 in Euclidean space such that the rank ρ = n − ν of the generalized
Gauss map satisfies ρ ≤ 2 at any point.

First we establish some basic facts about Euclidean submanifolds that carry a
relative nullity distribution with complete leaves.

Proposition 13.8. Let f : Mn → Rm be an isometric immersion. Assume that the
leaves of the relative nullity distribution ∆ on an open subset U ⊂ Mn are complete.
Then, for all x0 ∈ U and any unit vector T0 ∈ ∆(x0), the only possible real eigenvalue
of the splitting tensor CT0 is zero. Moreover, kerCγ′ is parallel along the geodesic γ
through x0 tangent to T0.

Proof: Suppose that C0 = CT0 has nonzero real eigenvalues λ1, . . . , λk, and set

τ−1 = max
1≤j≤k

|λj|.

By (7.3), the splitting tensor Cγ′ along γ satisfies

D

dt
Cγ′ = C2

γ′ . (13.7)

Notice that the operator I − tC0 is invertible for −τ < t < τ , and that

Ct = Pt0C0(I − tC0)−1(Pt0)−1 (13.8)

is a solution of (13.7) with initial condition C0 for t = 0, where Pt0 denotes parallel
transport along γ from γ(0) to γ(t). From the uniqueness of solutions of (13.7) with a
given initial condition it follows that

Cγ′(t) = Ct

on (−τ, τ). Then either (τ − t)−1 or −(τ + t)−1 is an eigenvalue of Cγ′(t), −τ < t < τ ,
which diverges as t → τ or t → −τ . This is a contradiction, because Cγ′(t) is well
defined for all t ∈ R, in view of the completeness assumption. �
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Corollary 13.9. If f : Mn → Rm satisfies the assumptions of Proposition 13.8 and
has constant rank ρ = 2 on the open subset U ⊂ Mn, then the dimension of the
orthogonal complement cokerC of kerC in ∆ is at most one.

Proof: Otherwise, the image of C would contain a self-adjoint CT 6= 0, for dimension
reasons, and that is a contradiction. �

Corollary 13.10. Suppose that f : Mn → Rn+p has constant rank ρ = 2 and that
dim cokerC = 1 on an open subset U ⊂ Mn. Let T be a (local) unit vector field
perpendicular to kerC. If CT is invertible, then the vector subbundle f∗ kerC is parallel
along U . In addition, if the leaves in kerC in U are complete then f |U is a cylinder over
a submanifold g : L3 → R3+p with complete one-dimensional leaves of relative nullity.

Proof: It follows from (7.5) that

〈∇X S, T 〉CTY = 〈∇Y S, T 〉CTX

for all S ∈ Γ(kerC) and X, Y ∈ Γ(∆⊥). Thus

〈∇XS, T 〉Y − 〈∇Y S, T 〉X ∈ Γ(kerCT ).

Since CT is invertible, then

〈∇XS, T 〉Y − 〈∇Y S, T 〉X = 0,

which implies that ∇v
XS ∈ Γ(kerC) for any X ∈ Γ(∆⊥). But

〈∇XS, Y 〉 = −〈CSX, Y 〉 = 0,

hence ∇XS ∈ Γ(kerC). On the other hand, from (7.2) we have

C∇RS = ∇RCS − CSCR = 0

for any R ∈ Γ(∆), and therefore ∇RS ∈ Γ(kerC). Thus kerC is parallel along U .
Since kerC ⊂ ∆, then f∗ kerC is parallel in the ambient space, and the conclusion
follows. �

Theorem 13.11. Let f : Mn → Rn+p, n ≥ 3, be an isometric immersion with rank
ρ ≤ 2 at any point of a complete Riemannian manifold. Then there is a disjoint
decomposition

M∗ = M0 ∪M1 ∪M2 (13.9)

of the open subset M∗ of all points in Mn with ρ = 2, where M0 is closed in M∗ and
M2 open, such that f is as follows on each connected component of the interior M o

0 of
M0, M2 and the closure of each connected component of M o

1 , respectively:

(i) A cylinder over a surface L2 in R2+p.
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(ii) A cylinder over a submanifold L3 in R3+p with complete one-dimensional leaves
of relative nullity such that the splitting tensor has complex conjugate eigenvalues.

(iii) A ruled strip.

Moreover, if M o
0 = ∅ = M2, then f is completely ruled everywhere, and a cylinder over

a curve on each component of the complement of the closure of M1.

Proof: In view of Corollary 13.9, according to the degeneracy of the splitting tensor C
of f we have a disjoint decomposition

M∗ = M0 ∪M1 ∪M2

such that M0 is the closed (in M∗) subset of points where C = 0, M1 ∪M2 is the open
subset where coker C is (locally) spanned by a unit vector field T ∈ Γ(∆) and M2 is
the open set of points where rank CT = 2. By (13.8), these three sets are saturated,
that is, they are unions of (complete) leaves of relative nullity.

On any connected component of M o
0 , it follows from Proposition 7.4 that f is

a cylinder over a surface in R2+p. Moreover, f is as in part (ii) on any connected
component of M2 by Corollary 13.10. By Proposition 13.8, the eigenvalues of the
splitting tensor of such submanifold are complex conjugate.

We claim that the smooth distribution ∆⊕kerCT is totally geodesic on M o
1 , and

that the restriction of f to each of its leaves is totally geodesic, that is, f |Mo
1

is ruled.
To see this, let kerCT be locally spanned by a unit vector field X, that is, ∇XT ∈ Γ(∆).
On the other hand, from Proposition 13.8 we see that ∇TX = 0. Since ∆ is totally
geodesic, we conclude that ∆⊕ kerCT is integrable. From (11.4) we have

AξCT = Ct
T Aξ. (13.10)

Hence Ct
T AξX = 0. On the other hand, by Proposition 13.8 both eigenvalues of CT

are zero, hence Ct
T is nilpotent. Therefore

kerCt
T = ImCt

T . (13.11)

We conclude from (13.10) and (13.11) that

〈AξX,X〉 = 0 (13.12)

for any ξ ∈ Γ(NfM). Extend X to a local orthonormal frame X, Y ∈ Γ(∆⊥). Since
CT is nilpotent, then CTY = µX, where µ is a smooth function. On the other hand,
from (7.5) we obtain

(∇XCT )Y = (∇YCT )X. (13.13)

It follows that ∇XX = 0, which concludes the proof of the claim.
We claim that the rulings in M o

1 are complete. It also follows from (13.13) that

X(µ) = 〈∇Y Y,X〉µ. (13.14)
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The leaves of the relative nullity foliation are complete, and thus parallel hyperplanes
in each ruling. Therefore any integral curve of X is a line segment in Rn+p. It suffices
to show that if γ : [0, b] → Mn is the segment in Rn+p whose restriction to [0, b) is an
integral curve of X, then γ(b) ∈ M o

1 . It follows from Proposition 13.7 that the linear
differential equation (13.14) extends smoothly to the point γ(b). Now, µ 6= 0 on [0, b],
and thus γ(b) ∈M o

1 , which gives the claim.
The closure N̄ in Mn of a connected component N of M o

1 is a smooth submanifold,
with possibly nonempty boundary, on which f is a ruled strip. In fact, let x ∈ N̄ and let
xj ∈ N be a sequence such that xj → x. Now, the rulings Lj through xj must converge
to a complete totally geodesic Euclidean space L ∼= Rn−1 through x in N̄ . Otherwise, we
would find subsequences L′j and L′′j converging to limits L′ and L′′ in N̄ which intersect
transversally at x. But then almost all L′j and L′′j would intersect transversally near
the point x, which is not possible for leaves of a foliation. It follows that L ⊂ ∂N̄ ,
and N̄ is a continuous affine vector bundle over a connected one-dimensional manifold
with or without boundary. Notice that if N1, N2 are two such completely ruled strips,
closed in M∗ and N1 ∩N2 6= ∅, then N1 ∪N2 is again a ruled strip.

To prove the last assertion, first consider the subset M∗∗ of all points in Mn with
ρ = 1. We claim that all leaves of the relative nullity foliation in the interior of M∗∗ are
complete. Otherwise, there is a geodesic γ : [0, b] → Mn such that γ[0, b) is contained
in a leaf, but γ(b) is not. Since ρ = 1 at γ(b), this point lies in the closure of M∗,
which is completely ruled by assumption. But the relative nullity subspace at γ(b) is
contained in the limit ruling transversal to γ′(b), and this is a contradiction. It follows
from Propositions 7.4 and 13.8 that f is a cylinder on each connected component of
the interior of M∗∗. The remaining arguments are straightforward. �

Remark 13.12. If f in Theorem 13.11 is real analytic, then the submanifold is
either completely ruled or a cylinder over a surface in R2+p or a cylinder over a three-
dimensional submanifold in R3+p.

Example 13.13. We give an example of how a ruled strip can be smoothly “attached”
to a cylinder over a nonruled surface in R3 as a complete hypersurface in Rn+1. Suppose
that the smooth unit-speed curve c has a Frenet frame c′ = e1, . . . , en+1 with curvatures
τ1, . . . , τn. Then

F (s, t1, . . . , tn−1) = c(s) +
n−1∑
j=1

tj e2+j

parametrizes a ruled strip. Assume that τ1, τ2 6= 0 everywhere, and that τk = 0
exactly on some interval [a, b] for 3 ≤ k ≤ n. Then F parametrizes a completely ruled
hypersurface which splits as a cylinder over a surface N2 in R3 over [a, b]. Clearly, N2

can be replaced smoothly by a nonruled surface L2 over (a, b).
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13.4 The hypersurface case

In this section we describe all possible isometric deformations of a complete Eu-
clidean hypersurface of dimension n ≥ 3, thus providing an extension of Theorem 13.2
for c = 0.

We first discuss the isometric deformations of completely ruled hypersurfaces.

Proposition 13.14. Let f : Nn → Rn+1, n ≥ 3, be a completely ruled hypersurface.
If f is not a cylinder over a surface in R3 on any open subset of Nn, then any other
isometric immersion of Nn into Rn+1 is also completely ruled, with the same rulings
in Nn.

Proof: The hypersurface f has rank ρ ≤ 2 at any point of Nn. On the open set
N∗ of points where ρ = 2, the leaves of the relative nullity foliation are contained
in the rulings, and are thus complete. For any isometric immersion f̃ : Nn → Rn+1,
by Exercise 4.1 the subset of points of Nn where ρ̃ = 2 coincides with N∗, and the
decomposition (13.9) remains the same because it is determined by the structure of
the splitting tensor of Nn. By the assumption, f̃ is also completely ruled on each
connected component of an open dense saturated subset of N∗. The conclusion now
follows by a continuity argument. �

Theorem 13.15. Let f : Mn → Rn+1, n ≥ 3, be an isometric immersion of a complete
Riemannian manifold. Assume that there exists no open subset U ⊂ Mn where the
hypersurface is as in parts (i) or (ii) of Theorem 13.11. Then f admits continuous
isometric deformations only along ruled strips. Moreover, if f is nowhere completely
ruled and the subset of totally geodesic points does not disconnect Mn, then f is rigid.

Proof: Let f̃ : Mn → Rn+1 be any other isometric immersion. Let Uk, Ũk, k ≥ 0, be
the open subsets of Mn where the ranks ρ, ρ̃ ≥ k. By Exercise 4.1, Ũk = Uk whenever
k ≥ 2, and by the Beez-Killing rigidity theorem, Ã ≡ ±A on each connected component
of Ũ3 = U3.

First consider the open set

W = U2 − Ū3.

Through any point x ∈ W we have ∆x = ∆̃x for the leaves of the relative nullity
foliations, again by Exercise 4.1. Let γ : [0, a] → Mn be a geodesic with γ(0) = x,
γ[0, a) ⊂ ∆x and γ(a) /∈ W . By Theorem 7.7, γ(a) ∈ Ū3. Thus Ã = ±A at γ(a). Now,
by (7.6) we have

∇γ′A = C ′γA (13.15)

on [0, a), and (13.15) extends smoothly to [0, a] according to Theorem 7.7. Therefore
Ã(x) = ±A(x). Consider the open saturated subset

V = {y ∈ W : Ã(y) 6= ±A(y)}.
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By the above, all leaves in V are complete. Since V does not contain an open subset
isometric to a Riemannian product L3 ×Rn−3, the proof of Theorem 13.11 shows that
f and f̃ are ruled on V . We argue next that these rulings must be complete in V .

Suppose there is an incomplete ruling L in V . Then there exists a geodesic
δ : [0, b] → Mn such that δ[0, b) ⊂ L, δ(b) /∈ V and δ′ ∈ ∆⊥. From Proposition 13.7 it
follows that δ(b) ∈ W , and thus Ã = A at δ(b) after possibly changing the local orien-
tation of f̃ . Moreover, the differential equation (13.15) with X = δ′ extends smoothly
to [0, b]. Since Ã = A at δ(b), we have Ã = A at δ(0), and this is a contradiction. Now,
f and f̃ are completely ruled on V . The closure of a connected component Vt of V is
a ruled strip. Bear in mind that

Ã = ±A on U2 − V̄ . (13.16)

The next step deals with the open subset

W ′ = U1 ∩ Ũ1 − Ū2.

We first claim ∆ = ∆̃ on W ′. Otherwise, consider the open set

V ∗ = {y ∈ W ′ : ∆y 6= ∆̃y}

and the smooth (n − 2)-dimensional foliation y → Γy = ∆y ∩ ∆̃y. The leaves are in
fact complete affine subspaces. To see this, let ε : [0, c]→ Mn be a geodesic such that
ε(0) = y ∈ V ∗, ε[0, c) ⊂ Γy and ε(c) /∈ W ′. We conclude that ε(c) ∈ Ū2 and Ã = ±A
at ε(c). Otherwise, ε(c) ∈ ∂Vl0 for some l0, and ρ = 1 at ε(c) by Theorem 7.7. This
is a contradiction since Lε(c) = ∆ε(c) and ε is transversal to Lε(c). Now, in particular,

Ã = ±A have the same kernel at ε(c), and then at ε(0) = y, contradicting y ∈ V ∗.
The complete leaves of Γ must be parallel both in the leaves of ∆ and ∆̃. Therefore
they are parallel in Mn, and then in Rn+1, along V ∗. This means that V ∗ contains a
product L2×Rn−2, which we have excluded. Thus the claim is proved. Now, it follows
that Ã = ±A on W ′. The argument is analogous to the one applied to W , using also
the above transversality. In particular,

Ã = ±A on U1 ∩ Ũ1 − V̄ . (13.17)

Finally, the open set

W ′′ = U1 − ¯̃U1

must be empty, and the same applies to Ũ1−Ū1. Otherwise, there exist a point x ∈ W ′′

and a geodesic η : [0, d] → Mn such that η(0) = x, η[0, d] ⊂ ∆x but η(d) /∈ W ′′. Here
we use that the relative nullity foliation ∆ cannot be complete on an open subset of
W ′′ by our assumption. According to Theorem 7.7, we have ρ = 1 and ρ̃ = 0 at η(d).
Again we apply the transversality argument to obtain first that η(d) /∈ V̄ . If η(d) /∈ U1,
then η(d) ∈ Ū2 − V̄ . If η(d) ∈ U1, then

η(d) ∈ U1 ∩ ¯̃U1 − V̄ ⊂ ¯U1 ∩ Ũ1 − Ū.
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Now, (13.16) or (13.17) implies the contradiction ρ = ρ̃ at η(d). We have therefore
shown that U1 ∩ Ũ1 is dense both in U1 and Ũ1, and this, together with (13.17), yield
Ã = ±A on U1 − V̄ = Ũ1 − V̄ , and thus on Mn − V̄ .

If V is empty and the set of totally geodesic points Mn−U1 = Mn− Ũ1 does not
disconnect Mn, then Ã = A or Ã = −A on Mn. �

Corollary 13.16. Let f : Mn → Rn+1, n ≥ 4, be a complete irreducible real analytic
hypersurface. Then, unless f is completely ruled, f is rigid in the category of analytic
isometric immersions. Moreover, f is also rigid in the C∞-category if the set of totally
geodesic points does not disconnect Mn.

Theorem 13.17. Let f : Mn → Rn+1, n ≥ 3, be an isometric immersion of a complete
Riemannian manifold. Assume that f is not a cylinder over a surface in R3 on any
open subset of Mn. If the scalar curvature of Mn is either positive everywhere or is
bounded from above by a negative real number, then f is rigid.

Proof: We argue first that f is nowhere completely ruled. Assume otherwise that
there exists an open subset U ⊂ Mn such that f(U) is a ruled strip, and let f(U) be
parametrized by a map F : I×Rn−1 → Rn+1 as in (13.3). Then (13.5) and (13.6) yield

αF (∂s/|∂s|, V )→ 0 as tj →∞,

where ∂s = ∂/∂s and V is a parallel vector field tangent to the ruling and transversal
to the relative nullity. Thus the scalar curvature of Mn approaches zero from below,
and that has been excluded.

Suppose that f has index of relative nullity ν = n−2 on some open set U ⊂Mn.
It follows from (7.6) and (13.8) that A(I − tCT0) is parallel along any geodesic γ
starting at a point x0 ∈ U tangent to a unit vector T0 ∈ ∆(x0). In particular, the (not
normalized) scalar curvature s along γ satisfies

s det(I − tCT0) = s0

for some constant constant s0. If γ can be taken complete, then s → 0 as t → ±∞,
unless CT0 is nilpotent. On the other hand, suppose that CT0 has nonreal eigenvalues,
that is,

CT0Z = (a+ ib)Z

where Z = X + iY and b 6= 0. Since ACT0 is symmetric by (7.6), from

〈ACT0Z, Z̄〉 = 〈ACT0Z̄, Z〉

we obtain
〈AX,X〉+ 〈AY, Y 〉 = 0,

hence s = detA < 0. Since ν = n− 2 is the minimum value, we can take U saturated
by complete leaves of relative nullity. It now follows from Proposition 13.5 that CS is
nilpotent for any S ∈ ∆. Furthermore, by Proposition 7.4 we see that C 6= 0 on an
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open dense saturated subset U0 of U . From the proof of Theorem 13.11 it follows that
f is ruled on U0.

Finally, by one of the crucial arguments in the proof of Theorem 13.15, the
immersion f can be deformed along a connected ruled subset V with ν = n− 2 only if
V is contained in a ruled strip. But such strips cannot exist according to the first part
of the proof, and thus f is rigid. �

13.5 The compact case

The main result of this section shows that any n-dimensional compact submani-
fold of Rn+p is genuinely rigid in the singular sense in Rn+q if p + q ≤ min{4, n − 1}.

We make use of the results in Section 7.2.1. Given isometric immersions f : Mn →
Rn+p and f̂ : Mn → Rn+q, let β, ∆∗ and ν∗ be defined as in that section. For x ∈ Mn

and X ∈ RE(β(x)), denote BX = β(x)(X, ) and

ρ(x) = dimBX(TxM).

Proposition 13.18. Let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric immersions
of a compact Riemannian manifold such that p + q ≤ n − 1. Given x ∈ Mn, assume
also that ρ(x) ≥ p+ q − 2 if min{p, q} ≥ 6. Then there exist unit vectors ξ ∈ NfM(x)

and ξ̂ ∈ Nf̂M(x) such that Aξ = Âξ̂.

Proof: Let U ⊂ Mn be the open subset of points where unit normal vectors ξ and
ξ̂ as in the statement do not exist and where ρ ≥ p + q − 2 if min{p, q} ≥ 6. We
claim that ν∗ > 0 on U . To prove the claim, first observe that, by assumption, S(β) is
nondegenerate at any point of U . Thus, if min{p, q} ≤ 5, the claim follows from the
Main Lemma 4.20. Suppose that min{p, q} ≥ 6. If X ∈ RE(β), using the assumption
on ρ we obtain

dim ImBX ∩ (ImBX)⊥ ≤ dim(ImBX)⊥ = p+ q − dim ImBX ≤ 2.

It is now easy to see, making use of (4.5), that there exists Y ∈ RE(β) such that
∆∗ = ker BX ∩ ker BY , and hence ν∗ = dim ker BY |ker BX

≥ n − p − q > 0, which
proves the claim.

Let V ⊂ U be the open subset where ν∗ = ν∗0 is minimal on U . Fix a point
x0 ∈ V and consider the maximal leaf L of ∆∗ through x0. By compactness of Mn,
there is a unit-speed geodesic γ : [0, `]→ Mn so that γ(0) = x0 and γ([0, `)) ⊂ L, but
γ(`) 6∈ L. Let Pt0 denote the parallel transport along γ from x0 to γ(t). We claim that

RE(β(γ(t))) = Pt0(RE(β(x0)),

and hence ρ(γ(t)) = ρ(x0). Given X0 ∈ Tx0M and Y0 ∈ (∆∗)⊥(x0), set X = Pt0X0 and
Y = Pt0Y0. From the proof of Theorem 7.7, we see that β(X,TY ) is parallel along γ
for arbitrary X0. Since T is invertible, the claim follows.
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From the claim we obtain γ(`) 6∈ U . Thus there exist unit vectors ξ0 ∈ NfM(γ(`))

and ξ̂0 ∈ Nf̂M(γ(`)) such that Aξ0 = Âξ̂0 . We extend these vectors to parallel vector

fields ξ and ξ̂ along γ. By Theorem 7.9, the differential equation

∇γ′Aξ = AξCγ′

holds on [0, `]. From the uniqueness of solutions of this equation with a given initial
condition, it follows that Aξ = Âξ̂ along γ. Thus U is empty, and this concludes the
proof. �

Proposition 13.19. Let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric immersions
of a Riemannian manifold. Assume that at each point x ∈Mn there exist unit vectors
ξ ∈ NfM(x) and ξ̂ ∈ Nf̂M(x) such that Aξ = Âξ̂. Then there is an open dense subset

of Mn where one can define smooth unit vector fields ξ ∈ Γ(NfM) and ξ̂ ∈ Γ(Nf̂M)

that are parallel along the leaves of ∆∗ and satisfy Aξ = Âξ̂.

Proof: The dimensions of ∆∗, S(β) and S(β) ∩ S(β)⊥ are constant on each connected
component of an open dense subset of Mn. By Exercise 12.13, S(β) is parallel along
∆∗ on any such component. Since ∇∗ is compatible with the metric 〈〈 , 〉〉, then the
bundle S(β) ∩ S(β)⊥ is smooth and parallel along ∆∗. �

Theorem 13.20. Let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric immersions of
a compact Riemannian manifold such that p+ q ≤ n− 1. Then, along each connected
component of an open dense subset of Mn, f and f̃ either admit singular isometric
extensions or are mutually d-ruled with d ≥ n− p− q + 3.

Proof: Let V ⊂Mn be the open subset where β satisfies ρ ≥ p+q−2. By Propositions
13.18 and 13.19, along an open dense subset U of V there is a line bundle isometry
T : span{ξ} → span{ξ̂} that preserves the second fundamental forms. The statement
now follows from Theorem 12.44 applied to each connected component of U for this T,
and to Mn r V̄ for T = 0, since, in either case, we have n + ` − ρ ≥ n − p − q + 3,
where ` and ρ are as in that result. �

Theorem 13.21. Any isometric immersion f : Mn → Rn+p of a compact Riemannian
manifold is genuinely rigid in the singular sense in Rn+q if p+ q ≤ min{4, n− 1}.

Proof: If f̂ : Mn → Rn+q is an isometric immersion, we must prove that there exists
an open dense subset of Mn along each connected component of which f and f̂ admit
singular isometric extensions.

Since p + q ≤ 4, by Propositions 13.18 and 13.19 there exist, along an open
dense subset U of Mn, line subbundles L = span{ξ} and L̂ = span{ξ̂} of NfM and

Nf̂M , respectively, which are parallel along ∆∗, and an isometry T : L → L̂ that
preserves the second fundamental forms and is trivially parallel. Consider the map
φ : Γ(f∗TM ⊕L)×X(M)→ Γ(L⊥ ⊕ L̂⊥) and the isotropic subbundle D of f∗TM ⊕L
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with respect to φ given by Proposition 12.43 on any open subset U where ρ(x), defined
by (12.83), takes a constant value ρ. By (12.84), the rank of D on U satisfies

d = n+ 1− ρ ≥ n− 1. (13.18)

It suffices to show that the pair {f |U , f̂ |U} cannot be genuine in the singular sense on
any such subset U .

Assuming otherwise, Theorem 12.44 implies that D is a tangent subbundle and,
moreover, that the pair {f |U , f̂ |U} is mutually ruled, with the rulings determined by
D in the sense that, for each x0 ∈ U , there exists an open subset W of 0 in D(x0) such
that f∗W ⊂ f(M) and f̂∗W ⊂ f̂(M).

If d = n, then f |U and f̂ |U are totally geodesic, hence clearly admit isometric
extensions. Thus, from now on we assume that d = n− 1. In this case, it follows from
(13.18) that ρ = 2; hence (12.85) implies that D = N(φ), that is,

D = N(αL⊥) ∩N(αL̂⊥). (13.19)

In particular, LD(x) ⊂ L(x) and L̂D(x) ⊂ L̂(x) for all x ∈ U , where

LD(x) = span{α(Z,X) : Z ∈ D(x) and X ∈ TxM}

and L̂D(x) is similarly defined for f̂ . We can also assume, by restricting U to a smaller
subset, if necessary, that U is free of totally geodesic points of f and f̂ .

Let R be the distribution given by the rulings determined as above by D on an
open neighborhood U0 of x0 ∈ U , so that R(x0) = D(x0). We consider separately
the two possible cases: either D and R coincide on U0, or there exists an open subset
U∗0 ⊂ U0 such that R(y) 6= D(y) for all y ∈ U∗0 . In the latter case, since U0 is free of
totally geodesic points of f and f̂ , it follows from (13.19) that L(y) and L̂(y) coincide
with the first normal spaces N1(y) and N̂1(y) of f and f̂ , respectively, at any y ∈ U∗0 .
We claim that N1 and N̂1 are parallel line bundles along U∗0 . Otherwise, by Exercise 2.2
the relative nullity subspaces ∆(y) and ∆̂(y) would have dimensions at least n−1 for all
y ∈ U∗0 . But if, say, dim ∆(y) = n− 1, since R(y) and D(y) are asymptotic subspaces
of f at y, and at least one of them would be transversal to ∆(y), then y would actually
be a totally geodesic point of f , a contradiction. Therefore, the codimensions of f |U∗0
and f̂ |U∗0 can be reduced to one on U∗0 by Corollary 2.2, and hence f |U∗0 and f̂ |U∗0
can be regarded as isometric immersions in codimension one having the same second
fundamental forms. But this implies that f and f̂ admit isometric extensions in U∗0 ,
contradicting our assumption.

It remains to consider the case in which D and R coincide on U0, that is, the pair
{f |U0 , f̂ |U0} is mutually D-ruled.

On any open subset U ′0 ⊂ U0 where LD(x), and hence L̂D(x), is trivial, the
subspace D(x) coincides with ∆∗(x), and hence L and L̂ are parallel on U ′0 along D in
the normal connection.
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Now let Û0 ⊂ U0 be the open subset where LD(x), and hence L̂D(x), is nontrivial,
that is, LD(x) = L(x) and L̂D(x) = L̂(x). Using (7.11) we obtain

∇∗Xβ(Z, Y ) = (∇∗Xβ)(Z, Y ) + β(∇XZ, Y ) + β(Z,∇XY )

= (∇∗Zβ)(X, Y ) + β(∇XZ, Y ) + β(Z,∇XY )

= ∇∗Zβ(X, Y )− β(∇ZX, Y )− β(X,∇ZY ) + β(∇XZ, Y ) + β(Z,∇XY )

for all X, Y ∈ Γ(D) and Z ∈ X(Û0). Since the line bundles L and L̂ coincide with
LD and L̂D, respectively, and the pair {f |U0 , f̂ |U0} is mutually D-ruled, which implies
in particular that D is totally geodesic on Û0, all terms on the right-hand side of the
preceding equation belong to Γ(L⊕ L̂). Thus L and L̂ are also parallel along D on Û0.

In either case, the pair (T, D) satisfies conditions (12.9). Proposition 12.5 then
implies that both {f |U ′0 , f̂ |U ′0} and {f |Û0

, f̂ |Û0
} admit isometric extensions, and that is

a contradiction. �

Remark 13.22. Notice that Theorems 13.20 and 13.21 are still valid if Mn is only
assumed to be complete, provided that one of the immersions is bounded.

In the following application of Theorem 13.21, rigidity is established in terms of
intrinsic assumptions on the immersed submanifold.

Theorem 13.23. Let f, f̃ : Mn → Rn+2, n ≥ 5, be isometric immersions of a compact
Riemannian manifold Mn with first geometric Pontrjagin form p1. Then p2

1 = p1 ∧ p1

vanishes on any open subset of Mn where f and f̃ are not congruent in any open subset.
In particular, if f is real analytic and the rational Pontrjagin class [p1] of Mn satisfies
[p1]2 6= 0, then f is rigid.

Proof: In terms of the curvature forms defined by

Ωij(X, Y ) = 〈R(ei, ej)X, Y 〉

with respect to an orthonormal basis at a given point, we have

p1 ∼
∑
i<j

Ω2
ij

up to a constant. Consider the 1-forms

ϕk = 〈Aξek, 〉 and ψk = 〈Aηek, 〉

where ξ, η are such that Aξ = Ãξ̃ and rank Aη ≤ 2. By the Gauss equation,

Ωij = ϕi ∧ ϕj + ψi ∧ ψj.

Since rank Aη ≤ 2, we can choose a basis so that ψk = 0 for 3 ≤ k ≤ n. It follows that
Ωij = 0 unless i = 1 and j = 2. Therefore

p1 ∼ (ϕ1 ∧ ϕ2 + ψ1 ∧ ψ2)2 = 2ϕ1 ∧ ϕ2 ∧ ψ1 ∧ ψ2,

and thus p2
1 = 0. �
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13.6 Notes

The rigidity result in Euclidean space for compact hypersurfaces was obtained by
Sacksteder [308] and extended to higher codimension by do Carmo-Dajczer [58]. Ferus
[176] considered the cases in which the ambient space is the sphere or the hyperbolic
space. The extension of Sacksteder’s theorem to complete Euclidean hypersurfaces,
and the description of the structure of the complete submanifolds of rank two, are due
to Dajczer-Gromoll [112]. The case of complete minimal submanifolds of rank at most
two in space forms was considered by Dajczer-Kasioumis-Savas Halilaj-Vlachos [117],
[118], [119].

A Euclidean hypersurface is called Weingarten if there exists a differentiable
function relating the mean curvature and the scalar curvature. Dajczer-Tenenblat [132]
proved that a complete Weingarten hypersurface f : Mn → Rn+1 is rigid, provided that
n ≥ 4 and Mn does not contain any open subset isometric to U × Rn−3. The result
relies on a classification of the ruled Weingarten hypersurfaces of the Euclidean space.
Ruled Weingarten hypersurfaces in the sphere and in the hyperbolic space have been
considered in [23] and [22], respectively.

The classification of complete deformable hypersurfaces in the hyperbolic space
has not been done yet. Exercises 13.9 and 13.10 provide partial results in this direction,
namely, the existence of complete surface-like examples and the nonexistence of com-
plete Sbrana-Cartan hypersurfaces of real type of the continuous or the discrete class.
We believe that there exists an abundance of examples of complete Sbrana-Cartan hy-
persurfaces of complex type in the continuous class. We point out that the examples
given in [262] are surface-like.

An important open question concerns the existence of a complete nonruled and
not surface-like deformable hypersurface f : M3 → R4 whose rank is almost everywhere
equal to two. We observe that the examples in [263] do not give an answer to this
question, which was asked by Dajczer-Gromoll [109] in the particular case of minimal
immersions; see also the result by Savas Halilaj [310].

The results in the last section on isometric deformations of compact Euclidean
submanifolds have been taken from Dajczer-Gromoll [113] and Florit-Guimarães [185].
In the latter article also the case of compact submanifolds of the sphere was considered.

13.7 Exercises

Exercise 13.1. Let f : Mn → Rn+1, n ≥ 3, be a compact hypersurface. Prove that
the identity component Iso0(M) of the isometry group of Mn admits an orthogonal
representation

Φ: Iso0(M)→ SO(n+ 1)

such that f ◦ g = Φ(g) ◦ f for all g ∈ Iso0(M).

Hint: Given g ∈ Iso0(M), let αf◦g denote the second fundamental form of f ◦ g. Show
that

αf◦g(x) = φg(x) ◦ αf (x)
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for every g ∈ Iso0(M) and x ∈Mn, where φg denotes a vector bundle isometry between
NfM and Nf◦gM , as follows: on one hand,

αf◦g(x)(X, Y ) = αf (gx)(g∗X, g∗Y )

for every g ∈ Iso0(M), x ∈Mn and X, Y ∈ TxM (see Exercise 1.6). In particular, this
implies that, for any fixed x ∈Mn, the map

Θx : Iso0(M)→ Sym(TxM × TxM → NfM(x))

into the vector space of symmetric bilinear maps of TxM × TxM into NfM(x), given
by

Θx(g)(X, Y ) = φg(x)−1(αf◦g(x)(X, Y ))

= φg(x)−1(αf (gx)(g∗X, g∗Y ))

for any X, Y ∈ TxM , is continuous. On the other hand, by Theorem 13.2 either

αf◦g(x) = φg(x) ◦ αf (x)

or
αf◦g(x) = −φg(x) ◦ αf (x).

Thus Θx is a continuous map taking values in {αf (x),−αf (x)}, hence it must be
constant because Iso0(M) is connected. Now use that Θx(id) = αf (x). Conclude that
for each g ∈ Iso0(M) there exists a rigid motion g̃ ∈ Iso(Rn+1) such that f ◦ g = g̃ ◦ f .
Then show that g 7→ g̃ defines a Lie-group homomorphism Φ: Iso0(M) → Iso(Rn+1),
and argue that its image must lie in SO(n+1) by using that it is compact and connected.

Exercise 13.2. Show that Proposition 13.14 does not hold for a cylinder over a surface
in R3.

Exercise 13.3. Let ` be a straight line in Rn+1 and let ξ be a nowhere parallel unit
normal field along `. Show that the normal subspaces to ` orthogonal to ξ are the
rulings of a complete hypersurface with constant rank ρ = 2.

Exercise 13.4. Show that the scalar curvature is constant along the relative nullity
leaves of a ruled strip.

Exercise 13.5. Prove that Theorem 13.17 holds under the weaker assumption that
the scalar curvature of Mn is nonnegative, provided that the set of totally geodesic
points does not disconnect the manifold. Moreover, the conditions need only to be
satisfied outside a compact set.
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Exercise 13.6. Let f : Mn → Qm
c be an isometric immersion and let γ be a geodesic

contained in a leaf of the relative nullity foliation. By (7.3), the splitting tensor Cγ′
along γ satisfies the differential equation

D

dt
Cγ′(t) = C2

γ′(t) + cI.

Show that its solution is

Cγ′(t) = Pt0(sin t I + cos t Cγ′(0))(cos tI − sin t Cγ′(0))
−1(Pt0)−1

if c = 1, and

Cγ′(t) = Pt0(− sinh tI + cosh t Cγ′(0))(cosh tI − sinh t Cγ′(0))
−1(Pt0)−1

if c = −1, where Pt0 denotes parallel transport along γ from γ(0) to γ(t).

Exercise 13.7. Let f : Mn → Rn+1 be a simply connected flat hypersurface with
constant index of relative nullity ν = n− 1. Show that the set of isometric immersions
of Mn into Rn+1 that preserve the relative nullity distribution is parametrized by the
set of smooth functions on an interval.

Exercise 13.8. Let f : Mn → Rn+2 be a simply connected flat submanifold with
dimN f

1 = 1 everywhere and constant index of relative nullity ν = n − 1. Show that
the set of isometric immersions of Mn into Rn+1 that preserve the relative nullity
distribution ∆ is parametrized by the set of pairs of smooth functions on an interval.

Hint: Consider smooth unit vector fields X ∈ X(M) and ξ ∈ Γ(NfM) such that X

is orthogonal to ∆ and N f
1 = span{ξ}. Set AξX = λX and let ξ, η be a smooth

orthonormal normal frame. Then use that the Codazzi and Ricci equations reduce to

T (λ) = λ〈∇XX,T 〉

and
T 〈∇⊥Xξ, η〉+ 〈∇XX,T 〉〈∇⊥Xξ, η〉 = 0

for any T ∈ Γ(∆).

Exercise 13.9. (i) Let f : Mn → Hm be a generalized cone over a submanifold
g : Lp → Qm−n+p

c , 2 ≤ p ≤ n − 1, in an umbilical submanifold Qm−n+p
c of Hm. Show

that Mn is complete if and only if c ≤ 0 and Lp is complete.

(ii) Make use of part (i) to conclude that there exist complete Sbrana-Cartan surface-
like hypersurfaces in the hyperbolic space.

Hint for (i): By Corollary 10.11 and the observation right before it, Mn is isometric to
a warped product Nn−p ×σ Lp, where

Nn−p = Hn−p if c ≤ 0

and
Nn−p = Hn−p ∩ {x ∈ Ln−p+1 : 〈a, x〉 > 0} if c > 0

for a certain unit space-like vector a ∈ Ln−p+1. Use that a warped product Nn−p×σ Lp
is complete if and only if Nn−p is complete and σ is nowhere vanishing.
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Exercise 13.10. Let f : Mn → Hn+1
−1 , n ≥ 4, be a Sbrana-Cartan hypersurface of real

type of the continuous or the discrete class. Show that the leaves of the relative nullity
distribution cannot be complete on an open subset of Mn.

Hint: Suppose that the hypersurface has complete leaves on an open set U ⊂ Mn.
Consider the Gauss parametrization ψ of f along U , which is defined on the normal
bundle NgL of a surface g : L2 → Sn1 . Show that the completeness of the leaves on U
implies that ψ must have maximal rank everywhere on NgL, and that this is equivalent
to Aw being nonsingular for any w ∈ NgL with 〈w,w〉 = −1. Prove that N g

1 must have
rank one by showing that at any x ∈ L2 where N g

1 has maximal dimension two there
exists w ∈ NgL(x) with ‖w‖ = −1 such that Aw is singular. For that, first note that
the assertion is trivial if the induced metric on N g

1 is Riemannian. If the metric is
degenerate, one may assume that ‖αg(∂u, ∂u)‖ 6= 0 and take 0 6= w0 ∈ N g

1 ∩ (N g
1 )⊥. If

ŵ0 ∈ NgL(x) is such that

‖ŵ0‖ = 0, 〈w0, ŵ0〉 = −1/2 and 〈αg(∂u, ∂u), ŵ0〉 = 0,

choose w = w0 + ŵ0. If the metric on N g
1 is Lorentzian and either αg(∂u, ∂u) or

αg(∂v, ∂v), say, the former, is space-like, simply choose w ∈ N g
1 orthogonal to αg(∂u, ∂u).

Finally, if both αg(∂u, ∂u) and αg(∂v, ∂v) are time-like, let ξ, δ be an orthonormal basis
of N g

1 , with ξ collinear with αg(∂u, ∂u), and take w = cosh θξ + sinh θδ, where

θ = −〈α
g(∂v, ∂v), ξ〉

〈αg(∂v, ∂v), δ〉
·

Now prove that N g
1 is parallel in the normal connection: if N g

1 = span{w} and there
exists δ orthogonal to w and X ∈ TL such that 〈∇⊥Xw, δ〉 6= 0, use the Codazzi equation
for Aδ to show that AwY = 0 for all Y ∈ TL such that 〈∇⊥Yw, δ〉 = 0. Conclude that
g reduces codimension to one, and hence f is a generalized cone over the polar surface
of g by Exercise 13.9.

Exercise 13.11 Verify that Theorems 13.20 and 13.21 still hold if the Euclidean am-
bient space is replaced by the hyperbolic space.
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Infinitesimal bendings

Around the time that Sbrana obtained the local description of the isometrically
deformable hypersurfaces discussed in Chapter 11, he also considered the problem of
locally describing, in terms of the Gauss parametrization, the Euclidean hypersurfaces
that are infinitesimally bendable, that is, the ones that admit nontrivial infinitesimal
deformations. Roughly speaking, this means that the hypersurface admits a nontrivial,
smooth, one-parameter variation by hypersurfaces that are isometric only “up to the
first order.”

It was very natural at that time for Sbrana to consider the infinitesimal version
of the deformation problem for hypersurfaces. On the one hand, because there already
existed a rich theory of infinitesimal deformations of surfaces; see Bianchi [36] and
Spivak [317]. On the other hand, it was known that any hypersurface whose type
number is at least three at any point is locally infinitesimally rigid, that is, it does not
admit nontrivial infinitesimal deformations, a result contained in the book of Cesàro
[76] from 1896.

In this chapter, we first discuss the general theory of infinitesimal deformations
for Euclidean submanifolds of arbitrary codimension. Then we present local rigidity
results that constitute the infinitesimal counterparts of the theorems of Allendoerfer
and do Carmo-Dajczer on isometric rigidity given in Chapter 4. A global result for
compact hypersurfaces corresponding to Sacksteder’s theorem is also proved.

The continuation of the chapter is devoted to giving, in modern terms, a complete
local parametric description of the nonflat infinitesimally deformable hypersurfaces. Of
course, any element in the continuous class of isometrically deformable hypersurfaces is
infinitesimally bendable, but the class of infinitesimally bendable hypersurfaces turns
out to be much larger.

To conclude, some of the results on infinitesimally deformable hypersurfaces are
used to derive a description of the Sbrana-Cartan hypersurfaces of the continuous class
as envelopes of certain two-parameter congruences of affine hyperplanes.

421
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14.1 Infinitesimal bendings

This section introduces the notions of an isometric bending of a submanifold and
its linearized version, namely, an infinitesimal bending.

Let F : I ×Mn → Rm denote a smooth variation of a given isometric immersion
f : Mn → Rm. The map F is called an isometric bending of f if ft = F (t, ) : Mn → Rm

is an isometric immersion for all t ∈ I ⊂ R.

An isometric bending is called trivial if it is produced by a smooth family of
isometries of Rm, that is, if there exist a smooth family C : I → O(m) of orthogonal
transformations of Rm and a smooth map v : I → Rm such that

F (t, x) = C(t)f(x) + v(t) (14.1)

for all (t, x) ∈ I ×Mn.
An isometric immersion f : Mn → Rm is said to be isometrically bendable or

unbendable whether or not it admits nontrivial isometric bendings. Notice that a
submanifold may admit isometric deformations and still be unbendable, as is the case
of the Sbrana-Cartan hypersurfaces in the discrete class, that is, the ones that allow a
single deformation.

By Proposition 1.1, the variational vector field

T = F∗∂/∂t|t=0

of an isometric bending satisfies the condition

〈∇̃XT, f∗Y 〉+ 〈f∗X, ∇̃Y T〉 = 0 (14.2)

for all X, Y ∈ X(M). If we decompose T = f∗Z + η into its tangent and normal
components, then (14.2) becomes

〈∇XZ, Y 〉+ 〈X,∇YZ〉 = 2〈α(X, Y ), η〉 (14.3)

for all X, Y ∈ X(M).
For a trivial isometric bending F as in (14.1), the variational vector field is

T(x) = Df(x) + v′(0)

where D = C ′(0) is a skew-symmetric linear endomorphism of Rm. Conversely, given
a skew-symmetric linear endomorphism D of Rm and a vector v ∈ Rm, the map

F (t, x) = etDf(x) + tv

defines a trivial isometric bending of f .

An infinitesimal bending of an isometric immersion f : Mn → Rm is a section
T of f ∗TRm that satisfies condition (14.2). If there exists a skew-symmetric linear
endomorphism D of Rm and v ∈ Rm such that

T = Df + v
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then T is said to be a trivial infinitesimal bending.

Multiplying an infinitesimal bending by a constant and adding a trivial infinites-
imal bending yields a new infinitesimal bending. Therefore, it is convenient to identify
two infinitesimal bendings T1 and T2 if there exist 0 6= c ∈ R and a trivial infinitesimal
bending T0 such that

T2 = T0 + cT1.

Any infinitesimal bending T of a submanifold f : Mn → Rn+1 gives rise to a
variation F : R×Mn → Rn+1 having T as variational vector field, namely,

F (t, x) = f(x) + tT(x). (14.4)

One usually says that the immersion ft = F (t, ) is isometric to f up to first order, for

‖ft∗X‖2 = ‖f∗X‖2 + t2‖∇̃XT‖2 (14.5)

for all X ∈ X(M).

Examples 14.1. (i) Let f : Mn → Rm be an isometric immersion. If Z ∈ X(M) is a
Killing vector field and η ∈ Γ(N⊥1 ) then T = f∗Z + η is an infinitesimal bending of f ,
for both sides of (14.3) vanish identically.

(ii) Let f, g : Mn → Rm be two noncongruent isometric immersions such that the map
h = f + g : Mn → Rm is an immersion. Then T = f − g is an infinitesimal bending
of h.

14.2 Infinitesimal rigidity

Associated with the concept of infinitesimal bending there is a natural notion of
infinitesimal rigidity defined as follows.

An isometric immersion f : Mn → Rm is called infinitesimally rigid if it only
admits trivial infinitesimal bendings. It is said to be infinitesimally bendable if it
admits an infinitesimal bending that is nontrivial restricted to any open subset of Mn.

Example 14.2. A submanifold f : Mn → Rm that is totally geodesic on an open
subset of Mn is infinitesimally bendable. This follows from the first of Examples 14.1.

The following is an elementary but very useful fact that is already contained in
the classical literature for surfaces; see Bianchi [36].

Proposition 14.3. Given an infinitesimal bending T of an isometric immersion
f : Mn → Rm, consider for any t ∈ R the map Gt : M

n → Rm defined by

Gt(x) = f(x) + tT(x). (14.6)

The following assertions hold:
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(i) The maps Gt and G−t are immersions that induce the same metric.

(ii) If f is substantial and there exists 0 6= t0 ∈ R such that Gt0 and G−t0 are
congruent then T is trivial.

Proof: The assertion in part (i) follows immediately from (14.5). By the assumption
of part (ii) there exist an orthogonal transformation S of Rm and a vector w ∈ Rm

such that
f + t0T = S(f − t0T) + w.

Thus
f∗X + t0∇̃XT = S(f∗X − t0∇̃XT),

and hence
t0(S + I)∇̃XT = (S − I)f∗X (14.7)

for all X ∈ X(M).
Suppose that S + I is not invertible, that is, that there exists

0 6= δ ∈ ker(S + I) = ker(S + I)t.

Then (S − I)tδ = −2δ. Taking the inner product of (14.7) with δ gives

〈f∗X, δ〉 = 0

for all X ∈ X(M), contradicting the fact that f is substantial.
Thus S + I is invertible, and hence (14.7) yields

∇̃XT = Df∗X (14.8)

where

D =
1

t0
(S + I)−1(S − I).

Since f is substantial, it follows from (14.2) and (14.8) that D is skew-symmetric.
Moreover, since

Df∗X = ∇̃XDf

then (14.8) also yields
∇̃X(T −Df) = 0

for all X ∈ X(M), thus showing that T is trivial. �

Theorem 14.4. An isometric immersion f : Mn → Rm with type number τ ≥ 3 at
any point is infinitesimally rigid.

Proof: Let T be an infinitesimal bending of f and let Gt : M
n → Rm be defined by

(14.6) for all t ∈ R. By Proposition 14.3, the immersions Gt and G−t are isometric.
Moreover, any point of Mn lies in an open neighborhood U where Gt still has type
number τ ≥ 3 if t is small enough. By Theorem 4.19, the restrictions Gt|U and G−t|U
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are congruent, and hence T is trivial on U by Proposition 14.3, because the assumption
on the type number implies that f |U is substantial.

Therefore T is locally trivial, that is, each point of Mn lies in an open subset U
such that ∇̃XT = DUf∗X along U . If two such open subsets U and V intersect, then

(DU −DV )|f∗TxM = 0 for all x ∈ U ∩ V.

Since f |U∩V is substantial,

span{f∗TxM : x ∈ U ∩ V } = Rm.

Hence DU = DV , and thus T is globally trivial. �

A similar argument using Theorem 4.23 proves the following result.

Theorem 14.5. An isometric immersion f : Mn → Rn+p, p ≤ 5, whose s-nullities at
any point satisfy νs ≤ n− 2s− 1 for all 1 ≤ s ≤ p is infinitesimally rigid.

The following is an infinitesimal version of Sacksteder’s Theorem 13.2. Observe
that the assumption on the totally geodesic subsets is different, since they are allowed
to separate the manifold as long as they have empty interior.

Theorem 14.6. Let f : Mn → Rn+1, n ≥ 3, be an isometric immersion of a compact
Riemannian manifold such that there are no open subsets of Mn where f is totally
geodesic. Then f is infinitesimally rigid.

Proof: Let T be an infinitesimal bending of f . Then there is no open subset where
any of the immersions G±t = f ± tT is totally geodesic. Otherwise, from Theorem 13.2
both immersions would be totally geodesic on that open set and the same would be
the case for f = (1/2)(Gt +G−t).

Fix t 6= 0, and let D ⊂Mn denote the closed subset of points where Gt is totally
geodesic. By Theorem 13.2, Gt and G−t are congruent on any connected component
of the open set Mn rD = ∪Uj. Hence Proposition 14.3 yields

T|Uj = Djf + vj

where Dj is a skew-symmetric linear transformation in Rm and vj ∈ Rm.
At x ∈Mn, let Dx be the unique skew-symmetric matrix in Rm such that

(i) 〈DxX, Y 〉 = 〈∇̃XT, Y 〉 for all X, Y ∈ TxM .

(ii) 〈DxX, η〉 = 〈∇̃XT, η〉 for all X ∈ TxM and η ∈ NfM(x).

Since ∇̃XT = DjX on Uj, then Dx and Dj are skew-symmetric matrices that coincide
on f∗TxM . But two skew-symmetric matrices that coincide on a hyperplane must be
equal. And since T is smooth, the map x 7→ Dx is also smooth. Thus this map is
globally constant. Hence there is a constant D such that T = Df + vj is constant on
each Uj. Therefore also T −Df is constant on Mn. �
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14.3 Infinitesimally bendable hypersurfaces

By Theorem 14.4, any hypersurface f : Mn → Rn+1, n ≥ 3, with type number at
least three at any point is infinitesimally rigid. Thus, as in the situation of isometrically
deformable hypersurfaces studied in Chapter 11, the interesting local case is the one of
hypersurfaces with constant type number two. We will see that, even in this situation,
hypersurfaces are “generically” infinitesimally rigid. Surface-like hypersurfaces will be
excluded from our analysis, because in this case the infinitesimal bendings are given
by infinitesimal bendings of the surface (see Exercise 14.2), and the surface case is not
our object of study.

14.3.1 The integrability conditions for an infinitesimal bend-
ing

This section is devoted to establish the integrability conditions for the system of
partial differential equations of an infinitesimal bending of a Euclidean hypersurface.
Some long but straightforward computations are only indicated.

Given a hypersurface f : Mn → Rn+1, n ≥ 3, with an infinitesimal bending T,
we work with the associated variation F given by (14.4). Let gt be the metric on Mn

induced by ft = F (t, ). Then

∂/∂t|t=0 gt(X, Y ) = 0

for all X, Y ∈ X(M). Consequently, the associated one-parameter family of Levi-Civita
connections and the corresponding family of curvature tensors satisfy

∂/∂t|t=0∇t
XY = 0

and
∂/∂t|t=0 〈Rt(X, Y )Z,W 〉 = 0 (14.9)

for all X, Y, Z,W ∈ X(M).

Let N(t) denote a Gauss map of ft so that the map t ∈ R 7→ N(t) is smooth,
and let A(t) be the shape operator of ft with respect to N(t). Thus N = N(0) is the
Gauss map and A = A(0) is the shape operator of f with respect to N . Moreover, let
L ∈ Γ(Hom(TM ; f ∗(TRn+1))) be defined by

LX = ∇̃XT = T∗X.

Then (14.2) can be written as

〈LX, f∗Y 〉+ 〈f∗X,LY 〉 = 0 (14.10)

for all X, Y ∈ X(M).
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Lemma 14.7. The vector field Y ∈ Γ(f ∗(TRn+1)) defined by

Y = ∂/∂t|t=0N(t)

satisfies
〈Y, N〉 = 0 (14.11)

and
〈Y, f∗X〉+ 〈LX,N〉 = 0 (14.12)

for all X ∈ X(M).

Proof: The derivative with respect to t of 〈N(t), N(t)〉 = 1 at t = 0 gives (14.11),
whereas that of 〈N(t), ft∗X〉 = 0 yields (14.12). �

Lemma 14.8. The tensor B ∈ Γ(End(TM)) defined by

B = ∂/∂t|t=0A(t)

is symmetric and satisfies

(∇̃XL)Y = 〈BX, Y 〉N + 〈AX, Y 〉Y (14.13)

and
Y∗X + f∗BX + LAX = 0 (14.14)

for all X, Y ∈ X(M).

Proof: The derivatives with respect to t, at t = 0, of the Gauss formula

∇̃Xft∗Y = ft∗∇t
XY + gt(A(t)X, Y )N(t)

and the Weingarten formula

∇̃XN(t) = −ft∗A(t)X

easily give (14.13) and (14.14), respectively. �

If T = Df +w is a trivial infinitesimal bending, then L = D ◦ f∗. It follows that
Y = DN and that B = 0, since

〈BX, Y 〉 = 〈(∇̃XL)Y,N〉 = 〈(∇̃XD)f∗Y,N〉 = 0

for all X, Y ∈ X(M).

Proposition 14.9. The tensor B is a Codazzi tensor, that is,

(∇XB)Y − (∇YB)X = 0, (14.15)

and satisfies
BX ∧ AY −BY ∧ AX = 0 (14.16)

for all X, Y ∈ X(M).
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Proof: The derivative at t = 0 of the Codazzi equation(
∇t
XA(t)

)
Y =

(
∇t
YA(t)

)
X

gives (14.15). To obtain (14.16), we compute the derivative at t = 0 of the Gauss
equation

Rt(X, Y )Z = g(t)(A(t)Y, Z)A(t)X − g(t)(A(t)X,Z)A(t)Y

and use (14.9). �

Next we consider the case of hypersurfaces of constant rank two.

Corollary 14.10. If f : Mn → Rn+1, n ≥ 3, is an infinitesimally bendable hypersur-
face of constant rank two, then ∆ ⊂ kerB.

Proof: This follows easily from (14.16). �

Thus the direct statement of the following result has been proved.

Theorem 14.11. If f : Mn → Rn+1, n ≥ 3, is an infinitesimally bendable hyper-
surface of constant rank two, then it carries a nontrivial symmetric Codazzi tensor
B ∈ Γ(End(TM)) such that ∆ ⊂ kerB and

BX ∧ AY −BY ∧ AX = 0 (14.17)

for all X, Y ∈ X(M).
Conversely, if Mn is simply connected then any such Codazzi tensor B gives rise

to a nontrivial infinitesimal bending of f .

Proof: It suffices to prove the converse statement. For B as in the statement, we first
show that there exist solutions Y ∈ Γ(f ∗(TRn+1)) and L ∈ Γ(Hom(TM ; f ∗(TRn+1)))
satisfying the system of differential equations

(S)

{
Y∗X = −LAX − f∗BX
(∇̃XL)Y = 〈BX, Y 〉N + 〈AX, Y 〉Y

(14.18)

which is easily seen to have more unknowns than equations.
The integrability condition for the first equation is

∇̃XY∗Y − ∇̃Y Y∗X − Y∗[X, Y ] = 0 (14.19)

for all X, Y ∈ X(M). Since

∇̃XY∗Y = −(∇̃XL)AY − L(∇XA)Y − LA∇XY − f∗∇XBY − 〈AX,BY 〉N

then (14.19) is equivalent to

(∇̃XL)AY − (∇̃YL)AX + f∗((∇XB)Y − (∇YB)X) + (〈AX,BY 〉 − 〈AY,BX〉)N = 0.
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After replacing the first two terms by the use of the second equation in (S), then (14.19)
follows using (14.15).

It is easy to see that the integrability condition for the second equation is

(∇̃X∇̃YL− ∇̃Y ∇̃XL− ∇̃[X,Y ]L)Z = −LR(X, Y )Z (14.20)

for all X, Y, Z,W ∈ X(M). A straightforward computation gives

(∇̃X∇̃YL)Z =〈(∇XB)Y, Z〉N + 〈B∇XY, Z〉N − 〈BY,Z〉f∗AX + 〈(∇XA)Y, Z〉Y
+ 〈A∇XY, Z〉Y− 〈AY,Z〉LAX − 〈AY,Z〉f∗BX.

The Codazzi equation together with (14.15) yields

(∇̃X∇̃YL− ∇̃Y ∇̃XL− ∇̃[X,Y ]L)Z =− 〈BY,Z〉f∗AX − 〈AY,Z〉(LAX + f∗BX)

+ 〈BX,Z〉f∗AY + 〈AX,Z〉(LAY + f∗BX).

On the other hand, by the Gauss equation we have

LR(X, Y )Z = 〈AY,Z〉LAX − 〈AX,Z〉LAY,

and (14.20) follows using (14.17).
We show next that there exist solutions Y and L of the system (S) that also

satisfy (14.10), (14.11) and (14.12). Define a smooth function by

τ = 〈Y, N〉,

a smooth one-form by
θ(X) = 〈Y, f∗X〉+ 〈LX,N〉

and a smooth symmetric bilinear tensor by

β(X, Y ) = 〈LX, f∗Y 〉+ 〈LY, f∗X〉.

A straightforward calculation gives

dτ = −θ ◦ A, (14.21)

∇Xθ(Y ) = −β(AX, Y ) + 2τ〈AX, Y 〉 (14.22)

and
∇Zβ(X, Y ) = 〈AZ,X〉θ(Y ) + 〈AZ, Y 〉θ(X) (14.23)

for all X, Y, Z ∈ X(M).
We claim that the system formed by the above three differential equations is

integrable. For the first equation, it is easy to see using (14.22) and the Codazzi
equation that

XY (τ)− Y X(τ)− [X, Y ](τ) = −X(θ(AY )) + Y (θ(AX)) + θ(A[X, Y ]) = 0.
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A straightforward calculation shows that

(∇X∇Y θ −∇Y∇Xθ −∇[X,Y ]θ)Z = −θ(R(X, Y )Z) (14.24)

is the integrability condition for the second equation. Using (14.21) and (14.22) we
obtain

(∇X∇Y θ)Z = −(∇Xβ)(AY,Z)− β(∇XAY,Z)− 2θ(AX)〈AY,Z〉+ 2τ〈∇XAY,Z〉.

Hence

(∇X∇Y θ −∇Y∇Xθ −∇[X,Y ]θ)Z =− (∇Xβ)(AY,Z) + (∇Y β)(AX,Z)

− 2θ(AX)〈AY,Z〉+ 2θ(AY )〈AX,Z〉.

Using (14.23) we see that

(∇X∇Y θ −∇Y∇Xθ −∇[X,Y ]θ)Z = −θ(AX)〈AY,Z〉+ θ(AY )〈AX,Z〉.

On the other hand, by the Gauss equation we have

θ(R(X, Y )Z) = 〈AY,Z〉θ(AX)− 〈AX,Z〉θ(AY ),

and (14.24) follows.
Finally, the integrability condition for the last equation is

(∇X∇Y β−∇Y∇Xβ−∇[X,Y ]β)(Z,W ) = −β(R(X, Y )Z,W )−β(R(X, Y )W,Z). (14.25)

Using (14.22) and (14.23) we obtain

∇X∇Y β = 〈∇XAY,Z〉θ(W )+ 〈∇XAY,W 〉θ(Z)+ 〈AY,Z〉∇Xθ(W )+ 〈AY,W 〉∇Xθ(Z).

Making use of the Codazzi equation, it follows easily that

(∇X∇Y β −∇Y∇Xβ −∇[X,Y ]β)(Z,W ) =− 〈AY,Z〉β(AX,W )− 〈AY,W 〉β(AX,Z)

+ 〈AX,Z〉β(AY,W ) + 〈AX,W 〉β(AY,Z)

and (14.25) is obtained using the Gauss equation.

Start with a solution L∗ and Y∗ of the integrable system (S) with corresponding
tensors θ∗, β∗ and function τ ∗. Fix a point x0 ∈ Mn and let L0 and Y0 be a solution
of the integrable system

(S0)

{
Y∗X = −LAX
(∇̃XL)Y = 〈AX, Y 〉Y

with initial conditions θ0(x0) = θ∗(x0), β0(x0) = β∗(x0) and τ0(x0) = τ ∗(x0). Then
L = L∗ − L0 and Y = Y∗ − Y0 are a solution of (S) such that θ = θ∗ − θ0, β = β∗ − β0
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and τ = τ ∗ − τ0. Clearly θ(x0) = β(x0) = τ(x0) = 0. Since θ, β and τ solve the
homogeneous integrable system (14.21), (14.22) and (14.23), then θ = β = τ = 0.

We have seen that there are Y ∈ Γ(f ∗(TRn+1)) and L ∈ Γ(Hom(TM ; f ∗(TRn+1)))
satisfying both equations in (14.18) as well as (14.10), (14.11) and (14.12). Regarding
L as a one-form on Mn with values in f ∗(TRn+1), it follows from the second equation
in (14.18) and the symmetry of both A and B that L is a closed one-form. Since Mn

is simply connected and the vector-bundle f ∗(TRn+1) is flat, L is exact as a one-form,
that is, there exists T ∈ Γ(f ∗(TRn+1)) such that L = T∗. In view of (14.10), T is an
infinitesimal bending of f .

Given any two pairs Yj, Lj as above, let Tj, 1 ≤ j ≤ 2, be the associated in-
finitesimal bendings. It remains to show that T = T1 − T2 is a trivial infinitesimal
bending.

The pair L = L1 − L2, Y = Y1 − Y2 satisfies (S0) as well as (14.2), (14.11) and
(14.12). Fix x0 ∈Mn and define a skew-symmetric linear endomorphism D of Rn+1 by

Df∗(x0)X = L(x0)X and DN(x0) = Y(x0)

and a vector v ∈ Rn+1 by
v = T(x0)−Df(x0).

Consider the trivial infinitesimal bending T̃ = Df + v and Ỹ = DN . Then the pair L̃
and Ỹ satisfies (S0). Thus also the pair L∗ = L − L̃, Y∗ = Y − Ỹ solves system (S0).
Moreover, T∗(x0) = 0, Y∗(x0) = 0 and L∗(x0) = L(x0)− L̃(x0) = 0. Thus T∗ = 0, and
hence T = T̃. �

14.3.2 Infinitesimal bendings of ruled hypersurfaces

By Proposition 11.2, the set of local isometric bendings of a ruled hypersurface is
parametrized by the set of smooth real functions on an open interval. Therefore, ruled
hypersurfaces form a nontrivial class of infinitesimally bendable hypersurfaces.

Proposition 14.12. Any simply connected ruled hypersurface f : Mn → Rn+1, n ≥ 3,
that is free of flat points and is not surface-like on any open subset of Mn is infinites-
imally bendable, and any of its infinitesimal bendings is the variational vector field of
an isometric bending.

Proof: Let J ∈ Γ(End(TM)) be defined by (11.15) in terms of an orthonormal frame
X, Y of ∆⊥, with X orthogonal to the rulings, and let D = δI + θJ , where δ ∈ R
and θ ∈ C∞(M) is arbitrarily prescribed along an integral curve of X and required
to satisfy conditions (11.16) and (11.17). By Lemma 11.1 and Proposition 11.2, any
Codazzi tensor Ã on Mn with ∆ ⊂ ker Ã is given by Ã = AD for such a tensor D. It
is easily checked that Ã satisfies (14.17) if and only if δ = 0. Thus f is infinitesimally
bendable by Theorem 14.11, and any infinitesimal bending of f is determined by a
Codazzi tensor on Mn given by Ã = θAJ , with θ and J as above. Therefore the
one-parameter family of Codazzi tensors

A(t) = A+ tÃ, t ∈ R,
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gives rise to an isometric bending of f having the infinitesimal bending determined by
Ã as its variational vector field. �

14.3.3 Special hyperbolic and elliptic surfaces

To proceed with the description of the infinitesimally bendable hypersurfaces in
terms of the Gauss parametrization, in this section we characterize the hyperbolic and
elliptic surfaces g : L2 → Sn with respect to J̄ ∈ Γ(End(TL)) for which there exists
µ̄ ∈ C∞(L) with µ̄ 6= 0 everywhere such that µ̄J̄ is a Codazzi tensor on L2. It will be
shown in the following section that these surfaces are precisely the Gauss maps of the
infinitesimally bendable hypersurfaces.

We call a hyperbolic surface g : L2 → Sn a special hyperbolic surface if, for any
local system of real conjugate coordinates (u, v) on L2 given by Proposition 11.10, the
Christoffel symbols Γ1,Γ2 defined by (11.21) satisfy

Γ1
u = Γ2

v. (14.26)

Hence, if L2 is simply connected, there exists µ ∈ C∞(L) such that

dµ+ 2µω = 0 (14.27)

where ω = Γ2du+ Γ1dv.
We say that an elliptic surface g : L2 → Sn is a special elliptic surface if for any

local system of complex conjugate coordinates (u, v) on L2 given by Proposition 11.10
the Christoffel symbol Γ defined by (11.22) satisfies

Γz = Γ̄z̄, (14.28)

that is, Γz is real-valued. Thus any simply connected special elliptic surface carries a
real-valued µ ∈ C∞(L) such that

µz̄ + 2µΓ = 0. (14.29)

Notice that surfaces of first species of real type (respectively, complex type) are
special hyperbolic (respectively, special elliptic).

Lemma 14.13. For a simply connected surface g : L → Sn, the following assertions
are equivalent:

(i) The surface g is hyperbolic (respectively, elliptic) with respect to a tensor J̄ on
L2 satisfying J̄2 = Ī (respectively, J̄2 = −Ī) and there exists µ̄ ∈ C∞(L), µ̄ 6= 0
everywhere, such that D̄ = µ̄J̄ is a Codazzi tensor on L2.

(ii) The surface g is special hyperbolic (respectively, special elliptic).
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Proof: Assume that g is hyperbolic and as in part (i). Let (u, v) be local real conjugate
coordinates on L2 given by Proposition 11.10 such that D̄∂u = µ̄∂u. Then the equation(

∇′∂uD̄
)
∂v −

(
∇′∂vD̄

)
∂u = 0 (14.30)

is easily seen to be equivalent to the system (14.27).
Conversely, if g is special hyperbolic with real conjugate coordinates (u, v), J̄

is the complex structure on L2 given by J̄∂u = ∂v and J̄∂v = −∂u, and µ̄ ∈ C∞(L)
satisfies (14.27), then D̄ = µ̄J̄ satisfies (14.30) in view of (14.27), and hence is a Codazzi
tensor on L2. The proof for the elliptic case is similar. �

14.3.4 The classification

We are now ready to state and prove the classification of infinitesimally bendable
hypersurfaces that are neither surface-like nor ruled on any open subset. Given a surface
g : L2 → Sn and γ ∈ C∞(L), we call (g, γ) a special hyperbolic pair (respectively, special
elliptic pair) if (g, γ) is a hyperbolic pair (respectively, elliptic pair) and g is a special
hyperbolic (respectively, special elliptic) surface.

Theorem 14.14. Let f : Mn → Rn+1, n ≥ 3, be an infinitesimally bendable hypersur-
face with constant type number two that is neither surface-like nor ruled on any open
subset of Mn. Then, on each connected component of an open dense subset of Mn,
the hypersurface is parametrized in terms of the Gauss parametrization by a special
hyperbolic or a special elliptic pair.

Conversely, any hypersurface parametrized in terms of the Gauss parametrization
by a special hyperbolic or special elliptic pair admits locally an infinitesimal bending.
Moreover, the infinitesimal bending is unique.

Proof: If f : Mn → Rn+1, n ≥ 3, is an infinitesimally bendable hypersurface with
constant type number two, it follows from Theorem 14.11 that there exists a nontrivial
symmetric Codazzi tensor B ∈ Γ(End(TM)) satisfying (14.17) such that ∆ ⊂ kerB.
Moreover, by (14.17) and the assumption that A has rank two, the tensor B cannot be
a constant multiple of A on any open subset of Mn.

By Lemma 11.1, the hypersurface f is either hyperbolic, parabolic or elliptic with
respect to J ∈ Γ(End(∆⊥)) on each connected component of an open dense subset U

of Mn, depending on whether the tensor D = (A|∆⊥)−1B|∆⊥ ∈ Γ(End(∆⊥)) has two
distinct real eigenvalues, one real eigenvalue of multiplicity two or a pair of complex
conjugate eigenvalues, respectively. The second case cannot occur by Proposition 11.2
and the assumption that f is not ruled on any open subset of Mn. Thus f is either
hyperbolic or elliptic with respect to J ∈ Γ(End(∆⊥)) on each connected component
of U. Moreover, the tensor D satisfies the conditions (i) and (ii) in Lemma 11.1 as
well as

〈AY,AZ〉〈ADX,AW 〉 − 〈ADX,AZ〉〈AY,AW 〉
= 〈AX,AZ〉〈ADY,AW 〉 − 〈ADY,AZ〉〈AX,AW 〉

(14.31)
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for all X, Y, Z,W ∈ X(M), which follows from (14.17).
Let g : L2 → Sn+1 and γ ∈ C∞(L) parametrize the hypersurface f in terms of

the Gauss parametrization. By Proposition 11.11, the tensor J is the horizontal lift of
a tensor J̄ ∈ Γ(End(TL)) and the pair (g, γ) is hyperbolic (respectively, elliptic) with
respect to J̄ . On the other hand, by Proposition 11.12 also D is the horizontal lift of
a tensor D̄ ∈ Γ(End(TL)) which is a Codazzi tensor on L2 such that D̄ ∈ span{Ī , J̄}
and D̄ 6∈ span{Ī}. Moreover, in view of (7.14), Eq. (14.31) gives

〈Ȳ , Z̄〉′〈D̄X̄, W̄ 〉′ − 〈D̄X̄, Z̄〉′〈Ȳ , W̄ 〉′

= 〈X̄, Z̄〉′〈D̄Ȳ , W̄ 〉′ − 〈D̄Ȳ , Z̄〉′〈X̄, W̄ 〉′
(14.32)

for all X̄, Ȳ , Z̄, W̄ ∈ X(L), where 〈 , 〉′ is the metric on L2 induced by g. In terms of
an orthonormal frame X̄, Ȳ of L2, Eq. (14.32) for W̄ = X̄ and Z̄ = Ȳ reduces to

〈D̄X̄, D̄X〉′ + 〈D̄Ȳ , D̄Y 〉′ = 0,

that is, trD̄ = 0. Since D̄ ∈ span{Ī , J̄}, there exists µ̄ ∈ C∞(L) such that D̄ = µ̄J̄ .
Thus the pair (g, γ) is special hyperbolic (respectively, special elliptic) by Lemma 14.13.

Conversely, let f : Mn → Rn+1 be given in terms of the Gauss parametrization
by either a special hyperbolic or a special elliptic pair (g, γ) with respect to J̄ ∈
Γ(End(TL)). By Proposition 11.11, the hypersurface f is either hyperbolic or elliptic
with respect to the horizontal lift J ∈ Γ(End(∆⊥)) of J̄ . On the other hand, since
(g, γ) is either a special hyperbolic or a special elliptic pair, there exists µ̄ ∈ C∞(L)
such that D̄ = µ̄J̄ is a Codazzi tensor on L2. In particular, D̄ satisfies (14.32).

By Proposition 11.12, the horizontal liftD ∈ Γ(End(∆⊥)) of D̄ satisfies conditions
(i) and (ii) in Lemma 11.1, and the tensor B ∈ Γ(End(TM)), defined by

B|∆⊥ = AD and kerB = ∆,

satisfies (11.2). Therefore B is a symmetric Codazzi tensor on Mn by Lemma 11.1.
Moreover, Eq. (14.32) for D̄ implies (14.31), which is equivalent to (14.17). By Theo-
rem 14.11, the Codazzi tensor B satisfying (14.17) determines an infinitesimal bending
of f . �

14.3.5 Infinitesimally bendable hypersurfaces as envelopes

If f : Mn → Rn+1 is an infinitesimally bendable hypersurface parametrized, in
terms of the Gauss parametrization, by a special hyperbolic or a special elliptic pair
g : L2 → Rn+1 and γ ∈ C∞(L), then (g, γ) determines a two-parameter congruence
of affine hyperplanes that is enveloped by f . In this section we give a simple way
of producing these congruences of affine hyperplanes, thus providing an alternative
description of infinitesimally bendable hypersurfaces.

The hyperbolic and elliptic cases are considered separately in the next two results.
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Proposition 14.15. Let g : L2 → Sn be a special hyperbolic surface and let (u, v) be
real conjugate coordinates on a simply connected open subset U ⊂ L2 where (14.26)
is satisfied. Let µ ∈ C∞(U) be a positive solution of (14.27). Then ϕ ∈ C∞(U) is a
solution of

ϕuv − Γ1ϕu − Γ2ϕv + Fϕ = 0 (14.33)

with F = 〈∂u, ∂v〉, if and only if ψ =
√
µϕ is a solution of

ψuv +Mψ = 0 (14.34)

where M ∈ C∞(L) is given by

M = F − µuv
2µ

+
µuµv
4µ2
· (14.35)

In particular, the map k =
√
µh : L2 → Rn+1, where h is the composition h = i ◦ g of

g with the inclusion i : Sn → Rn+1, satisfies

kuv +Mk = 0. (14.36)

Conversely, let k : L2 → Rn+1 be a map satisfying (14.36) for some M ∈ C∞(L)
with respect to local coordinates (u, v) on L2. If h = (1/‖k‖) k : L2 → Rn+1 is an
immersion, then (u, v) are real conjugate coordinates for the surface g : L2 → Sn given
by h = i ◦ g, (14.26) is satisfied with respect to its induced metric and µ = ‖k‖2 is a
positive solution of (14.27).

Proof: Since µ ∈ C∞(U) is a solution of (14.27), it satisfies

Γ1 = −µv
2µ

and Γ2 = −µu
2µ
·

Hence (14.33) becomes

ϕuv +
µv
2µ
ϕu +

µu
2µ
ϕv + Fϕ = 0. (14.37)

It follows easily that (14.37) takes the form (14.34) for ψ =
√
µϕ, where M is given

by (14.35).
Conversely, if k : L2 → Rn+1 is a map satisfying (14.36) for some M ∈ C∞(L)

with respect to local coordinates (u, v) on L2, then a straightforward computation
shows that h = (1/

√
µ) k : L2 → Rn+1, with µ = ‖k‖2, satisfies

huv +
µv
2µ
hu +

µu
2µ
hv + Fh = 0, (14.38)

where
F = M +

µuv
2µ
− µuµv

4µ2
·

If h is an immersion and g : L2 → Sn is defined by h = i ◦ g, then (14.38) implies
that (u, v) are real conjugate coordinates for g and that the Christoffel symbols of the
metric induced by g are

Γ1 = −µv
2µ

and Γ2 = −µu
2µ
·

It follows that(14.26) is satisfied and that µ is a positive solution of (14.27). �
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Proposition 14.16. Let g : L2 → Sn be a special elliptic surface and let (u, v) be
complex conjugate coordinates on a simply connected open subset U ⊂ L2 where (14.28)
is satisfied. If µ ∈ C∞(L) is a real-valued positive solution of (14.29), then ϕ ∈ C∞(U)
is a solution of

ϕzz̄ − Γϕz − Γ̄ϕz̄ + Fϕ = 0 (14.39)

with F = 〈∂z, ∂z̄〉, if and only if ψ =
√
µϕ is a solution of

ψzz̄ +Mψ = 0,

where M ∈ C∞(L) is given by

M = F − µzz̄
2µ

+
µzµz̄
4µ2
· (14.40)

In particular, the map k =
√
µh : L2 → Rn+1, where h is the composition h = i ◦ g of

g with the inclusion i : Sn → Rn+1, satisfies

kzz̄ +Mk = 0. (14.41)

Conversely, let k : L2 → Rn+1 be a map satisfying (14.41) for some M ∈ C∞(L)
with respect to local coordinates (u, v). If g = (1/‖k‖)k : L2 → Sn is an immersion,
then (u, v) are complex conjugate coordinates for g, (14.28) is satisfied with respect to
the induced metric and µ = ‖k‖ is a real-valued positive solution of (14.29).

Proof: Since µ ∈ C∞(L) is a real-valued solution of (14.29), then

Γ =
µz
2µ
·

Hence (14.39) becomes

ϕzz̄ +
µz
2µ
ϕz +

µz̄
2µ
ϕz̄ + Fϕ = 0. (14.42)

It follows easily that (14.42) takes the form (14.41) for k =
√
µϕ where M is given

by (14.40).
Conversely, if k : L2 → Rn+1 is a map satisfying (14.41) for some M ∈ C∞(L)

with respect to local coordinates (u, v) on L2, then a straightforward computation
shows that h = (1/

√
µ) k : L2 → Rn+1, with µ = ‖k‖2, satisfies

hzz̄ +
µz
2µ
hz +

µz̄
2µ
hz̄ + Fh = 0 (14.43)

where
F = M +

µzz̄
2µ
− µzµz̄

4µ2
·

If h is an immersion and g : L2 → Sn is defined by h = i ◦ g, then (14.43) implies that
(u, v) are complex conjugate coordinates for g and that the complex Christoffel symbol
of the metric induced by g is

Γ =
µz
2µ
·
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It follows that (14.28) is satisfied and that µ is a positive solution of (14.29). �

The description of the infinitesimally bendable hypersurfaces f : Mn → Rn+1,
n ≥ 3, as envelopes of certain two-parameter congruence of affine hyperplanes can be
stated as follows.

Theorem 14.17. Consider a two-parameter congruence of affine hyperplanes in Rn+1

given in terms of the standard coordinates x1, . . . , xn+1 by

k1x1 + · · ·+ kn+1xn+1 − k0 = 0 (14.44)

where k0, . . . , kn+1 : U → R are solutions on an open subset U ⊂ R2 of the partial
differential equation

ψz1z2 +Mψ = 0 (14.45)

for some M ∈ C∞(U), with (z1, z2) standing either for (u, v) or (z, z̄). Then any
hypersurface f : Mn → Rn+1 that envelops such a congruence of affine hyperplanes
admits locally a unique infinitesimal bending.

Conversely, any infinitesimally bendable hypersurface f : Mn → Rn+1, n ≥ 3, that
has constant type number two and is neither surface-like nor ruled on any open subset
of Mn, envelops a two-parameter family of hyperplanes as above on each connected
component of an open dense subset of Mn.

Proof: Assume that f : Mn → Rn+1 envelops the congruence of affine hyperplanes in
Rn+1 given by (14.44), where k0, . . . , kn+1 : U → R are solutions on the open subset
U ⊂ R2 of the partial differential equation (14.45). We argue for the case in which
(z1, z2) stands for (u, v), the other case being similar.

Let g : U → Sn+1 be defined by i◦g = k/‖k‖, where k = (k1, . . . , kn+1) : U → Rn+1

and i : Sn → Rn+1 is the inclusion. Then g is a Gauss map for f , and γ = k0/‖k‖ is
its support function. Since the affine hyperplanes (14.44) are assumed to form a two-
parameter congruence, the map g is an immersion. By the assumption that k satisfies
(14.45), it follows from the converse statement of Proposition 14.15 that g is a special
hyperbolic surface.

Moreover, since k0 also satisfies (14.45), the function γ satisfies (14.33) by the
direct statement of Proposition 14.15. Thus (g, γ) is a special hyperbolic pair, and
hence f admits a unique infinitesimal bending by Theorem 14.14.

Conversely, let f : Mn → Rn+1, n ≥ 3, be an infinitesimally bendable hyper-
surface that has constant type number two and is neither surface-like nor ruled on
any open subset of Mn. Let the pair (g, γ) parametrize f by means of the Gauss
parametrization. Then f envelops the two-parameter congruence of affine hyperplanes

h1x1 + · · ·+ hn+1xn+1 − γ = 0 (14.46)

where h = (h1, . . . , hn+1) is the composition h = i ◦ g of g : L2 → Sn with the inclusion
i : Sn → Rn+1. By Theorem 14.14, the pair (g, γ) is either special hyperbolic or special
elliptic. We argue for the first possibility, the argument for the second being similar.
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By the direct statement of Proposition 14.15, if µ ∈ C∞(U) is a positive solution of
(14.27), then the map k =

√
µh satisfies (14.36). Moreover, since γ satisfies (14.33),

the function
√
µ γ is also a solution of (14.34). Therefore Eq. (14.46) can also be

written as
k1x1 + · · ·+ kn+1xn+1 − k0 = 0

with k0, . . . , kn+1 being solutions of (14.34). �

14.4 Sbrana-Cartan hypersurfaces as envelopes

The results of the preceding section can be used to derive Cartan’s description
of the Sbrana-Cartan hypersurfaces of the continuous class as envelopes of certain
two-parameter congruences of affine hyperplanes.

Theorem 14.18. Consider a two-parameter congruence of affine hyperplanes in Rn+1

given in terms of the standard coordinates x1, . . . , xn+1 by

k1x1 + · · ·+ kn+1xn+1 − k0 = 0 (14.47)

where k0, . . . , kn+1 : U → R are solutions of (14.45) on an open subset U ⊂ R2. Assume
further that k1, . . . , kn+1 do not vanish simultaneously at any point of U and that the
function µ =

∑n+1
j=1 k

2
j either is given by

µ = U(u) + V (v)

for some smooth functions U = U(u) and V = V (v) or satisfies

µuu + µvv = 0,

depending on whether (z1, z2) stands for either (u, v) or (z, z̄) in (14.45), respectively.
Then any hypersurface f : Mn → Rn+1 that envelops such a congruence of affine hy-
perplanes is, accordingly, a Sbrana-Cartan hypersurface of real or complex type in the
continuous class.

Conversely, any Sbrana-Cartan hypersurface of real or complex type in the contin-
uous class envelops a two-parameter family of hyperplanes as above on each connected
component of an open dense subset of Mn.

Proof: Let f : Mn → Rn+1 envelop the congruence of affine hyperplanes in Rn+1 given
by (14.47), where k0, . . . , kn+1 : U → R are solutions of (14.45) on the open subset
U ⊂ R2. We argue for the case in which (u, v) are real conjugate coordinates on U ,
the case in which they are complex conjugate being similar.

As in the proof of Theorem 14.17, if g : U → Sn+1 is defined by i◦g = k/‖k‖, where
k = (k1, . . . , kn+1) : U → Rn+1 and i : Sn → Rn+1 is the inclusion, and γ = k0/‖k‖,
then g is a Gauss map for f , γ is its support function, and (g, γ) is a special hyperbolic
pair. It remains to show, under the assumption that µ = U(u)+V (v), that the surface
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g is of first species of real type. By the converse statement of Proposition 14.15, the
function µ satisfies (14.27). Thus

Γ1 = −µv
2µ

= − V ′(v)

2(U(u) + V (v))
and Γ2 = −µu

2µ
= − U ′(u)

2(U(u) + V (v))
·

Therefore g is of first species of real type, for

Γ1
u =

U ′(u)V ′(v)

2(U(u) + V (v))2
= 2Γ1Γ2 = Γ2

v.

Conversely, let f : Mn → Rn+1, n ≥ 3, be a Sbrana-Cartan hypersurface of real
type in the continuous class and let the pair (g, γ) parametrize f by means of the Gauss
parametrization. Then f envelops the two-parameter congruence of affine hyperplanes

h1x1 + · · ·+ hn+1xn+1 − γ = 0 (14.48)

where h = (h1, . . . , hn+1) is the composition h = i ◦ g of g : L2 → Sn with the inclusion
i : Sn → Rn+1. By Theorem 11.16, (g, γ) is a hyperbolic pair and g : L2 → Sn is a
surface of first species of real type. In particular, (g, γ) is a special hyperbolic pair. As
in the proof of Theorem 14.17, from the direct statement of Proposition 14.15 we see
that, if µ ∈ C∞(U) is a positive solution of (14.27), then the map k =

√
µh satisfies

(14.36) and the function
√
µ γ is also a solution of (14.34). Therefore Eq. (14.48) can

also be written as
k1x1 + · · ·+ kn+1xn+1 − k0 = 0,

with k0, . . . , kn+1 being solutions of (14.34). Now, since g is of first species, then its
Christoffel symbols satisfy (11.43). Thus

µuvµ− µuµv
2µ2

= −Γ1
u = −2Γ1Γ2 = −µuµv

2µ2

which gives µuv = 0, that is,
µ = U(u) + V (v)

for some smooth functions U(u) and V (v). �

14.5 Notes

Sbrana [311] stated his result on infinitesimal bendings in terms of the Gauss
parametrization. For the proof, he made use of results he had obtained in [312], a paper
only published the following year. In fact, what Sbrana did was to provide a complete
description of one class of infinitesimally bendable hypersurfaces, but somehow ignored
others.

It is a surprise that there is no reference in the literature to Sbrana’s contribution
to the description of the hypersurfaces that admit infinitesimal bendings. The few
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places in the literature where his paper is referred to are quite old and do not discuss
his result; see, e.g., [318].

Most of the basic materials of the first two sections of this chapter, as well as
all rigidity results therein, have been taken from Dajczer-Rodŕıguez [128]; see also
Goldstein-Ryan [200], as well as Florit [182] for a result on compositions. The in-
finitesimal version of Sacksteder rigidity result for compact hypersurfaces in Euclidean
space was obtained in [128]. The more general case of complete Euclidean hypersur-
faces was treated by Jimenez [225]. The description of the infinitesimally bendable
hypersurfaces as envelopes of certain two-parameter congruences of hyperplanes has
been taken from Dajczer-Vlachos [154].

Note that Theorem 14.11, basically contained in Sbrana’s paper [311], is a kind
of Fundamental theorem for infinitesimal bendings. Genuine infinitesimal bendings
of submanifolds with codimension greater than one were studied by Dajczer-Jimenez
[120].

14.6 Exercises

Exercise 14.1. Let f : Mn → Rm be an isometric immersion and let ξ ∈ Γ(NfM)
be an umbilical unit vector field that is not totally geodesic at any point, that is,
Aξ = λI, where λ never vanishes. For instance, this is the case if Mn admits an
isometric immersion into Sm−1. Assume that Mn carries a conformal Killing field
Z ∈ X(M), that is, there exists ϕ ∈ C∞(M) such that

〈∇XZ,X〉 = ϕ(x)〈X,X〉

for any X ∈ X(M). Show that f has a nontrivial infinitesimal bending.

Exercise 14.2. Let f : Mn → Rn+1, n ≥ 3, be an (n− `)-cylinder over a hypersurface
g : L` → R`+1, 2 ≤ ` ≤ n − 1, with type number τ ≥ 2 at any point. Show that any
infinitesimal bending of f is given by an infinitesimal bending of g.

Exercise 14.3. Let f : Mn → Qm
c , c 6= 0, be an isometric immersion and let

i : Qm
c → Rm+1

µ denote an umbilical inclusion, where Rm+1
µ stands for either Rm+1

or Lm+1 depending on whether c > 0 or c < 0, respectively. Given an infinitesimal
bending T of f , for each t ∈ R consider the map Gt : M

n → Rm+1
µ defined by

Gt(x) =
1√

1 + ct2‖T(x)‖2
(i(f(x)) + ti∗T(x)).

Show that the following assertions hold:

(i) The maps Gt and G−t are immersions that induce the same metric.

(ii) If f is substantial and there is 0 6= t0 ∈ R such that Gt0 and G−t0 are congruent
then T is trivial.
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Exercise 14.4. Let f : Mn → Rn+1, n ≥ 3, be an infinitesimally bendable hypersur-
face of constant rank two. Show that any hypersurface in the variation (14.4) carries
the same relative nullity foliation.



Chapter 15

Real Kaehler submanifolds

The purpose of this chapter is to present several results on isometric immersions
of Kaehler manifolds into real space forms. In fact, most of the results are about
real Kaehler submanifolds. By a real Kaehler submanifold f : M2n → Rm we mean
an isometric immersion of a Kaehler manifold M2n of complex dimension n ≥ 2 into
Euclidean space.

Real Kaehler submanifolds in low codimension are shown to be generically holo-
morphic. That f is holomorphic means that m is even and that f : M2n → Cm/2 ≈ Rm

is holomorphic. More precisely, it is shown that a real Kaehler submanifold must be
holomorphic if its type number is greater than or equal to three at any point. In partic-
ular, this implies that real Kaehler hypersurfaces that are free of flat points have rank
two. For these, a parametric description is given in terms of the Gauss parametrization.

We are mostly interested in those real Kaehler submanifolds that are not holo-
morphic. In fact, for a good part of the chapter we will focus on minimal real Kaehler
submanifolds and, in particular, conclude that they enjoy many of the basic properties
of minimal surfaces in Euclidean space. For instance, any simply connected minimal
real Kaehler submanifold belongs to a one-parameter associated family of isometric
submanifolds, all with the same generalized Gauss map, and can be realized as the real
part of a holomorphic isometric immersion, called its holomorphic representative. The
family is shown to be trivial if and only if the submanifold is holomorphic.

A classification of all complete minimal real Kaehler submanifolds in codimension
two is given. They turn out to be either ruled submanifolds or cylinders of certain
special types. The proof uses results on complete minimal real Kaehler submanifolds
with arbitrary codimension that have a large index of relative nullity.

It is shown that a pair of minimal real Kaehler hypersurfaces that belongs to the
same associate family is the only interesting case of a pair of conformal hypersurfaces
that make a constant angle in the ambient space. Finally, we see that simply con-
nected minimal real Kaehler submanifolds admit a Weierstrass type representation. In
particular, this gives an alternative representation for hypersurfaces.

442
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15.1 Some basic facts

An almost complex structure on a real differentiable manifold M is a tensor field
J ∈ Γ(End(TM)) satisfying J2 = −I, where I is the identity tensor field. The pair
(M,J) is called an almost complex manifold. It is easily seen that each tangent space
of M has a basis of the form X1, JX1, . . . , Xn, JXn. In particular, an almost complex
manifold must have even dimension. Moreover, any two such bases differ by an iso-
morphism with positive determinant; hence an almost complex manifold is necessarily
orientable.

The space

Cn = {(z1, . . . , zn) : zk = xk + iyk, xk, yk ∈ R}

carries a natural almost complex structure defined by

J(∂/∂xk) = ∂/∂yk and J(∂/∂yk) = −∂/∂xk, 1 ≤ k ≤ n.

A map f : U ⊂ Cn → Cn is holomorphic if and only if f∗ ◦ J = J ◦ f∗, since this
condition is equivalent to the Cauchy-Riemann equations for each coordinate function.

A complex manifold M of complex dimension n is a 2n-dimensional differentiable
manifold that admits an open cover {Uα}α∈Λ and coordinate maps ϕα : Uα → Cn such
that ϕα ◦ ϕ−1

β is holomorphic on ϕβ(Uα ∩ Uβ) for all α, β ∈ Λ. In particular, the
existence of local isothermic coordinates implies that any two-dimensional orientable
Riemannian manifold is a complex manifold of complex dimension one.

A complex manifold M can be naturally endowed with an almost complex struc-
ture JM via the coordinate maps, that is, on each Uα define

JM = (ϕα)−1
∗ ◦ J ◦ (ϕα)∗,

where J is the almost complex structure of Cn. This definition is independent of the
map ϕα, and thus JM is globally defined.

An almost complex structure J on a manifold M is called a complex structure if
M is the underlying differentiable manifold of a complex manifold which induces J in
the way just described.

A map f : M → M̃ between two complex manifolds is said to be holomorphic if
its representation in local coordinates is holomorphic. This turns out to be equivalent
to the condition

f∗ ◦ J = J̃ ◦ f∗
where J and J̃ are the almost complex structures of M and M̃ , respectively.

A Kaehler manifold M2n with real dimension 2n is an almost complex manifold
endowed with a Riemannian metric 〈 , 〉 such that the almost complex structure J of
M2n is a parallel orthogonal tensor, that is,

〈JX, JY 〉 = 〈X, Y 〉

and
(∇XJ)Y = ∇XJY − J∇XY = 0



444 15.1. Some basic facts

for all X, Y ∈ X(M). A well-known theorem of Newlander-Nirenberg states that the
almost complex structure of a Kaehler manifold is a complex structure.

Proposition 15.1. The curvature tensor of a Kaehler manifold M2n satisfies:

(i) R(X, Y ) ◦ J = J ◦R(X, Y ),

(ii) R(JX, JY ) = R(X, Y ),

(iii) Ric (JX, JY ) = Ric (X, Y ),

(iv) Ric(X, Y ) = 1
2
trZ 7→ JR(X, JY )Z

for all X, Y, Z ∈ X(M).

Proof: A straightforward computation; see [230]. �

Proposition 15.2. If f : M2n → M̃2m is a holomorphic isometric immersion between
Kaehler manifolds, then its second fundamental form satisfies

α(X, JY ) = J̃α(X, Y ) = α(JX, Y )

for all X, Y ∈ X(M).

Proof: Since f is holomorphic, then

(∇̃Xf∗JY )⊥ = (∇̃X J̃f∗Y )⊥

= (J̃∇̃Xf∗Y )⊥

= J̃(∇̃Xf∗Y )⊥

for all X, Y ∈ X(M), and the result follows from the Gauss formula and the symmetry
of α. �

Notice that the equality

α(X, JY ) = α(JX, Y )

for all X, Y ∈ X(M) is equivalent to

Aξ ◦ J = −J ◦ Aξ

for all ξ ∈ Γ(NfM). This easily implies that every odd symmetric function of the
eigenvalues of Aξ is zero. In particular, f is minimal.
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15.2 Unboundedness of real Kaehler submanifolds

A compact Kaehler manifold M2n cannot be isometrically immersed in R2n+p

if p < n. This is a consequence of Corollary 15.5 below, whose proof relies on the
following fact.

Lemma 15.3. Let f : M2n → R2n+p be a real Kaehler submanifold. Given y ∈ M2n,
let

β : TyM × TyM → W = NfM(y)⊕NfM(y)

be the bilinear form defined by

β(X, Y ) = (α(X, Y ), α(X, JY )). (15.1)

Then β is flat with respect to the inner product of signature (p, p) on W given by

〈〈(ξ1, η1), (ξ2, η2)〉〉 = 〈ξ1, ξ2〉 − 〈η1, η2〉. (15.2)

Proof: By the Gauss equation and Proposition 15.1, we have

〈〈β(X, Y ), β(Z, V )〉〉 = 〈α(X, Y ), α(Z, V )〉 − 〈α(X, JY ), α(Z, JV )〉
=〈R(X,Z)V, Y 〉+ 〈α(X, V ), α(Z, Y )〉−〈R(X,Z)JV, JY 〉−〈α(X, JV ), α(Z, JY )〉
= 〈〈β(X, V ), β(Z, Y )〉〉

for all X, Y, Z, V ∈ TyM . �

Theorem 15.4. Let f : M2n → R2n+p be a real Kaehler submanifold. Assume that
the weak maximum principle for the Hessian holds on M2n. If p < n, then f(M) is
unbounded.

Proof: Suppose that f(M) is bounded and let h ∈ C∞(M) be defined by

h(x) =
1

2
‖f(x)‖2.

By the assumption, there exists y ∈M2n such that

Hessh(y)(X,X) < ‖X‖2

for any nonzero X ∈ TyM . On the other hand, by Corollary 1.5 we have

Hessh(y)(X, Y ) = 〈X, Y 〉+ 〈α(X, Y ), f(y)〉

for all X, Y ∈ TyM . Therefore

〈α(X,X), f(y)〉 < 0 (15.3)

for any nonzero X ∈ TyM .
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Let β : TyM ×TyM → W be the bilinear form defined by (15.1). Clearly, for any
X ∈ TyM the subspace

L(X) = {Y ∈ TyM : β(X, Y ) = 0}

is invariant by the complex structure of M2n and

dimL(X) ≥ 2(n− p) > 0.

Choose X ∈ RE(β). It follows from Proposition 4.6 that

〈〈β(Y1, Z1), β(Y2, Z2)〉〉 = 0

for all Y1, Y2 ∈ TyM and Z1, Z2 ∈ L(X), that is,

〈α(Y1, Z1), α(Y2, Z2)〉 = 〈α(Y1, JZ1), α(Y2, JZ2)〉.

Hence, defining

S = span{α(Y, Z) : Y ∈ TyM and Z ∈ L(X)},

there exists an isometric linear isomorphism J̃ : S → S such that

J̃α(Y, Z) = α(Y, JZ)

for all Y ∈ TyM and Z ∈ L(X). In particular,

α(JZ, JZ) = J̃α(JZ, Z)

= J̃α(Z, JZ)

= α(Z, J2Z)

= −α(Z,Z)

for all Z ∈ L(X), which contradicts (15.3). �

Corollary 15.5. Let f : M2n → R2n+p be a real Kaehler submanifold. Assume that
M2n is complete and that its sectional curvature is bounded from below. If p < n, then
f(M) is unbounded.

Proof: According to Theorem 6.6 the Omori-Yau maximum principle for the Hessian
holds on M2n. �

The proof of Theorem 15.4 has the following immediate consequence.

Corollary 15.6. Let f : M2n → R2n+p, p ≤ n − 1, be an isometric immersion of
a Kaehler manifold. Then at each point x ∈ M2n there is a J-invariant subspace
L2m ⊂ TxM with m ≥ n − p such that the holomorphic sectional curvature for any
complex plane P ⊂ L2m satisfies KP ≤ 0.
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15.3 Minimal real Kaehler submanifolds

A real Kaehler submanifold f : M2n → Rm is called pluriharmonic if its second
fundamental form satisfies

α(X, JY ) = α(JX, Y )

for all X, Y ∈ X(M), or equivalently,

Aξ ◦ J = −J ◦ Aξ

for all ξ ∈ Γ(NfM). It follows from Proposition 15.2 that any holomorphic isometric
immersion is pluriharmonic. Notice that f being pluriharmonic is equivalent to the
restriction of f to any holomorphic curve in M2n being a minimal surface in Rm.

Theorem 15.7. A real Kaehler submanifold f : M2n → Rm is minimal if and only if
it is pluriharmonic.

Proof: At any x ∈ M2n, consider an orthonormal basis X1, . . . , X2n of TxM such that
X2j = JX2j−1, 1 ≤ j ≤ n. Since f is minimal, it follows from (3.8) that

Ric(Xi, Xi) = −
2n∑
j=1

‖α(Xi, Xj)‖2 and Ric(JXi, JXi) = −
2n∑
j=1

‖α(JXi, Xj)‖2. (15.4)

On the other hand, by the Gauss equation and Proposition 15.1 we have

Ric(Xi, Xi) =
∑
j 6=i

〈R(Xj, Xi)Xi, Xj〉

=
∑
j 6=i

〈R(Xj, Xi)JXi, JXj〉

=
∑
j 6=i

〈α(Xj, JXj), α(Xi, JXi)〉 −
∑
j 6=i

〈α(Xj, JXi), α(Xi, JXj)〉

= −
2n∑
j=1

〈α(Xj, JXi), α(Xi, JXj)〉, (15.5)

where the last equality is a consequence of the choice of the basis.
On V = ⊕2n

j=1NfM(x), take the inner product 〈〈 , 〉〉 : V × V → R defined by

〈〈 , 〉〉 =
2n∑
j=1

〈 , 〉.

Let vi, wi ∈ V , 1 ≤ i ≤ 2n, be the elements

vi = (α(Xi, JX1), . . . , α(Xi, JX2n)), wi = (α(X1, JXi), . . . , α(X2n, JXi)).
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The statement is equivalent to the assertion that vi = wi for 1 ≤ i ≤ 2n. It follows
from (15.4), (15.5) and Proposition 15.1 that

〈〈vi, wi〉〉 = 〈〈wi, wi〉〉 = 〈〈vi, vi〉〉, 1 ≤ i ≤ 2n.

Write vi = λiwi + ui, with 〈〈wi, ui〉〉 = 0 for 1 ≤ i ≤ 2n. The first of the preceding
equalities yields

λi〈〈wi, wi〉〉 = 〈〈vi, wi〉〉
= 〈〈wi, wi〉〉,

whereas the second gives

〈〈wi, wi〉〉 = 〈〈vi, vi〉〉
= λ2

i 〈〈wi, wi〉〉+ 〈〈ui, ui〉〉.

Thus λi = 1 and ui = 0 for 1 ≤ i ≤ 2n. �

15.3.1 The associated family

The results of this section show that simply connected minimal real Kaehler sub-
manifolds come in one-parameter families of minimal isometric submanifolds with the
same generalized Gauss map, which are trivial precisely when they contain a holomor-
phic member.

Theorem 15.8. If f : M2n → Rm is a minimal simply connected real Kaehler sub-
manifold, then there exists a one-parameter associated family of minimal isometric
immersions fθ : M2n → Rm, θ ∈ [0, π), such that f0 = f .

Proof: For each θ ∈ [0, π), consider the tensor field Jθ ∈ Γ(End(TM)) defined by

Jθ = cos θI + sin θJ

where I is the identity tensor and J is the almost-complex structure of M2n. Clearly,
Jθ is parallel and orthogonal with J tθ = J−θ.

Let αθ : X(M)× X(M)→ Γ(NfM) be defined by

αθ(X, Y ) = α(JθX, Y ).

Since f is pluriharmonic by Theorem 15.7, then αθ is symmetric. For ξ ∈ Γ(NfM), let
Aθξ denote the symmetric endomorphism given by

〈AθξX, Y 〉 = 〈αθ(X, Y ), ξ〉.

Then
AξJθ = Aθξ = (Aθξ)

t = J−θAξ.
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Next we verify that αθ satisfies the Gauss, Codazzi and Ricci equations with
respect to the normal connection of f . Using part (ii) of Proposition 15.1, we obtain

〈αθ(X,W ), αθ(Y, Z)〉 − 〈αθ(X,Z), αθ(Y,W )〉
= 〈α(JθX,W ), α(JθY, Z)〉 − 〈α(JθX,Z), α(JθY,W )〉
= 〈R(JθX, JθY )Z,W 〉
= 〈R(X, Y )Z,W 〉.

Thus the Gauss equation is satisfied. The Codazzi equation follows easily from that of
f and the fact that Jθ is parallel. For the Ricci equation, observe that

AθξA
θ
η = AξJθJ−θAη = AξAη

for all ξ, η ∈ Γ(NfM). Hence

[Aθξ, A
θ
η] = [Aξ, Aη],

and the Ricci equation for αθ follows from that of f .
By the Fundamental theorem of submanifolds, there exists an isometric immersion

fθ : M2n → Rm whose second fundamental form is αθ. Since

AθξJ = AξJθJ = AξJJθ = −JAξJθ = −JAθξ

for any ξ ∈ Γ(NfM), it follows that fθ is minimal. �

The following result provides an alternative way of defining the associated family.

Proposition 15.9. If f : M2n → Rm is a minimal simply connected real Kaehler
submanifold, then the associated family {fθ}θ∈[0,π) is given by the line integral

fθ(x) =

∫ x

x0

f∗ ◦ Jθ

where x0 is any fixed point of M2n.

Proof: Consider the one-form ω = f∗ ◦ Jθ with values in Rm. We have

dω(X, Y ) = ∇̃Xf∗JθY − ∇̃Y f∗JθX − f∗Jθ[X, Y ]

for all X, Y ∈ X(M). Since

∇̃Xf∗JθY = f∗∇XJθY + α(X, JθY )

= f∗Jθ∇XY + α(X, JθY ),

then

dω(X, Y ) = α(X, JθY )− α(Y, JθX)

= 0



450 15.3. Minimal real Kaehler submanifolds

because f is pluriharmonic by Theorem 15.7. Thus ω is closed, and hence fθ is well-
defined. Clearly, fθ∗ = f∗ ◦ Jθ, which shows that fθ is isometric and that the tangent
(normal) spaces of f and fθ are parallel in Rm at any point of M2n, that is, all fθ
have the same generalized Gauss map. In particular, fθ and f have the same normal
connection. The second fundamental form of fθ is given by

αθ(X, Y ) = ∇̃Xfθ∗Y − fθ∗∇XY

= ∇̃Xf∗JθY − f∗Jθ∇XY

= ∇̃Xf∗JθY − f∗∇XJθY

= α(X, JθY ),

which proves that {fθ}θ∈[0,π) is the associated family of f . �

The next result shows that the associated family of a minimal simply connected
real Kaehler submanifold is trivial precisely when the submanifold is holomorphic.

Theorem 15.10. Let f : M2n → Rm be a simply connected minimal real Kaehler
submanifold. If f is holomorphic, then its associated family {fθ}θ∈[0,π) satisfies fθ = f
for any θ ∈ [0, π).

Conversely, if there exist θ1 6= θ2 ∈ [0, π) such that fθ1 and fθ2 are congruent,
then f has even substantial codimension q = 2` and is holomorphic with respect to an
almost complex structure in R2(n+`).

Proof: If f is holomorphic with respect to an almost complex structure J̃ in Rm, then

fθ∗ = f∗ ◦ Jθ = J̃θ ◦ f∗

where J̃θ = cos θI + sin θJ̃. Thus fθ is congruent to f .
In order to prove the converse, we may suppose that θ1 = 0 and denote θ2 = θ.

Then, by assumption, there exists an orthogonal endomorphism T̃θ of Rm such that

f∗ ◦ Jθ = fθ∗ = T̃θ ◦ f∗

where Jθ = cos θI + sin θJ . Define an endomorphism J̃ of Rm by

sin θJ̃ = T̃θ − cos θI.

Then

sin θJ̃ ◦ f∗ = T̃θ ◦ f∗ − cos θf∗

= f∗ ◦ (Jθ − cos θI)

= sin θf∗ ◦ J,

hence
J̃ ◦ f∗ = f∗ ◦ J. (15.6)
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Let R2n+q denote the subspace of Rm spanned by the union of the subspaces f∗TyM
when y ranges over M2n. It follows from (15.6) that J̃ leaves R2n+q invariant, it is an
orthogonal transformation of R2n+q, and

J̃2 ◦ f∗ = f∗ ◦ J2 = −f∗.

Thus J̃2 = −I on R2n+q. This implies that q is even, say, q = 2`, and that f(M) lies in
an affine subspace parallel to R2(n+`). Moreover, regarded as an isometric immersion
into R2(n+`), f is holomorphic with respect to J̃ by (15.6). �

Real Kaehler submanifolds in low codimension are generically holomorphic. This
can be concluded from the following result, which relates the holomorphicity of the
immersion with its type number.

Theorem 15.11. Let f : M2n → R2n+p be a real Kaehler submanifold with type num-
ber τ(x) ≥ 3 for all x ∈M2n. Then p = 2` and f is holomorphic.

Proof: By the assumption on the type number, Proposition 4.18 and Lemma 15.3 imply
that there exists a vector bundle isometry T : NfM → NfM such that

Tα(X, Y ) = α(X, JY )

for all X, Y ∈ X(M). Therefore

α(X, JY ) = Tα(X, Y )

= Tα(Y,X)

= α(Y, JX)

= α(JX, Y )

for all X, Y ∈ X(M). Thus f is minimal, and the result follows from Theorems 4.19
and 15.10. �

The next result shows that any minimal isometric immersion f : M2n → Rm of a
simply connected Kaehler manifold arises as (a constant multiple of) the real part of a
holomorphic isometric immersion F : M2n → Cm, called its holomorphic representative.

Theorem 15.12. Let f : M2n → Rm be a simply connected minimal real Kaehler sub-
manifold with associated family {fθ}θ∈[0,π). Then the map F : M2n → R2m = Rm⊕Rm

given by

F =
1√
2
f ⊕ 1√

2
fπ/2

is a holomorphic isometric immersion with respect to the standard complex structure
on R2m given by J̃(X, Y ) = (Y,−X).
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Proof: Since √
2F∗X = (f∗X, f∗JX),

it follows that F is an isometric immersion and that
√

2F∗JX = (f∗JX,−f∗X)

=
√

2J̃F∗X.

Thus F is holomorphic with respect to J̃ . �

A well-known theorem due to Calabi [48] states that if F : M2n → Cm and
F̃ : M2n → Cn are holomorphic isometric immersions of a Kaehler manifold, then
n = m and F̃ = J̃ ◦ F for some almost complex structure J̃ of Cm. Combining this
result with Theorem 15.12 yields the following.

Theorem 15.13. If f : Mn → RN is a minimal simply connected real Kaehler sub-
manifold, then the set of all minimal isometric immersions of Mn into a Euclidean
space contains a unique holomorphic one.

15.4 Real Kaehler hypersurfaces

In this section, a local parametric description of the real Kaehler hypersurfaces
is given in terms of the Gauss parametrization.

A spherical oriented surface g : L2 → S2n is called pseudoholomorphic if there
exists an orthogonal tensor T on NgL that is parallel with respect to the normal
connection and satisfies

ATξ = J ◦ Aξ (15.7)

for all ξ ∈ Γ(NgL), where J is the almost complex structure on L2. Therefore, for all
ξ ∈ Γ(NgL) the endomorphism J ◦ Aξ is symmetric, that is,

J ◦ Aξ = −Aξ ◦ J.

In particular, g is minimal. Notice also that (15.7) implies that

A(T 2+I)ξ = 0

for all ξ ∈ Γ(NgL). Thus (T 2 + I)(NgL) is a parallel subbundle of N⊥1 , and hence
Proposition 2.1 implies that T 2 + I = 0 if g is substantial.

Theorem 15.14. If g : L2 → S2n is a pseudoholomorphic surface and γ ∈ C∞(L),
then the open subset of regular points of the map ψ : NgL→ R2n+1, given by

ψ(y, w) = γ(y)g(y) + g∗grad γ(y) + w, (15.8)

admits a Kaehler structure.
Conversely, any real Kaehler hypersurface without flat points f : M2n → R2n+1,

n ≥ 2, can be locally parametrized in this way in terms of such a pair (g, γ). Moreover,
the hypersurface f is minimal if and only if ∆γ + 2γ = 0.
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Proof: Let V denote the open subset of regular points of ψ. By Theorem 7.18, the
map ψ|V : V → R2n+1 defines a hypersurface with index of relative nullity ν = 2n− 2,
with the vertical subbundle ∆ of V as its relative nullity distribution. We may assume
that g is substantial, for otherwise V splits as a product V = V ′ × R2k and ψ|V splits
accordingly as ψ|V = ψ′|V ′ × I, where ψ′ : Ng′L → R2(n−k)+1 is given by (15.8) with
g replaced by some substantial surface g′ : L2 → S2(n−k) and V ′ is the open subset of
regular points of ψ′, and then we may argue for g′ and ψ′.

Let J ′ be a parallel almost complex structure on L2, and define J ∈ Γ(End(∆⊥))
by

J ◦ j = j ◦ J ′, (15.9)

where j(y, w) : TyL → ∆⊥(y, w) is the isometry defined by (7.25). Now let T be the
parallel orthogonal tensor on NgL such that

ATξ = J ′ ◦ Aξ

for any ξ ∈ Γ(NgL), and extend J to a section of End(TV ) by setting

J(y, w)ξ = T (y)ξ (15.10)

for all (y, w) ∈ V and ξ ∈ NgL(y) = ∆(y, w). Since g is assumed to be substantial, the
orthogonal tensor T satisfies T 2 = −I by the observation before the statement, and
hence J is an almost complex structure on V .

Using (7.21) and the fact that J ′ is parallel, we obtain

〈∇jXJjY, jZ〉 = 〈∇jXjJ
′Y, jZ〉

= 〈∇′
P−1
w X

J ′Y, Z〉′

= 〈J ′∇′
P−1
w X

Y, Z〉′

= −〈∇′
P−1
w X

Y, J ′Z〉′

= −〈∇jXjY, jJ
′Z〉

= −〈∇jXjY, JjZ〉
= 〈J∇jXjY, jZ〉 (15.11)

for all X, Y, Z ∈ X(L).
The fact that the right-hand side of (15.10) does not depend on w implies that

∇ξJη = J∇ξη (15.12)

for all ξ, η ∈ Γ(∆). On the other hand, regarding ξ ∈ Γ(NgL) as an element of Γ(∆)
as in part (vi) of Proposition 7.19, using (7.20) and (15.9) we obtain

CJξj = jATξP
−1
w

= jJ ′AξP
−1
w

= JjAξP
−1
w

= JCξj,
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hence CJξ = JCξ for all ξ ∈ Γ(∆). Therefore

〈∇jXJξ, jY 〉 = −〈CJξjX, jY 〉
= −〈JCξjX, jY 〉
= 〈CξjX, JjY 〉
= −〈∇jXξ, JjY 〉
= 〈J∇jXξ, jY 〉 (15.13)

for all ξ ∈ Γ(∆) and X, Y ∈ X(L). Moreover, using (7.22) and the fact that T is
parallel with respect to the normal connection of g, we obtain

〈∇jXJξ, η〉 = 〈∇⊥
P−1
w X

Tξ, η〉
= 〈T∇⊥

P−1
w X

ξ, η〉
= −〈∇⊥

P−1
w X

ξ, Tη〉
= −〈∇jXξ, Jη〉
= 〈J∇jXξ, η〉 (15.14)

for all ξ, η ∈ Γ(NgL) and X ∈ X(L). Also, using (15.13) we have

〈∇jXJjY, ξ〉 = −〈JjY,∇jXξ

= 〈jY, J∇jXξ〉
= 〈jY,∇jXJξ〉
= −〈∇jXjY, Jξ〉
= 〈J∇jXjY, ξ〉 (15.15)

for all ξ ∈ Γ(NgL) and X, Y ∈ X(L).
It follows from (15.11), (15.13), (15.14) and (15.15) that

∇jXJξ = J∇jXξ and ∇jXJjY = J∇jXjY (15.16)

for all X, Y ∈ X(L) and ξ ∈ Γ(∆). Finally, by (7.18) we have

∇ξJjX = ∇ξjJ
′X = 0 = J∇ξjX (15.17)

for all X ∈ X(L) and ξ ∈ Γ(∆). We conclude from (15.12), (15.16) and (15.17) that J
is a parallel tensor.

Conversely, let f : M2n → R2n+1, n ≥ 2, be a real Kaehler hypersurface without
flat points. For a fixed point y ∈M2n, let

β : TyM × TyM → W = NfM(y)⊕NfM(y)

be the bilinear form defined by (15.1). By Lemma 15.3, β is flat with respect to
the inner product 〈〈 , 〉〉 on W given by (15.2). We show that S(β) is nondegenerate.
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Otherwise, since W is a Lorentzian plane, it would be spanned by an isotropic vector,
and hence

〈〈β(X, Y ), β(X, Y )〉〉 = 0

for all X, Y ∈ TyM , or equivalently,

〈α(X, Y ), α(X, Y )〉 = 〈α(X, JY ), α(X, JY )〉

for all X, Y ∈ TyM . Thus there would exist an isometry T : NfM(y)→ NfM(y) such
that

Tα(X, Y ) = α(X, JY )

for all X, Y ∈ TyM . Since y is not a totally geodesic point, this would imply that
T 2 + I = 0, which is a contradiction because NfM(y) is one-dimensional. Thus S(β) is
nondegenerate, and hence dimN(β) ≥ 2n − 2 by Exercise 4.4. From the definition of
β, it follows that the relative nullity subspace ∆(y) has dimension at least 2n− 2 and
is invariant by J . Since y is not a flat point, the dimension of ∆(y) must be exactly
2n− 2.

By Theorem 7.18, the hypersurface f can be locally parametrized by (15.8) in
terms of a surface g : L2 → S2n and a function γ ∈ C∞(L). We have to show that g
is pseudoholomorphic. Define an almost complex structure J ′ on L2 by (15.9) and an
orthogonal tensor T on NgL by (15.10). The latter is well defined because J satisfies
(15.12). Then, reversing the computations in (15.11) and (15.14), we see that J ′

is parallel and that T is also parallel with respect to the normal connection of g.
Moreover, since

〈∇jXJξ, jY 〉 = 〈J∇jXξ, jY 〉
for all ξ ∈ Γ(∆) and X, Y ∈ X(L), it follows that CJξ = JCξ for all ξ ∈ Γ(∆). Hence

jATξP
−1
w = CJξj

= JCξj

= JjAξP
−1
w

= jJ ′AξP
−1
w

for all ξ ∈ Γ(NgL), regarding ξ ∈ Γ(NgL) as an element of Γ(∆) as in part (vi) of
Proposition 7.19. Thus

ATξ = J ′ ◦ Aξ
for all ξ ∈ Γ(NgL), which completes the proof that g is pseudoholomorphic. Finally,
the last assertion follows from Exercise 7.8. �

Remark 15.15. Notice that, since the function γ ∈ C∞(L) in Theorem 15.14 is
arbitrary, a real Kaehler hypersurface is not necessarily real analytic.

In spite of the fact that there exists an abundance of local examples of Kaehler
hypersurfaces in R2n+1 with n ≥ 2, according to Theorem 15.14, the only complete
ones are cylinders over complete surfaces in R3. This is the content of the next result,
which is stated without proof.
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Theorem 15.16. Any isometric immersion f : M2n → R2n+1 with n ≥ 2 of a complete
Kaehler manifold is a (2n− 2)-cylinder.

15.5 The codimension two case

This section is devoted to real Kaehler submanifolds that are complete and have a
positive lower bound for the index of relative nullity. The goal is to provide conditions
that imply that they are cylinders. This is then used to give a complete description of
the structure of complete minimal real Kaehler submanifolds with codimension two.

The starting point is the following basic fact.

Lemma 15.17. Let f : M2n → Rm be a complete minimal real Kaehler submanifold.
If the index of relative nullity is a positive constant ν on an open subset U ⊂ M2n,
then ν is even and the relative nullity distribution ∆ is invariant by the almost complex
structure J of M2n. If, in addition, ν = ν0 is the minimum index of relative nullity,
then the splitting tensor CT at any x ∈ U , with respect to any T ∈ ∆(x), is a nilpotent
complex linear endomorphism with respect to the complex vector space structure on
∆⊥(x) induced by J .

Proof: Since f is minimal, it is pluriharmonic by Theorem 15.7. Hence the relative
nullity subspaces are invariant by the almost complex structure J . In particular, the
index of relative nullity ν must be even. Given x ∈ U and ξ ∈ NfM(x), since AξCT is
symmetric by Proposition 7.3 then

α(CTX, Y ) = α(X,CTY ) (15.18)

for all X, Y ∈ ∆⊥(x). Moreover, the fact that J is parallel implies that

CJTX = −(∇XJT )h

= −(J∇XT )h

= JCTX

for all X ∈ Γ(∆⊥) and T ∈ Γ(∆). Thus

CJT = JCT . (15.19)

Using (15.18) and (15.19) we obtain

α(CTJX, Y ) = α(JX,CTY )

= α(X, JCTY )

= α(X,CJTY )

= α(CJTX, Y )

= α(JCTX, Y )
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for all X, Y ∈ ∆⊥(x). Since CTJX − JCTX ∈ ∆⊥(x), it follows that CTJ = JCT .
Endowing ∆⊥(x) with the complex vector space structure defined by iX = JX for any
X ∈ ∆⊥(x), this means that CT is a complex linear endomorphism of ∆⊥(x).

If ν = ν0 is the minimum index of relative nullity, then the leaves of the relative
nullity distribution are complete on U by Corollary 7.8. From Proposition 13.8 it
follows that CT has no nonzero real eigenvalue for any T ∈ Γ(∆). Assume that a+ ib
is a complex eigenvalue of CT with corresponding eigenvector Y , that is,

CTY = (a+ ib)Y

= aY + bJY.

Then, using (15.19) we obtain

CaT−bJTY = aCTY − bCJTY
= aCTY − bJCTY
= (a2 + b2)Y.

Hence a = 0 = b and, consequently, CT is nilpotent. �

In the following cylinder-type result, that the scalar curvature of a Riemannian
manifold has subquadratic growth along geodesics means that its growth along any
geodesic is less than that of any quadratic polynomial in the parameter of the geodesic.

Theorem 15.18. Let f : M2n → Rm be a complete minimal real Kaehler submanifold.
Assume that the minimum index of relative nullity ν0 is positive and that the scalar
curvature has subquadratic growth along geodesics. Then ν0 = 2` and f is a 2`-cylinder.

Proof: Let U ⊂ M2n be a connected component of the open subset where the index
of relative nullity takes its minimum value ν0 = 2`. Fix x ∈ U and T ∈ ∆(x). By
Lemma 15.17, the splitting tensor CT is a nilpotent complex linear endomorphism.
Therefore, if γ is a geodesic through x in a leaf of ∆ and η is a parallel normal vector
field along γ, using (7.3) and

A
′

η = ∇TAη = AηCT ,

as follows from Proposition 7.3, we obtain

A(k)
η = k!AηC

k
T = 0

for some k. Thus the coefficients of Aη are polynomials in t.
Let ξ1, . . . , ξq be an orthonormal basis of N1(γ(0)), and parallel transport ξi along

γ for 1 ≤ i ≤ q. Then ξ1, . . . , ξq span the first normal space N1 at each point of γ (see
Exercise 7.1). Now, the immersion f being minimal, by (3.9) the scalar curvature s is
given by

2n(2n− 1)s = −
q∑
i=1

2n∑
j,h=1

((Aξi)jh)
2 .
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Since s has subquadratic growth along γ, each term in the above sum must also have
subquadratic growth along γ. But each term is the square of a polynomial in t, hence
must be constant. This implies that

AξCT = A
′

ξ = 0

for any ξ ∈ Γ(N1). We easily conclude that CT = 0. Since x ∈ U and T ∈ ∆(x)
have been chosen arbitrarily, the conclusion follows from Proposition 7.4 and the real
analyticity of minimal immersions into Euclidean space. �

An isometric immersion f : M2n → Rm is called complex ruled if M2n is a Kaehler
manifold that admits a continuous codimension two foliation such that any leaf is a
holomorphic submanifold of M2n whose image by f is part of an affine subspace of the
ambient space. If, in addition, all leaves are complete Euclidean spaces R2n−2, then f
is said to be completely complex ruled.

Theorem 15.19. Let f : M2n → Rm be a complete minimal real Kaehler submanifold
with index of relative nullity ν ≥ 2n − 4 at any point. Then one of the following
possibilities holds:

(i) f is completely complex ruled.

(ii) f is a (2n− 4)-cylinder.

Proof: If ν ≥ 2n − 2 at any point, then the splitting tensor satisfies CT = 0 for all
T ∈ Γ(∆), because it is complex linear and nilpotent by Lemma 15.17. Hence, we may
assume that the open subset

U = {x ∈M2n : ν(x) = 2n− 4}

is nonempty. Suppose that U contains an open subset W such that CT = 0 for all
T ∈ Γ(∆). As before, this implies that W contains an open subset where f is as in
part (ii). By the real analyticity of the immersion, it follows that it is globally of this
type.

Therefore we may assume that the open subset

V = {x ∈M2n : ν(x) = 2n− 4 and there exists T ∈ ∆(x) with CT 6= 0}

is dense. Let V0 be a connected component of V . Given x ∈ V0 and T ∈ ∆(x) with
CT 6= 0, we have dim ker CT = 2, because CT is complex linear and nilpotent. We first
show that ker CT is an asymptotic plane, that is,

α(X, Y ) = 0

for all X, Y ∈ ker CT . Since CT is nilpotent, it follows easily that ker CT = ImCT .
Thus any vector Y ∈ ker CT can be written as Y = CTZ. Hence

α(X, Y ) = α(X,CTZ)

= α(CTX,Z)

= 0.
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We claim that ker CT ⊂ ker CS for any other S ∈ ∆(x). Consequently, since the
dimension of any of these kernels is either 2 or 4, we have a well defined two-dimensional
distribution in V0. Take S ∈ ∆(x) such that CS 6= 0 and consider the curve

R(s) = cos s T + sin s S.

At least for small ε > 0, we have dim ker CR(s) = 2 for 0 ≤ s ≤ ε. Since the kernels are
invariant by J , we can choose a smooth X(s) such that

ker CR(s) = span{X(s), JX(s)}.

Unless the planes are all equal, there exists some s0 < ε such that X
′
(s0) is not

contained in the plane span{X(s0), JX(s0)}, and thus the same holds for JX
′
(s0). On

the other hand, from

α(X(s), X(s)) = α(X(s), JX(s)) = 0

it follows that
α(X(s), X

′
(s)) = α(X(s), JX

′
(s)) = 0.

But then we should have X(s0) ∈ ∆, which is a contradiction. Therefore the linear
maps cos sCT + sin sCS all have the same kernels for s in some open interval, and this
proves the claim.

Consider the smooth (2n− 2)-dimensional distribution on V0 given by

L(x) = ∆(x)⊕ ker CT (x),

where T (x) is chosen so that dim ker CT (x) = 2. It remains to show that L is a totally
geodesic distribution. By (7.2) we have

CT (∇SX) = −CTCSX +∇SCTX − C∇STX
= 0

if S ∈ Γ(∆) and X ∈ Γ(ker CT ). Now take X, Y ∈ Γ(ker CT ) and set Y = CTZ where
Z ∈ Γ(L⊥). From (7.5) we obtain

(∇XY )∆⊥ = (∇XCTZ)∆⊥

= CT (∇XZ)∆⊥ − CT (∇ZX)∆⊥ + C(∇XT )∆Z ∈ Γ(L),

and this concludes the proof. �

Theorem 15.20. If f : M2n → R2n+2 is a complete minimal real Kaehler submanifold,
then one of the following possibilities holds:

(i) f is holomorphic.

(ii) f is completely complex ruled.
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(iii) f is a (2n− 4)-cylinder.

Moreover, if the scalar curvature of M2n has subquadratic growth along geodesics, then f
is either of type (i) or (iii).

Proof: We may assume that M2n is simply connected, because, otherwise, we can argue
for its universal cover. If ν(x) ≥ 2n − 4 at any point of M2n, the result follows from
Theorems 15.18 and 15.19.

Now suppose that there exists a point x0 ∈ M2n such that ν(x0) < 2n − 4, and
let U be a simply connected neighborhood of x0 where ν < 2n− 4. We claim that f |U
is holomorphic. At a point x ∈ U , define a flat bilinear form β as in (15.1). It follows
from Lemma 4.22 that β splits as β = β1 ⊕ β2, where

(i) β1 is nonzero and null,

(ii) β2 is flat and dimN(β2) ≥ 2n− 2.

We argue that β2 = 0. Assume otherwise, that is, that dimN(β2) = 2n − 2. Take
orthonormal bases {ξ, η} and {ξ̃, η̃} of NfM(x) such that

S(β1) = span{ξ + ξ̃}.

Then
〈α(X, Y ), ξ〉 = 〈α(X, JY ), ξ̃〉 (15.20)

and
〈α(X, Y ), η〉 = 0 = 〈α(X, JY ), η̃〉 (15.21)

for all X ∈ TxM and Y ∈ N(β2). From (15.21) it follows that η̃ = ±η because,
otherwise, N(β2) ∩ JN(β2) would be contained in N(β) and have dimension at least
2n − 4, which is not possible. In particular, it follows that ξ̃ = ±ξ, and from (15.20)
we obtain

〈α(X, Y ), ξ〉 = ±〈α(X, JY ), ξ〉
= 〈α(X, J2Y ), ξ〉
= −〈α(X, Y ), ξ〉
= 0.

Thus N(β2) ⊂ N(β), which is not possible and proves that β2 = 0. The final argument
of the proof of Theorem 15.11 now gives the claim.

Theorem 15.12 implies that fU and FU are congruent, where F : M2n → Cn+1 is
the holomorphic representative of f . Therefore f and F are globally congruent by real
analyticity, and this concludes the proof. �
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15.6 The case of nonflat ambient spaces

The situation of isometric immersions of Kaehler manifolds into nonflat ambient
spaces is quite different from that of Euclidean space, as shown by the results of this
section.

We first consider the hypersurface case.

Theorem 15.21. Let f : M2n → Q2n+1
c , n ≥ 2 and c 6= 0, be an isometric immersion

of a Kaehler manifold. Then f(M) is an open subset of the image of the following
standard isometric embeddings:

(i) R2n in H2n+1
c ,

(ii) S2
c1
× S2

c2
in S5

c,

(iii) S2
c1
×H2

c2
in H5

c,

where 1/c1 +1/c2 = 1/c. Moreover, if M2n is complete then f is one of those isometric
embeddings.

Proof: At x ∈ M2n, let X1, . . . , X2n be an orthonormal frame of principal directions
with correspondent principal curvatures λ1, . . . , λ2n. The Gauss equation gives

R(Xi, Xj)JXi = (c+ λiλj)〈Xj, JXi〉Xi

and
JR(Xi, Xj)Xi = −(c+ λiλj)JXj.

It follows from part (i) of Proposition 15.1 that

(c+ λiλj)(〈Xj, JXi〉Xi + JXj) = 0 for i 6= j. (15.22)

By (3.7), the endomorphism T ∈ Γ(End(TM)) associated with the Ricci tensor of M2n

is given by
T = (2n− 1)cI + 2nHA− A2.

On the other hand, part (iv) of Proposition 15.1 and the Gauss equation give

T = cI − (JA)2.

Thus
2(n− 1)cI + 2nHA− A2 = −(JA)2.

Applying the last equation to Xj and then computing J on both sides yield

λjAJXj = (2(n− 1)c+ 2nHλj − λ2
j)JXj.

In particular, it follows that λj 6= 0 for 1 ≤ j ≤ 2n.
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Notice that
〈Xj, JXi〉Xi + JXj = 0

if and only if JXi = ±Xj. If this is not the case, we see from (15.22) that

c+ λiλj = 0 for i 6= j.

Therefore, if JXi 6= ±Xj for all 1 ≤ i 6= j ≤ 2n, we easily conclude that x is umbilical,
that c < 0 and from the Gauss equation that x is a flat point.

Assume now that JX1 = X2. Since JX1 6= ±Xk if k > 2, it follows from (15.22)
that

c+ λ1λk = 0 = c+ λ1λm

for 3 ≤ k 6= m ≤ 2n, hence λk = λm. Moreover, c + λ2λk = 0, so that λ1 = λ2. We
conclude that

λ1 = λ2 and λ3 = · · · = λ2n,

with c + λ1λ3 = 0. But JX3 can be equal to at most one Xk with k ≥ 4. Thus, if
n > 2, then c+ λ3λj = 0 for some j ≥ 4. However, c+ λ1λj = 0. Hence λ1 = λ3 and x
is an umbilical flat point. In other words, we must have n = 2 if x is not an umbilical
flat point, and in this case

λ1 = λ2, λ3 = λ4 and c+ λ1λ3 = 0.

If all points of Mn are umbilical flat points, then f(M) is an open subset of the
standard umbilical inclusion of R2n into H2n+1

c by Proposition 1.20.
Now assume that there exists a nonumbilical point, and hence an open neighbor-

hood U of such points. Then n = 2,

λ1 = λ2 = λ and λ3 = λ4 = µ

on U , with c + λµ = 0. By part (iii) of Proposition 1.22, the principal curvatures λ
and µ are constant along the corresponding eigenbundles on U . Since c+λµ = 0, both
λ and µ are actually constant on U . In particular, this implies that the open subset of
nonumbilical points is also closed, hence is the whole M4.

It follows from the Codazzi equation that the eigenbundles of λ and µ are totally
geodesic distributions on M2n. By the local version of de Rham theorem, M4 is locally
isometric to Q2

c1
×Q2

c2
, where c1 = c+λ2 and c2 = c+µ2. In particular, from c+λµ = 0

we obtain
1

c1

+
1

c2

=
1

c
·

It now follows from Corollaries 8.6 and 8.8 that f is locally an extrinsic product of the
identity maps id1 : Q2

c1
→ Q2

c1
and id2 : Q2

c2
→ Q2

c2
. One can now apply Exercise 1.20

to the family of such extrinsic products to conclude that f(M) is an open subset of
the image of a fixed one of such immersions. The global statement can be derived by
first applying the global version of de Rham theorem to the universal covering of M4,
and then either Corollary 8.6 or Corollary 8.8, depending on whether c > 0 or c < 0,
respectively. �

For arbitrary codimension we have the following result.
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Theorem 15.22. Let f : M2n → Qm
c , c 6= 0, be an isometric immersion of a Kaehler

manifold. Assume that either

(i) c < 0 and f is minimal, or

(ii) c > 0 and
α(X, JY ) = α(JX, Y ) for all X, Y ∈ X(M).

Then n = 1.

Proof: At any x ∈ M2n, consider an orthonormal basis X1, . . . , X2n of TxM such that
X2j = JX2j−1, 1 ≤ j ≤ n. By (3.8), minimality of f yields

Ric(Xi, Xi) = (2n− 1)c−
2n∑
j=1

‖α(Xi, Xj)‖2 (15.23)

and

Ric(JXi, JXi) = (2n− 1)c−
2n∑
j=1

‖α(JXi, Xj)‖2 (15.24)

for 1 ≤ i ≤ 2n. On the other hand, a computation similar to that in the proof of
Theorem 15.7 gives

Ric(Xi, Xi) = c−
2n∑
j=1

〈α(Xj, JXi), α(Xi, JXj)〉. (15.25)

Let V and vi, wi ∈ V , 1 ≤ i ≤ 2n, be defined as in the proof of Theorem 15.7. In view
of Proposition 15.1, from (15.23), (15.24) and (15.25) we obtain, respectively,

Ric(Xi, Xi) = (2n− 1)c− ‖vi‖2

= (2n− 1)c− ‖wi‖2

= c− 〈vi, wi〉. (15.26)

Under the assumption in part (ii), we have vi = wi, 1 ≤ i ≤ 2n, hence the preceding
equalities yield n = 1. It follows from (15.26) and the Cauchy-Schwarz inequality that

(Ric(Xi, Xi)− c)2 ≤ (Ric(Xi, Xi)− (2n− 1)c)2,

hence
(2n− 2)cRic(Xi, Xi) ≤ n(2n− 2)c2.

This implies that
Ric(Xi, Xi) ≥ nc

if c < 0 and n > 1, which is in contradiction with (15.23). This proves the statement
under the assumption in part (i). �
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15.7 Hypersurfaces making a constant angle

Two substantial immersions f, g : Mn → Rm are said to make a constant angle
if there exists a nonzero function θ ∈ C∞(M) such that, for any x ∈ Mn, the vectors
f∗(x)X and g∗(x)X form an angle θ(x) for any X ∈ TxM .

Trivial examples of immersions f, g : Mn → Rm that make a constant angle are
given by any pair of immersions that differ by the composition of a homothety and a
translation in Rm.

If m is even, one can construct further trivial examples as follows. Consider
the orthogonal transformation J̃θ = cos θI + sin θJ̃ , where J̃ is the standard complex
structure in Rm and θ ∈ (0, π/2) is a constant. Then, for any isometric immersion
f : Mn → Rm, the pair of isometric immersions f, gθ = J̃θ ◦ f makes a constant angle.

Nontrivial examples of isometric immersions making a constant angle are given
by any pair of elements in the associated family of a real minimal Kaehler submanifold.
In the case of hypersurfaces one has the following converse, in which the immersions
are only required to be conformal.

Theorem 15.23. Let f, g : Mn → Rn+1, n ≥ 3, be conformal immersions making
a constant angle. Then either f and g differ by the composition of a homothety and
a translation in Rn+1 or, up to such a composition, one of the following possibilities
holds:

(i) Mn is a Kaehler manifold and f, g are associated minimal isometric immersions.

(ii) n is odd and f, g are congruent by an orthogonal transformation J̃θ of Rn+1.

For the proof we need the following algebraic fact.

Lemma 15.24. If S : Rn+1 → Rn+1 is an orthogonal transformation and P ⊂ Rn+1 is
a hyperplane such that

〈SX,X〉 = c ‖X‖2, |c| < 1,

for any X ∈ P , then one of the following possibilities holds:

(i) The dimension n is even, SP = P and

S|P = cos θI + sin θJ

where cos θ = c and J : P → P is a complex structure.

(ii) The dimension n is odd and L = SP ∩ P , dimL = n− 1, satisfies SL = L and

S|L = cos θI + sin θJ

where cos θ = c and J : L→ L is a complex structure.
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Proof: First assume that n is odd and c = 0. Take Y ∈ S−1L such that ‖Y ‖ = 1.
Then SY ∈ P ∩ SP . But SY ∈ SP implies that Y ∈ P , since S is injective. Hence
Y, SY ∈ P and, by assumption,

0 = 〈S(Y + SY ), Y + SY 〉
= 〈SY, SY 〉+ 〈S2Y, Y 〉
= 1 + 〈S2Y, Y 〉.

Thus, since S is orthogonal, one can take J = S|S−1L and thus SL = L, proving the
claim in this case.

If c 6= 0, take the linear transformation

S̃ =
1√

1− c2
(S − cI).

It suffices to show that S̃ is orthogonal, for then the proof reduces to the previous case.
Given X ∈ P with ‖X‖ = 1, we have

‖S̃X‖2 =
1

1− c2
‖SX − cX‖2

=
1

1− c2
(‖SX‖2 − 2c〈SX,X〉+ c2‖X‖2)

= 1.

The case when n is even is now trivial. �

Proof of Theorem 15.23: Without loss of generality, we may assume that g is an
isometric immersion. Since f and g are conformal, there exist a vector bundle isometry
T : g∗TRn+1 → f ∗TRn+1 and φ ∈ C∞(M) such that

eφf∗ = T ◦ g∗ and N̄ = TN

where N̄ and N are unit normal vector fields along f and g, respectively. We have

∇̃XTg∗Y = 〈∇̃XTg∗Y, N̄〉N̄ + (∇̃XTg∗Y )f∗TM

= 〈∇̃XTg∗Y, TN〉TN + (∇̃Xe
φf∗Y )f∗TM

= −〈Tg∗Y, ∇̃XTN〉TN +X(φ)eφf∗Y + eφ(∇̃Xf∗Y )f∗TM

for all X, Y ∈ X(M). Exercise 9.1 gives

(∇̃Xf∗Y )f∗TM = f∗(∇XY −X(φ)Y − Y (φ)X + 〈X, Y 〉∇φ). (15.27)

Thus

∇̃XTg∗Y = −〈Tg∗Y, ∇̃XTN〉TN + Tg∗(∇XY − Y (φ)X + 〈X, Y 〉∇φ) (15.28)

for all X, Y ∈ X(M).
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By the Cauchy-Schwarz inequality and the assumption that f and g make a
constant angle, there exists θ ∈ C∞(M) such that

〈Tg∗X, g∗X〉
‖g∗X‖2

= cos θ

for all X ∈ X(M).
Assume first that θ is identically zero modulo π. Then, up to sign, we have

eφf∗X = Tg∗X = g∗X (15.29)

for all X ∈ X(M). Hence

(∇̃Xe
φf∗Y )f∗TM = (∇̃Xg∗Y )g∗TM

= g∗∇XY (15.30)

for all X, Y ∈ X(M). On the other hand, using (15.27) we obtain

(∇̃Xe
φf∗Y )f∗TM =X(φ)eφf∗Y + eφ(∇̃Xf∗Y )f∗TM

= g∗(∇XY − Y (φ)X + 〈X, Y 〉∇φ)

for all X, Y ∈ X(M). Comparing with (15.30) yields

Y (φ)X − 〈X, Y 〉∇φ = 0

for all X, Y ∈ X(M), which implies that φ is constant on Mn. By (15.29), this means
that f and g differ by the composition of a homothety and a translation in Rn+1.

Now assume that the open subset where θ 6= 0 modulo π is nonempty. Since T is
a vector bundle isometry, at each point x of a connected component U of that subset
we can apply Lemma 15.24 to the orthogonal transformation S = T (x) of Rn+1 and to
the hyperplane P = g∗TxM . Let L be the distribution on U defined by

g∗L(x) = g∗TxM ∩ f∗TxM = g∗TxM ∩ T (g∗TxM)

for any x ∈ U . It follows from (15.28) that

〈∇̃XTg∗Y, Tg∗Z〉 = 〈∇XY, Z〉 − Y (φ)〈X,Z〉+ Z(φ)〈X, Y 〉 (15.31)

for all X, Y ∈ X(U) and Z ∈ Γ(L). By Lemma 15.24, either n is even, L = TU and
there exists an orthogonal tensor field J ∈ Γ(End(TU)) such that J2 = −I and

T ◦ g∗ = g∗(cos θI + sin θJ),

or n is odd, rank L = n− 1 and there exists an orthogonal tensor field J ∈ Γ(End(L))
such that J2 = −I and

T ◦ g∗|L = g∗(cos θI + sin θJ).
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In either case,

〈∇̃XTg∗Y, Tg∗Z〉 = 〈∇̃X(cos θg∗Y + sin θg∗JY ), cos θg∗Z + sin θg∗JZ〉
=X(θ)〈JY, Z〉+ cos2 θ〈∇XY, Z〉+ sin2 θ〈∇XJY, JZ〉

+ cos θ sin θ(〈∇XY, JZ〉+ 〈∇XJY, Z〉) (15.32)

for all X ∈ X(U) and Y, Z ∈ Γ(L).
Applying (15.31) and (15.32) to Y ∈ Γ(L), ‖Y ‖ = 1, and Z = JY we obtain

〈∇XY, JY 〉−Y (φ)〈X, JY 〉+JY (φ)〈X, Y 〉= X(θ)+cos2 θ〈∇XY, JY 〉−sin2 θ〈∇XJY, Y 〉,

hence
X(θ) = JY (φ)〈X, Y 〉 − Y (φ)〈X, JY 〉 (15.33)

for all X ∈ X(U) and Y ∈ Γ(L).
Assume that n ≥ 4. Given any X ∈ X(U), we can choose Y ∈ Γ(L) orthogonal

to X so that JY is also orthogonal to X. It follows from (15.33) that θ is constant on
U . On the other hand, applying (15.33) to X = JY yields

Y (φ) = 0 for all Y ∈ Γ(L).

It follows from (15.31) and (15.32) that

〈∇XY, Z〉 = cos2 θ〈∇XY, Z〉+sin2 θ〈∇XJY, JZ〉+cos θ sin θ(〈∇XY, JZ〉+ 〈∇XJY, Z〉)

for all Y, Z ∈ Γ(L). Equivalently, we have

〈∇XJY, JθZ〉 − 〈J∇XY, JθZ〉 = 0

for all X ∈ X(U) and Y, Z ∈ Γ(L), where Jθ = cos θI + sin θJ . Hence

(∇XJY )L − J(∇XY )L = 0 (15.34)

for all X ∈ X(U) and Y ∈ Γ(L).

We now consider separately the cases in which n is even or odd.

Case n ≥ 4 even: In this case, we have seen that θ is constant on U , hence U = Mn.
The preceding computations have also shown that φ is constant, thus f and g are
homothetic. By (15.34), Mn is Kaehler. Moreover, since

eφf∗ = T ◦ g∗ = g∗ ◦ (cos θI + sin θJ),

it follows from Proposition 15.9 that f and g are, up to the composition of a homothety
and a translation, associated minimal Kaehler hypersurfaces.

Case n ≥ 3 odd: Here TU = L⊕ span{η}, where η is a unit vector field orthogonal to
L, and

T ◦ g∗|L = g∗ ◦ Jθ. (15.35)
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Hence
Tg∗η = cos θg∗η + sin θN (15.36)

and
TN = − sin θg∗η + cos θN. (15.37)

Since L is invariant by J , taking X = η and Y ∈ Γ(L) in (15.33) gives

η(θ) = 0.

On the other hand, taking X = Y ∈ Γ(L) in (15.33) yields

Y (θ) = JY (φ) (15.38)

for any Y ∈ Γ(L). Taking the inner product of both sides of (15.28) with Tg∗η gives

〈∇XY, η〉 − Y (φ)〈X, η〉+ η(φ)〈X, Y 〉 = 〈∇̃XTg∗Y, Tg∗η〉

for all X, Y ∈ X(U). In particular, using (15.35) and (15.36) we obtain

〈∇XY, η〉 − Y (φ)〈X, η〉+ η(φ)〈X, Y 〉 = cos θ〈∇XJθY, η〉+ sin θ〈AX, JθY 〉 (15.39)

for all X ∈ X(U) and Y ∈ Γ(L).
Now, using again that L is invariant by J we obtain

−〈∇XY, η〉 = 〈∇Xη, Y 〉
= 〈Jθ∇Xη, JθY 〉
= cos θ〈∇Xη, JθY 〉+ sin θ〈J∇Xη, JθY 〉
= − cos θ〈∇XJθY, η〉+ sin θ〈J∇Xη, JθY 〉

for all X ∈ X(U) and Y ∈ Γ(L). Substituting in (15.39) yields

− Y (φ)〈X, η〉+ η(φ)〈X, Y 〉 = sin θ〈AX + J∇Xη, JθY 〉 (15.40)

for all X ∈ X(U) and Y ∈ Γ(L). In particular, taking X = η gives

Y (φ) = − sin θ〈Aη + J∇ηη, JθY 〉 (15.41)

for any Y ∈ Γ(L).
Since TN = N̄ , we have

∇̃XN̄ = ∇̃XTN. (15.42)

On the one hand,

−eφ∇̃XN̄ = eφf∗ĀX

= Tg∗ĀX

= 〈ĀX, η〉Tg∗η + Tg∗(ĀX)L)

= 〈ĀX, η〉(cos θg∗η + sin θN) + g∗Jθ(ĀX)L).
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On the other hand,

−∇̃XTN = ∇̃X(sin θg∗η − cos θN)

= cos θg∗(AX +X(θ)η) + sin θ(g∗∇Xη + (〈AX, η〉+X(θ))N).

Thus, taking the inner product of both sides of (15.42) with either g∗η or N , and using
the two preceding equations, we obtain

e−φ〈ĀX, η〉 = 〈AX, η〉+X(θ) (15.43)

for any X ∈ X(U). Taking the inner product with g∗Y , Y ∈ Γ(L), yields

e−φ〈JθĀX, Y 〉 = cos θ〈AX, Y 〉+ sin θ〈∇Xη, Y 〉
= cos θ〈AX, Y 〉+ sin θ〈J∇Xη, JY 〉
= 〈AX, J−θY 〉+ sin θ〈AX + J∇Xη, JY 〉 (15.44)

for all X ∈ X(U) and Y ∈ Γ(L).
Replacing Y by J−θJY in (15.40) gives

− 〈J−θJY,∇φ〉〈X, η〉+ η(φ)〈X, J−θJY 〉 = sin θ〈AX + J∇Xη, JY 〉. (15.45)

In particular, we obtain

η(φ)〈X, J−θJY 〉 = sin θ〈AX + J∇Xη, JY 〉

if X, Y ∈ Γ(L). It follows from (15.44) that

e−φ〈ĀX, Y 〉 = 〈AX, Y 〉+ η(φ)〈X, JY 〉

for all X, Y ∈ Γ(L). Since e−φĀ−A is symmetric and J is skew-symmetric, we conclude
that

e−φ〈ĀX, Y 〉 = 〈AX, Y 〉 and η(φ) = 0 (15.46)

for all X, Y ∈ Γ(L).
Applying (15.44) for X = η gives

e−φ〈Āη, J−θY 〉 = 〈Aη, J−θY 〉+ sin θ〈Aη + J∇ηη, JY 〉.

Using (15.41), it follows that

e−φ〈Āη, Y 〉 = 〈Aη, Y 〉 − JY (φ)

for any Y ∈ Γ(L). Comparing with (15.43) we obtain

Y (θ) = −JY (φ)

for any Y ∈ Γ(L). This and (15.38) imply that Y (θ) = 0 = Y (φ) for all Y ∈ Γ(L).
We conclude from (15.33) and (15.46) that θ and φ are constant. In particular, the
constancy of θ implies that U = Mn.
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We now prove that the vector bundle isometry T : g∗TRn+1 → f ∗TRn+1 is induced
by a constant orthogonal transformation of Rn+1. To see this, we must show that

∇̃XTg∗Y = T ∇̃Xg∗Y (15.47)

for all X ∈ X(M) and Y ∈ Γ(L), and that

∇̃XTg∗η = T ∇̃Xg∗η (15.48)

for all X ∈ X(M). Using (15.35) we obtain

∇̃XTg∗Y = ∇̃X(cos θg∗Y + sin θg∗JY )

= cos θ(g∗∇XY + 〈AX, Y 〉N) + sin θ(g∗∇XJY + 〈AX, JY 〉N). (15.49)

On the other hand, it follows from (15.35), (15.36) and (15.37) that

T ∇̃Xg∗Y = T (g∗(∇XY )|L + 〈∇XY, η〉g∗η + 〈AX, Y 〉N)

= cos θ(g∗(∇XY )|L + 〈∇XY, η〉g∗η + 〈AX, Y 〉N) + sin θ(g∗J(∇XY )|L
+ 〈∇XY, η〉N − 〈AX, Y 〉g∗η. (15.50)

The L-components of (15.49) and (15.50) coincide by virtue of (15.34), whereas the
equality between the components with respect to both η and N follows from

〈AX + J∇Xη, JY 〉 = 0 (15.51)

for all X ∈ X(M) and Y ∈ Γ(L), which is a consequence of (15.45) and the constancy
of φ. Thus (15.47) is proved. It remains to show that (15.48) holds. We have

∇̃XTg∗η = ∇̃X(cos θg∗η + sin θN)

= cos θ(g∗∇XY + 〈AX, Y 〉N)− sin θg∗AX (15.52)

for all X ∈ X(M). On the other hand,

T ∇̃Xg∗η = T (g∗∇Xη + 〈AX, η〉N)

= cos θ(g∗∇XY + 〈AX, η〉N) + sin θg∗(J∇Xη − 〈AX, η〉η). (15.53)

The equality between the L-components of (15.52) and (15.53) is again a consequence
of (15.51), whereas that between the components with respect to both η and N is clear.
This proves (15.48). It follows that there exists a constant orthogonal transformation
T : Rn+1 → Rn+1 satisfying (15.35), (15.36) and (15.37) such that

eφf∗ = T ◦ g∗.

Finally, let J̃ : Rn+1 → Rn+1 be defined by

sin θJ̃ = T − cos θI.

Using (15.35), (15.36) and (15.37) we obtain

J̃ ◦ g∗ = g∗ ◦ J, J̃g∗η = N and J̃N = −g∗η.

Therefore J̃ is orthogonal and satisfies J̃2 = −I, that is, it is a complex structure in
Rn+1. We conclude that T = cos θI + sin θJ̃ = J̃θ and f = J̃θ ◦ g up to the composition
of a homothety and a translation in Rn+1. �
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15.8 Appendix

In this appendix we first state a local Weierstrass type representation for the
minimal real Kaehler submanifolds in Euclidean space. Then we discuss a Weierstrass
representation for the minimal real Kaehler hypersurfaces, which is an alternative to
the parametric description presented in Section 15.4. Both results are given without
proof.

In the following result, that a subspace V ⊂ Cm is isotropic means that u · v = 0
for all u, v ∈ V where “·” denotes the standard symmetric inner product in Cm.

Proposition 15.25. Let f : M2n → Rm be a minimal real Kaehler submanifold. Given
a simply connected coordinate chart U of M2n with zj = xj + iyj, define the maps
ϕj : U → Cm, 1 ≤ j ≤ n, by

ϕj =
√

2 fzj =
1√
2

(
fxj − ifyj

)
.

Then the ϕj satisfy the following conditions:

(i) The vectors ϕ1, . . . , ϕn are linearly independent at any point in U ,

(ii) The functions ϕj are holomorphic,

(iii) The subspace span{ϕ1, . . . , ϕn} ⊂ Cm is isotropic,

(iv) The integrability conditions ∂ϕj/∂zk = ∂ϕk/∂zj, 1 ≤ j, k ≤ n.

Furthermore, if F : U → Cm is the holomorphic representative of f , then

ϕj = Fzj , 1 ≤ j ≤ n. (15.54)

Conversely, consider maps ϕ1, . . . , ϕn : U → Cm on a simply connected open sub-
set U of Cm that satisfy conditions (i) to (iv). Then there is a holomorphic map
F : U → Cm such that (15.54) holds. Moreover, if f : U → Rm is defined by

f =
√

2Re[F ],

then M2n = (U, f ∗〈 , 〉) is a Kaehler manifold and f a minimal real Kaehler submanifold
whose holomorphic representative is F .

The above result can be used to provide a local Weierstrass representation of any
minimal real Kaehler hypersurface, which goes as follows.

Given a nonzero holomorphic function α0 : U → C on a simply connected domain
U ⊂ C, set

φ0 =

∫
α0(z)dz.
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Assume that the maps αr, φr : U → C have been defined for some 0 ≤ r ≤ n−1. Choose
a nowhere zero holomorphic function µr+1 : U → C and let αr+1, φr+1 : U → C2r+1 be
given by

αr+1 =
µr+1

2
(1− φ2

r, i(1 + φ2
r), 2φr)

and

φr+1 =

∫
αr+1(z)dz

where φr · φr = 0. Denote
γ = αn : U → C2n+1

and let b0, b1, . . . , bn−1 : U → C be holomorphic functions such that bn−1 is nowhere
zero. Take complex coordinates (w1, . . . , wn−1) on an open subset W ⊂ Cn−1 and
define F : U ×W → C2n+1 by

F (z, w1, . . . , wn−1) =
n−1∑
j=0

∫
bj(z)γ(j)(z)dz +

n∑
j=1

wjγ
(j−1)(z)

where γ(j) = (d/dz)jγ. Then f =
√

2Re[F ] is a minimal real Kaehler hypersurface
given by

1√
2
f(x, y, u1, . . . , un−1, v1, . . . , vn−1)

= Re

[
n−1∑
j=0

∫
bj(z)γ(j)(z)dz

]
+

n∑
j=1

(ujRe[γ
(j−1)(z)]− vjIm[γ(j−1)(z)])

where z = x+ iy and wj = uj + ivj.

15.9 Notes

Corollary 15.5 is due to Hasanis [208]. Its consequence for the case in which M2n

is compact was previously obtained by Fwu [197] as a corollary of a result on proper
isometric immersions f : M2n → R2n+p, p < n, of complete Kaehler manifolds; see
Exercises 15.2 and 15.3.

Theorems 15.7, 15.11 and 15.22 are due to Dajczer-Rodŕıguez [126]. An alter-
native proof of Theorem 15.7 was given by Moore-Noronha [261]. Theorem 15.11 was
improved for codimension at most five in [63].

The results in this chapter concerning the associated family of a minimal real
Kaehler submanifold were obtained by Dajczer-Gromoll [110]. In that paper it was
also shown that the isometric deformations in the associated family of a minimal sim-
ply connected real Kaehler submanifold f : M2n → Rm are the only ones that preserve
the oriented generalized Gauss map, that is, the generalized Gauss map into the Grass-
mannian of oriented 2n-planes in Rm. An alternative proof of this fact is given in [261].
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The case in which the orientation of the Gauss map is reversed was also considered in
[110], where it was shown that the examples are of a global nature.

Theorems 15.18, 15.19 and 15.20 are due to Dajczer-Rodŕıguez [129]. Additional
information related to these results has been given by Dajczer-Gromoll [114], [115] and
Hennes [218]. For instance, examples of (nonruled) complete minimal real Kaehler
submanifolds in R6 were constructed in [115] and [218]. Moreover, a Weierstrass type
representation for the complete minimal complex ruled submanifolds, that are part of
Theorem 15.19, was constructed by Dajczer-Gromoll [114].

The lower bound in Exercise 15.4 for the index of relative nullity of an isometric
immersion f : M2n → R2n+p, p < n, of a Kaehler manifold with nonnegative sectional
curvature, was obtained by Fwu [197], where also the cylinder-type result in Exercise
15.5 was derived. Both results were extended by Florit-Hui-Zheng [192] for the case in
which M2n is only assumed to have either nonnegative Ricci curvature or nonnegative
holomorphic curvature. Moreover, they proved that if p ≤ n and the minimum index of
relative nullity ν0 of f takes its minimum possible value 2(n− p), then f is a 2(n− p)-
cylinder over an extrinsic product of p complete surfaces in R3 with positive Gauss
curvature. In fact, without the assumption on the completeness of M2n, but assuming
that the index of relative nullity takes at any point of M2n its minimum possible value
2(n − p), they were able to prove that each point of an open dense subset of M2n

has a neighborhood that splits as a Riemannian product with p factors of nowhere
flat Kaehler manifolds with nonnegative Ricci curvature, and that f , restricted to
that neighborhood, is an extrinsic product of hypersurfaces. As a consequence, if
f : M2n → R2n+p, p ≤ n, is an isometric immersion of a Kaehler manifold with either
positive Ricci curvature or positive holomorphic sectional curvature, it follows that
p = n and that f splits locally as a product of n positively curved surfaces in R3. In
particular, this implies that no open subset of CPn admits an isometric immersion into
R2n+p with p ≤ n. Moreover, the splitting is global if M2n is complete.

Interesting extensions of the above splitting theorems by Florit-Hui-Zheng [192]
for isometric immersions f : M2n → R2n+p, p < n, of Kaehler manifolds having either
nonnegative Ricci curvature or nonnegative holomorphic curvature were obtained by
Florit-Zheng [189] for the case in which the index of relative nullity of f is assumed to
take the constant value ν = 2(n−p)+1 at any point of M2n. They rely on an estimate
of the index of pluriharmonic nullity of a real Kaehler submanifold f : M2n → R2n+p,
defined at x ∈M2n as the complex dimension νJ(x) of the J-invariant subspace

∆J(x) = {X ∈ TxM : α(X, JY ) = α(JX, Y ) for all Y ∈ TxM}.

The authors proved that, for any real Kaehler submanifold f : M2n → R2n+p, the
estimate νJ(x) ≥ n − p holds at each x ∈ M2n, and were able to determine all such
submanifolds for which the equality νJ(x) = n− p is attained at any x ∈M2n.

In the case of complete real Kaehler submanifolds f : M2n → R2n+2, it was shown
by Florit-Zheng [191] that if f is real analytic but not minimal then f has to be a
(2n− 4)-cylinder.

The local classification of real Kaehler hypersurfaces given in terms of pseudoholo-
morphic surfaces in the sphere is due to Dajczer-Gromoll [110]. Pseudoholomorphic
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surfaces g : M2 → S2k were first studied by Calabi [50]. By definition, they induce a
holomorphic map into the Hermitian symmetric space ℘k = SO(2k + 1)/U(k) of all
oriented hyperplanes in R2k+1 with complex structure. Conversely, any holomorphic
curve in ℘k projects to a pseudoholomorphic surface in S2k.

Theorem 15.16 on complete real Kaehler hypersurfaces of R2n+1 was proved by
Florit-Zheng [190]. Theorem 15.21 on the classification of hypersurfaces with a Kaehler
structure in nonflat space forms is due to Ryan [306]. A generalization of Ryan’s
result on isometric immersions f : M2n → S2n+1 of Kaehler manifolds into the sphere
was obtained by Florit-Hui-Zheng [192]; see also [189]. Namely, it was shown that
if f : M2n → S2n+p

c , p < n, is an isometric immersion of a Kaehler manifold, then
p = n− 1, M2n is a Riemannian product S2

c1
× · · · × S2

cn with 1/c = 1/c1 + · · ·+ 1/cn,
and f is an extrinsic product of the identity maps ida : S2

ca → S2
ca , 1 ≤ a ≤ n. Isometric

immersions of Kaehler manifolds into the hyperbolic space have been considered by
Dajczer-Vlachos [157].

The Weierstrass type representation for minimal real Kaehler submanifolds de-
scribed in the appendix was obtained by Arezzo-Pirola-Solci [20]. The Weierstrass
parametrization for the case of hypersurfaces is due to Hennes [218].

The classification of pairs of conformal hypersurfaces in Euclidean space that
form a constant angle is due to Dajczer-Rodŕıguez [130]. The result in Exercise 15.15
was obtained by Dajczer-Rodŕıguez [131] with a different argument.

For other results related to the subject of this chapter, see [41], [46], [102], [116],
[131], [161], [167], [170], [189], [191], [192], [196], [218], [302], [348] and [349].

15.10 Exercises

Exercise 15.1. Provide an example showing that the assumption p < n in Theorem
15.4 is the best possible.

Exercise 15.2. Let f : M2n → R2n+p, p < n, be an isometric immersion of a com-
plete Kaehler manifold. If f is proper, show that M2n has the homotopy type of a
CW -complex with no cells of dimension k > n + p. Conclude that for any coefficient
group G the homology groups of Mn satisfy Hk(M ;G) = 0 for k > n+ p.

Hint: Use Sard’s theorem to obtain q ∈ R2n+p such that h : M2n → R, given by

h(x) =
1

2
‖f(x)− q‖2,

is a smooth function all of whose critical points are nondegenerate. If x is a critical
point of h, first obtain from the proof of Theorem 15.4 a J-invariant subspace W of
TxM of dimension at least 2(n− p) such that

α(JZ, JZ) = −α(Z,Z)

for any Z ∈ W . Then use Corollary 1.5 to show that there exists a subspace W1 ⊂ W
of dimension at least n− p such that Hessh is positive definite on W1, and hence the
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index of h at x is at most n + p. Show that the assumption that f is proper implies
that the subset Ma = h−1((−∞, a]) is compact for any a ∈ R. Finally, as in the proof
of Theorem 1.23, conclude from Theorem 3.5 in [247] that Mn has the homotopy type
of a CW -complex with no cells of dimension k > n+ p.

Exercise 15.3. Use Exercise 15.2 to give another proof of the nonexistence of an
isometric immersion of a compact Kaehler manifold M2n into R2n+p with p < n.

Hint: Use the fact that every immersion of a compact manifold is proper and that a
Kaehler manifold is always orientable, hence its top dimensional homology group is
nonzero if it is compact.

Exercise 15.4. Let f : M2n → R2n+p, p < n, be an isometric immersion of a Kaehler
manifold of nonnegative sectional curvature. Show that the minimum index of relative
nullity ν0 of f satisfies ν0 ≥ 2(n− p).
Hint: For x ∈ M2n, obtain from the proof of Theorem 15.4 a J-invariant subspace W
of TxM with dimW ≥ 2(n− p) and an isometric linear isomorphism J̃ : U → U , where

U = span{α(Y, Z) : Y ∈ TxM and Z ∈ W},

such that J̃α(Y, Z) = α(Y, JZ) for all Y ∈ TxM and Z ∈ W . In particular,

α(JZ, JZ) = −α(Z,Z)

for any Z ∈ W . Use this fact and the assumption that the sectional curvature of M2n

is nonnegative to show that W is contained in the relative nullity subspace ∆(x) of f
at x.

Exercise 15.5. Show that any isometric immersion f : M2n → R2n+p, p < n, of a
complete Kaehler manifold of nonnegative sectional curvature is a 2`-cylinder, with
` ≥ n− p.
Hint: Combine Exercise 15.4 with Theorem 7.15.

Exercise 15.6. Let f : M2n → Rm, n ≥ 2, be a minimal real Kaehler submanifold.
Show that any holomorphic submanifold N2` of M2n is also a minimal real Kaehler
submanifold of Rm.

Exercise 15.7. If f : M2n → Cn+q, n ≥ 2, is a substantial holomorphic isometric
immersion and f : M2n → R2n+p is a substantial minimal immersion, show that

2n+ p ≤ 2(n+ q) ≤ 2(2n+ p).

Exercise 15.8. Let f : M2n → Rm, n ≥ 2, be a simply connected minimal real
Kaehler submanifold. Show that f is a cone if and only if it is the real part of a
holomorphic isometric immersion F : M2n → Cm obtained by lifting a holomorphic
isometric immersion F : M2n → CPm−1 by the Hopf projection π : Cm → CPm−1.
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Hint for the “only if” part: Let {fθ}θ∈[0,π) be the associated family of f , and let
F : M2n → R2m = Rm ⊕ Rm, given by

F =
1√
2
f ⊕ 1√

2
g,

be its holomorphic representative, where g = fπ/2. Since f is a cone, there exists a unit
vector field R and γ ∈ C∞(M) such that the map h = f + γ−1f∗R is constant. Show
that the map ` = g + γ−1g∗R is also constant and that the distribution L spanned by
R and JR is totally geodesic and its leaves are mapped by f and g into affine planes
of Rm. This implies that the images by F of the leaves of L give rise to a foliation of
F (M) by complex lines of Cm through a common point.

Exercise 15.9. Show that any minimal real Kaehler submanifold f : M2n → Rm,
n ≥ 2, with flat normal bundle is totally geodesic.

Exercise 15.10. Let f : M2n → Rm be a complete minimal real Kaehler submanifold.
Assume that ν > 0 at any point and that there is a point x0 ∈ M2n where ν assumes
its minimum value 2` and all holomorphic curvatures of planes in ∆⊥(x0) are different
from zero. Show that f is a 2`-cylinder.

Hint: Suppose that CT 6= 0 at x0. Then there exist X, Y ∈ ∆⊥(x0) such that CTX = 0
and CTY = X with X 6= 0. Now use the Gauss equation to conclude that

〈R(X, JX)JX,X〉 = 0,

which is not possible.

Exercise 15.11. Let f : M2n → R2n+2 be a real Kaehler submanifold. If the index of
nullity of the curvature tensor of M2n satisfies µ < 2n − 4 at any point, prove that f
is holomorphic.

Exercise 15.12. Assume that a real Kaehler submanifold M2n of R2n+p satisfies

α(JX, Y ) = −α(X, JY )

for all X, Y ∈ X(M). Prove that its second fundamental form α is parallel.

Hint: Combine the fact that

∇⊥Xα(JY, Z) = −∇⊥Xα(Y, JZ)

and the Codazzi equation in a similar fashion as in the argument for Proposition 4.17.

Note: From the classification due to Ferus [173] of the Euclidean submanifolds with
parallel second fundamental form it follows that the submanifold must be an open part
of a standard embedded Hermitian symmetric R-space, of an affine subspace, or of a
product of such spaces. This exercise was taken from Ferus [175].
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Exercise 15.13. Let f : L2 → C2 ≈ R4 be a holomorphic curve without flat points.
For each x ∈ L2 and each unit normal vector ξ ∈ NfL(x), let λξ(x) denote the positive
principal curvature of the shape operator of f with respect to ξ. Let F : N1

fL→ R4 be
the map defined on the unit normal bundle of f by

F (x, ξ) = f(x) + λξ(x)ξ.

(i) Compute the singular points of F .

(ii) Verify that the scalar curvature of the metric induced by F on the open subset
of its regular points vanishes everywhere.

Exercise 15.14. Let f : M8 → C5 be a holomorphic isometric immersion of a Kaehler
manifold. When considered as a real submanifold in R10, show that the type number
satisfies τ ≥ 4 at all points where the index of relative nullity vanishes.

Exercise 15.15. If f : M2n → Q2n+p
c , n ≥ 2, is an isometric immersion of a Kaehler

manifold into a space form with c 6= 0, show that the index of relative nullity of f
vanishes at any point of M2n.

Hint: Assume that there exists x ∈M2n such that the subspace of relative nullity ∆(x)
is nontrivial. Take X ∈ ∆(x) and Y, JY orthogonal to X. Use that

〈R(X, Y )Y,X〉 = 〈R(JX, JY )Y,X〉

to obtain a contradiction from the Gauss equation.

Exercise 15.16. Let f : M2n → R2n+1, n ≥ 2, be an isometric immersion of a locally
irreducible Kaehler manifold. Prove that f is a Sbrana-Cartan hypersurface if and only
if it is minimal.

Exercise 15.17. Let T be a nontrivial infinitesimal bending on an isometric immersion
f : Mn → Rn+1. If f and F = f + tT are conformal for some t 6= 0, prove that f must
be a minimal real Kaehler hypersurface.



Chapter 16

Conformally flat submanifolds

This chapter brings us back to the conformal realm. Here our main interest is
on geometric and topological properties of conformally flat submanifolds of Euclidean
space, that is, isometric immersions into Euclidean space of Riemannian manifolds that
are locally conformally diffeomorphic to an open subset of Euclidean space.

The first subject we consider is the classical characterization of conformally flat
manifolds in terms of the Weyl and Schouten tensors. It will be derived as a con-
sequence of the fact that conformally flat manifolds are precisely those Riemannian
manifolds that admit locally (globally, if simply connected) an isometric immersion
with codimension one into the light-cone of Lorentzian space. This basic fact is also
used to prove that any simply connected compact conformally flat manifold is confor-
mally diffeomorphic to the sphere.

The remaining results of the chapter deal with conformally flat submanifolds in
Euclidean space with low codimension. First, it is shown that any such submanifold
f : Mn → Rn+p of dimension n ≥ 4 and codimension p ≤ n − 3 carries a principal
normal at any point whose multiplicity is at least n − p. This implies that a generic
conformally flat Euclidean submanifold satisfying these conditions is the envelope of
a p-parameter family of spheres, and hence carries a (n − p)-dimensional foliation by
round spheres.

A geometric explanation for the above fact is provided, which goes as follows:
since conformally flat manifolds are locally characterized as those Riemannian mani-
folds that admit an isometric immersion with codimension one into the light-cone, in
order to obtain examples of conformally flat submanifolds Mn of Rn+p, it suffices to con-
sider a Riemannian manifold Nn+1 that admits isometric immersions F : Nn+1 → Rn+p

and G : Nn+1 → Ln+2, and then take Mn as the intersection G(N)∩Vn+1. The leaves
of the foliation of Mn by (n− p)-dimensional round spheres then arise as the intersec-
tions with the light-cone of the leaves of the common relative nullity leaves of both F
and G, which has dimension at least n−p+1. It turns out that, if n ≥ 4 and p ≤ n−3,
this procedure generates all simply connected examples.

We then discuss how one can obtain an explicit parametrization of all conformally
flat submanifolds Mn of Rn+2 by putting together the preceding construction with a
description of the hypersurfaces F : Nn+1 → Rn+2 for which Nn+1 also admits an

478
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isometric immersion G : Nn+1 → Ln+2.
In the codimension one case, the preceding results say that a conformally flat

Euclidean hypersurface of dimension n ≥ 4 must carry a principal curvature whose
multiplicity is at least n − 1 at any point. In other words, a generic conformally
flat Euclidean hypersurface of dimension n ≥ 4 is the envelope of a one parameter
family of spheres. It is shown how this leads to an explicit parametrization of any such
hypersurface by means of the conformal version of the Gauss parametrization. On the
other hand, a conformally flat Euclidean hypersurface of dimension three may not carry
any principal curvature of multiplicity two. The interesting class of conformally flat
Euclidean hypersurfaces of dimension three that have three distinct principal curvatures
is discussed in the last section of the chapter, where they are characterized as holonomic
hypersurfaces satisfying some additional conditions.

16.1 Hypersurfaces of the light-cone

In this section we obtain a rigidity theorem for hypersurfaces in the light-cone.
This result is used in the next section to give a proof of the classical characterization
of conformally flat manifolds in terms of the Weyl and Schouten tensors.

The Schouten tensor of a Riemannian manifold Mn is defined as

L(X, Y ) =
1

n− 2
(Ric(X, Y )− (1/2)ns〈X, Y 〉), (16.1)

whereas the Weyl tensor (or conformal curvature tensor) is defined by

〈C(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉 − L(X,W )〈Y, Z〉 − L(Y, Z)〈X,W 〉
+ L(X,Z)〈Y,W 〉+ L(Y,W )〈X,Z〉

for all X, Y, Z,W ∈ X(M).

Theorem 16.1. Let Mn be a Riemannian manifold of dimension n ≥ 3. If there
exists an isometric immersion f : Mn → Vn+1 ⊂ Ln+2, then

(i) C = 0.

(ii) L is a Codazzi tensor.

Moreover, any other isometric immersion f̃ : Mn → Vn+1 ⊂ Ln+2 is given by f̃ = T ◦f
for some T ∈ On+2

1 .
Conversely, any simply connected Riemannian manifold Mn, n ≥ 3, satisfying

conditions (i) and (ii) admits an isometric immersion into Vn+1.

Proof: Let f : Mn → Vn+1 ⊂ Ln+2 be an isometric immersion. By Proposition 9.1, the
position vector field f is a light-like parallel normal vector field satisfying Af = −I,
where I stands for the identity tensor. Since the normal bundle of f is a time-like plane
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bundle having the position vector field f as a section, there exists a unique light-like
normal vector field δ such that 〈f, δ〉 = −1. Thus the second fundamental form of f
can be written as

α(X, Y ) = 〈X, Y 〉δ − 〈AδX, Y 〉f

for all X, Y ∈ X(M).
Next we prove that the shape operator Aδ coincides with the endomorphism

L̂ =
1

n− 2
(T − (1/2)nsI) (16.2)

associated with the Schouten tensor of Mn, where T is the endomorphism associated
with its Ricci tensor. The third fundamental form of f is given by

III(X, Y ) =
n∑
i=1

〈α(X,Xi), α(Y,Xi)〉

=
n∑
i=1

(〈X,Xi〉〈AδY,Xi〉+ 〈Y,Xi〉〈AδX,Xi〉)

= 2〈AδX, Y 〉,

where X1, . . . , Xn is an orthonormal tangent frame. It follows from (3.6) that

T = nAH − 2Aδ.

On the other hand,

nH = −n〈H, f〉δ − n〈H, δ〉f
= nδ − trAδf.

Hence
nAH = nAδ + trAδI,

and therefore
T = (n− 2)Aδ + trAδI. (16.3)

Also

n(n− 1)s = trT

= 2(n− 1)trAδ. (16.4)

Substituting (16.3) and (16.4) into (16.2) yields L̂ = Aδ.
Now observe that δ is a parallel normal vector field, for

∇⊥Xδ = −〈∇⊥Xδ, f〉δ − 〈∇⊥Xδ, δ〉f
= 0.
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Therefore the Codazzi equation of f is equivalent to Af and Aδ being Codazzi tensors.

Since Af = −I, this reduces to L̂ = Aδ, or equivalently, to L, being a Codazzi tensor.
Now, from

〈α(X,W ), α(Y, Z)〉 = −〈α(X,W ), f〉〈α(Y, Z), δ〉 − 〈α(X,Z), f〉〈α(Y,W ), δ〉
= 〈X,W 〉L(Y, Z) + 〈Y, Z〉L(X,W )

it follows that

〈R(X, Y )Z,W 〉 − 〈α(X,W ), α(Y, Z)〉+ 〈α(X,Z), α(Y,W )〉 = 〈C(X, Y )Z,W 〉

for all X, Y, Z,W ∈ X(M). Thus the Gauss equation of f is equivalent to the vanishing
of C.

The last assertion in the direct statement follows from the uniqueness part of the
Fundamental theorem of submanifolds, taking into account that Af = −I and Aδ = L̂.

Conversely, assume that Mn is simply connected and that conditions (i) and (ii)
hold on Mn. Consider the trivial Lorentzian vector bundle Mn × L2 over Mn. Endow
this bundle with its canonical connection ∇′, and choose a parallel pseudo-orthonormal
frame e1, e2 of Mn × L2 with 〈e1, e2〉 = −1. Define

γ(X, Y ) = 〈X, Y 〉e1 − L(X, Y )e2.

Conditions (i) and (ii) imply that ∇′ and γ satisfy the Gauss and Codazzi equations
for constant curvature zero. The Ricci equations are trivially satisfied since ∇′ is flat
and γ is orthogonally diagonalizable.

By the Fundamental theorem of submanifolds, there exists an isometric immersion
G : Mn → Ln+2 whose normal bundle, normal connection and second fundamental form
are Mn × L2, ∇′ and γ, up to a vector bundle isometry. Set h = G− e2. From

h∗Z = G∗Z +G∗Ae2Z

= 0

for any Z ∈ X(M) we see that h is constant. Therefore the map f = G−h = e2 defines
an isometric immersion of Mn into Vn+1. �

16.2 Conformally flat manifolds

A Riemannian manifold Mn is called conformally flat if each point lies in a
neighborhood which is conformally diffeomorphic to an open subset of Euclidean space.

Examples 16.2. (i) Any Riemannian manifold of dimension two is conformally flat
since it locally admits isothermic coordinates.

(ii) Any Riemannian manifold with constant sectional curvature is conformally flat, as
follows from Examples 9.10.

(iii) By Corollary 9.29, a Riemannian product M1×M2 is conformally flat if and only
if one of the following possibilities holds:
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(a) One of the factors is one-dimensional and the other one has constant sectional
curvature.

(b) Both factors have dimension greater than one and are either both flat or have
opposite constant sectional curvatures.

(iv) A warped product M1×ρM2 is conformally flat if and only if one of the following
possibilities holds:

(a) M1 has dimension one and M2 has constant sectional curvature.

(b) M2 has dimension one and the metric 〈 , 〉∼1 = (1/ρ2)〈 , 〉1 on M1 has constant
sectional curvature, where 〈 , 〉i is the metric of Mi, 1 ≤ i ≤ 2.

(c) Both M1 and M2 have dimension greater than one and the metrics 〈 , 〉∼1 on M1

and 〈 , 〉2 on M2 have opposite constant sectional curvatures.

The assertion in part (iv) follows from that in part (iii) by noticing that the warped
product metric of M1 ×ρM2 is conformal to the product metric

π∗1〈 , 〉∼1 + π∗2〈 , 〉2

on M1 ×M2 with conformal factor ρ ◦ π1, where πi : M1 ×M2 →Mi is the projection,
1 ≤ i ≤ 2.

Necessary and sufficient conditions for a Riemannian manifold Mn of dimension
n ≥ 3 to be conformally flat are given in the next result.

Theorem 16.3. A Riemannian manifold Mn of dimension n ≥ 3 is conformally flat
if and only if the following conditions are satisfied:

(i) C = 0.

(ii) L is a Codazzi tensor.

Moreover, (i) implies (ii) when n ≥ 4, and (i) is automatically satisfied if n = 3.

Proof: If Mn is conformally flat, then it admits locally an isometric immersion into
Vn+1 by part (i) of Proposition 9.9. Thus conditions (i) and (ii) hold on Mn by
Theorem 16.1. Conversely, if these conditions are satisfied, then Mn admits locally
an isometric immersion into Vn+1 by Theorem 16.1, and hence a conformal immersion
into Rn by part (ii) of Proposition 9.9.

It remains to prove the two last assertions. The proof that part (i) always holds
for n = 3 is a straightforward computation that is left to the reader. That (i) implies
(ii) when n ≥ 4 will follow using the second Bianchi identity (e.g. [317])

(∇XR)(Y, Z, V,W ) + (∇YR)(Z,X, V,W ) + (∇ZR)(X, Y, V,W ) = 0 (16.5)

for all X, Y, Z,W ∈ X(M).
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If the Weyl tensor vanishes identically, a direct calculation shows that

(∇XR)(Y, Z, V,W ) = (∇XL)(Z, V )〈Y,W 〉+ (∇XL)(Y,W )〈Z, V 〉
− (∇XL)(Y, V )〈Z,W 〉 − (∇XL)(Z,W )〈Y, V 〉.

Using (16.5) and the preceding equation we obtain

[(∇XL)(Z, V )− (∇ZL)(X, V )]〈Y,W 〉+ [(∇XL)(Y,W )− (∇YL)(X,W )]〈Z, V 〉
+ [(∇YL)(X, V )− (∇XL)(Y, V )]〈Z,W 〉+ [(∇ZL)(X,W )− (∇XL)(Z,W )]〈Y, V 〉
+ [(∇YL)(Z,W )− (∇ZL)(Y,W )]〈X, V 〉+ [(∇ZL)(Y, V )− (∇YL)(Z, V )]〈X,W 〉
= 0. (16.6)

Let X1, . . . , Xn be a local orthonormal frame in Mn. If we take Y = W = Xi,
X = Xj, Z = Xk and V = X` in the preceding expression for pairwise distinct indices
i, j, k, `, we obtain

(∇XjL)(Xk, X`)− (∇XkL)(Xj, X`) = 0. (16.7)

It remains to show that (16.7) holds when j 6= k = `. Now, choosing in (16.6) succes-
sively: X = Xj, Y = W = Xi, Z = V = Xk; X = V = Xi, Y = Xj, Z = W = Xh and
X = W = Xh, Y = V = Xk, Z = Xj, we obtain

[(∇XjL)(Xk, Xk)− (∇XkL)(Xj, Xk)] + [(∇XjL)(Xi, Xi)− (∇XiL)(Xj, Xi)] = 0,

[(∇XjL)(Xi, Xi)− (∇XiL)(Xj, Xi)] + [(∇XjL)(Xh, Xh)− (∇XhL)(Xj, Xh)] = 0

and

[(∇XjL)(Xh, Xh)− (∇XhL)(Xj, Xh)] + [(∇XjL)(Xk, Xk)− (∇XkL)(Xj, Xk)] = 0.

Subtracting the second of the preceding equations from the sum of the other two gives

(∇XjL)(Xk, Xk)− (∇XkL)(Xj, Xk) = 0,

and this completes the proof that L is a Codazzi tensor. �

Theorem 16.4. Any simply connected conformally flat manifold Mn, n ≥ 3, admits
a conformal immersion into Sn, which is unique up to a conformal transformation of
Sn. In particular, if compact, then Mn is conformal to Sn.

Proof: In view of Theorem 16.3, a simply connected conformally flat manifold Mn

admits an isometric immersion into Vn+1 by the converse statement of Theorem 16.1,
which gives rise to a conformal immersion into Sn by part (ii) of Exercise 9.7. More-
over, the isometric immersion of Mn into Vn+1 ⊂ Ln+2 is unique up to an orthogonal
transformations of Ln+2 by Theorem 16.1. Hence, the corresponding conformal immer-
sion of Mn into Sn is unique up to a conformal transformations of Sn by part (iv) of
Exercise 9.7.

The last assertion follows from a standard covering map argument. In fact, if
Mn is compact, then a conformal immersion f : Mn → Sn is a covering map, hence a
diffeomorphism because Sn is simply connected for n ≥ 2. �
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16.3 Conformally flat submanifolds of low

codimension

Conformally flat Euclidean submanifolds of dimension n ≥ 4 and codimension
p ≤ n − 3 are shown to carry principal normal vector fields with multiplicity at least
n− p. On the one hand, this implies that conformally flat hypersurfaces of dimension
n ≥ 4 must have a principal curvature with multiplicity at least n − 1 at any point,
and it will be proved that the converse is also true. On the other hand, this yields a
topological condition for a compact conformally flat manifold of dimension n ≥ 4 to
admit an isometric immersion with low codimension into Euclidean space.

16.3.1 Structure of the second fundamental form

The following result makes use of the theory of flat bilinear forms to describe the
structure of the second fundamental form of a conformally flat Euclidean submanifold
of low codimension.

Theorem 16.5. If f : Mn → Rn+p, n ≥ 4, is an isometric immersion of a conformally
flat manifold, then the following assertions hold:

(i) If p ≤ n− 3, then for each x ∈ Mn there exists a principal normal η ∈ NfM(x)
such that dimEη(x) ≥ n− p ≥ 3.

(ii) If p = n − 2 and at x ∈ Mn there exists no principal normal η ∈ NfM(x) such
that dimEη(x) ≥ 2, then f has flat normal bundle at x.

Proof: Let L2 be a Lorentzian plane with inner product denoted by 〈 , 〉∼and let e1, e2

be a pseudo-orthonormal basis of L2 such that

〈e1, e1〉∼ = 0 = 〈e2, e2〉∼ and 〈e1, e2〉∼ = −1.

Given x ∈Mn, define a symmetric bilinear form γ : TxM × TxM → L2 by

γ(X, Y ) = 〈X, Y 〉e1 − L(X, Y )e2,

where L is the Schouten tensor of Mn. Endow W = L2⊕NfM(x) with the Lorentzian
inner product

〈〈(ξ, ζ), (ξ′, ζ ′)〉〉 = −〈ξ, ξ′〉∼ + 〈ζ, ζ ′〉

and let β : TxM × TxM → W be the symmetric bilinear form defined by

β = γ ⊕ αf (x).

It follows from the Gauss equation of f and the vanishing of the Weyl tensor of Mn

that β is a flat bilinear form. Since N(β) = {0}, for N(γ) = {0}, Lemmas 4.10 and
4.14 imply that either S(β) is a degenerate subspace of W or p = n− 2 and S(β) = W .
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In the latter case, since 〈β, (e2, 0)〉 = 〈 , 〉 is positive-definite, and in particular
0 = dimN(β) = dimTxM − dimW , by Theorem 5.2 there exists a basis X1, . . . , Xn of
TxM that diagonalizes β, that is,

β(Xi, Xj) = 0, 1 ≤ i 6= j ≤ n.

In particular,

〈Xi, Xj〉 = 〈〈β(Xi, Xj), (e2, 0)〉〉 = 0, 1 ≤ i 6= j ≤ n,

that is, X1, . . . , Xn is an orthonormal basis. Since X1, . . . , Xn also diagonalizes αf (x),
it follows that f has flat normal bundle at x.

Suppose now that S(β) is a degenerate subspace of W . By Lemma 4.21, and since
N(β) = {0}, there exist a nonzero light-like vector e ∈ W and a symmetric bilinear
form φ : TxM × TxM → R such that

dimN(β − φe) ≥ n− p.

Write e = ξ − ζ, where ξ ∈ L2 and ζ ∈ NfM(x). From

β(n, Y ) = φ(n, Y )e (16.8)

for all n ∈ N(β − φe) and Y ∈ TxM we obtain

φ(n, Y )〈ξ, e2〉∼ = −〈n, Y 〉.

Thus 〈ξ, e2〉 6= 0, and hence (16.8) yields

αf (n, Y ) =
1

〈ξ, e2〉∼
〈n, Y 〉ζ.

Therefore η =
1

〈ξ, e2〉∼
ζ is a principal normal of f at x with N(β − φe) ⊂ Eη(x). �

Corollary 16.6. Let f : Mn → Rn+p, n ≥ 4, be a compact conformally flat submani-
fold. If p ≤ n/2 − 1, then Mn has the homotopy type of a CW -complex with no cells
of dimension p < r < n− p. In particular, the homology groups of Mn satisfy

Hr(M ;G) = 0, p < r < n− p,

for any coefficient group G.

Proof: The statement is a direct consequence of Theorems 1.23 and 16.5, for the
assumptions on p and n imply that p ≤ n− 3 and that n− p > n/2. �

If an isometric immersion f : Mn → Rn+p, n ≥ 4, of a conformally flat manifold
has flat normal bundle, which is always the case by Theorem 16.5 if p = n − 2 and f
does not have any principal normal with multiplicity greater than one at any point,
then one has the following additional information, which we state without proof.
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Theorem 16.7. Let f : Mn → Rn+p, n ≥ 4, be an isometric immersion of a confor-
mally flat Riemannian manifold. Assume that f has flat normal bundle and a constant
number of principal normal vector fields. Then f is locally holonomic and at most one
of the principal normal vector fields has multiplicity greater than one.

For conformally flat Euclidean hypersurfaces of dimension n ≥ 4, Theorem 16.5
immediately implies the direct statement of the following result.

Corollary 16.8. Any conformally flat hypersurface f : Mn → Rn+1, n ≥ 4, has a
principal curvature with multiplicity at least n− 1 at every point.

Conversely, if a hypersurface f : Mn → Rn+1, n ≥ 3, carries a principal curvature
with multiplicity at least n− 1 at every point, then Mn is conformally flat.

Proof: To prove the converse statement assume first that n ≥ 4. By Theorem 16.3,
it suffices to show that C = 0. In terms of the endomorphism T associated with the
Ricci tensor, the Weyl tensor can be written as

C(X, Y ) = R(X, Y )− 1

n− 2
(TX ∧ Y +X ∧ TY ) +

trT

(n− 1)(n− 2)
X ∧ Y.

Using (3.7) we obtain

C(X, Y ) =AX ∧ AY +
1

n− 2
(A2X ∧ Y +X ∧ A2Y )− trA

(n− 2)
(AX ∧ Y +X ∧ AY )

+
(trA)2 − trA2

(n− 1)(n− 2)
X ∧ Y.

Let X1, . . . , Xn be an orthonormal basis of TxM such that AXj = λXj, 1 ≤ j ≤ n− 1,
and AXn = µXn. Then

trA = (n− 1)λ+ µ and trA2 = (n− 1)λ2 + µ2,

from which we conclude after a simple calculation that C = 0.
Now suppose that n = 3. We have to prove that L is a Codazzi tensor. Let L̂ be

the endomorphism of TM associated with L. It follows from (3.7) and (16.2) that L̂
has two eigenvalues λ̂ and µ̂, with the same eigendistributions Eλ and Eµ as those of
the eigenvalues λ and µ of A, respectively, which are related to λ and µ by

λ̂ =
1

2
(c+ λ2) and µ̂ =

1

2
(c− λ2 + 2λµ).

Since A is a Codazzi tensor, it follows from Exercise 1.18 that λ is constant along Eλ
and that Eλ and Eµ are umbilical distributions with mean curvature vector fields

η =
1

λ− µ
gradλ and ζ =

1

µ− λ
(gradµ)Eλ ,
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respectively. Clearly, also λ̂ is constant along Eλ̂ = Eλ. Since

λ̂− µ̂ = λ(λ− µ),

grad λ̂ = λgradλ and grad µ̂ = (µ− λ)gradλ+ λgradµ,

we have
1

λ̂− µ̂
grad λ̂ =

1

λ− µ
gradλ

and
1

µ̂− λ̂
grad µ̂ =

1

λ
gradλ+

1

µ− λ
gradµ.

Hence
1

µ̂− λ̂
(grad µ̂)Eλ̂ =

1

µ− λ
(gradµ)Eλ .

We conclude from Exercise 1.18 that L̂ is also a Codazzi tensor. �

In particular, we obtain from Theorem 9.6 the following parametric description of
the conformally flat hypersurfaces of dimension n ≥ 4, and also of those with dimension
n = 3 that carry a principal curvature of multiplicity two.

Corollary 16.9. If γ : I → Rn+1, n ≥ 3, is a unit-speed curve and r ∈ C∞(I) is
positive with ‖r′‖ < 1, then the map φ : N1

γ I → Rn+1, defined on the unit normal
bundle of γ by

φ(s, u) = γ(s)− r(s)r′(s)γ′(s)− r(s)
√

1− ‖r′(s)‖2 u, (16.9)

parametrizes, on the open subset of regular points, a conformally flat hypersurface.
Conversely, let f : Mn → Rn+1, n ≥ 3, be an orientable conformally flat hy-

persurface. If n = 3, assume further that f carries a principal curvature of constant
multiplicity 2. Then there exist a unit-speed curve γ : I → Rn+1, a positive r ∈ C∞(I)
with ‖r′‖ < 1 and a diffeomorphism θ : N1

γ I →Mn such that f ◦ θ is given by (16.9).

16.3.2 A nonparametric description

The following result sheds light on the geometrical origin of the principal normal
vector field given by Theorem 16.5 of a conformally flat submanifold f : Mn → Rn+p

of dimension n ≥ 4 and codimension p ≤ n− 2 that is free of points where the normal
curvature tensor of f vanishes if p = n− 2.

Theorem 16.10. Let f : Mn → Rn+p, n ≥ 4, p ≤ n−2, be an isometric immersion of
a conformally flat manifold free of flat points. If p = n− 2, assume further that f does
not have flat normal bundle at any point of Mn. Then each point of an open dense
subset V ⊂ Mn has an open neighborhood V0 ⊂ V for which there exist a Riemannian
manifold Nn+1 that admits both an isometric immersion F : Nn+1 → Rn+p and an
isometric embedding F̂ : Nn+1 → Ln+2, and an isometry j : V0 → F̂−1(F̂ (N) ∩ Vn+1)
such that f = F ◦ j.
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Proof: By Proposition 9.9, there exists locally an isometric immersion f̂ : Mn → Vn+1.
It was shown in the proof of Theorem 16.1 that the second fundamental form of f̂ , as
an isometric immersion into Ln+2, is given at any x ∈Mn by

αf̂ (X, Y ) = 〈X, Y 〉ζ − L(X, Y )f̂(x)

where f̂(x) stands for the position vector at x, L is the Schouten tensor of Mn and
ζ, f̂ is a pseudo-orthonormal frame of Nf̂M with 〈ζ, ζ〉 = 0 and 〈ζ, f̂〉 = −1. Notice

that the second fundamental form αf̂ (x) at each x ∈Mn is precisely the bilinear form
γ defined in the proof of Theorem 16.5, with e1 = ζ and e2 = f̂(x) in terms of the
notations therein. It follows from the proof of that result that, under the assumptions,
there exist ξ ∈ Nf̂M(x) and η ∈ NfM(x), with ‖ξ‖ = ‖η‖, and a tangent subspace

U(x) = Ef
η (x) with dimension at least n− p such that

αf (U, Y ) = 〈U, Y 〉η and αf̂ (U, Y ) = 〈U, Y 〉ξ (16.10)

for all U ∈ U(x) and Y ∈ TxM . Notice that the assumption that Mn is free of flat
points implies that η, hence ξ, is nonzero. In fact, if η = 0, then

K(U, Y ) = 〈αf (U,U), αf (Y, Y )〉 − ‖αf (U, Y )‖2

= 0

for all U ∈ U(x) and Y ∈ TxM . If X, Y ∈ U⊥(x) and U, V ∈ U(x) are orthogonal
vectors, from

K(X, Y ) +K(U, V ) = K(X, V ) +K(U, Y )

(see Exercise 16.4) it follows that x is a flat point, a contradiction.
We now show that

Afη = Af̂ξ . (16.11)

That
〈AfηY, U〉 = 〈Af̂ξY, U〉

for all U ∈ U(x) and Y ∈ TxM follows immediately from (16.10). Now, if X, Y ∈ U⊥(x)
are orthogonal, choosing U ∈ U(x) the Gauss equations for f and f̂ yield

〈αf (X, Y ), η〉 = 〈αf (X, Y ), αf (U,U)〉 − 〈αf (X,U), αf (Y, U)〉

= 〈αf̂ (X, Y ), αf̂ (U,U)〉 − 〈αf̂ (X,U), αf̂ (Y, U)〉
= 〈αf (X, Y ), ξ〉,

and the proof of (16.11) is completed.
Now let V ⊂ Mn be the open dense subset where the tangent vector subspaces

U(x) have locally constant dimension, and hence where one has smooth principal nor-

mal vector fields η ∈ Γ(NfV) and ξ ∈ Γ(Nf̂V) such that Ef
η (x) = U(x) = E f̂

ξ (x) for all
x ∈ V.
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Given x ∈ V, let V0 be an open connected neighborhood of x and let L and L̂
be the line subbundles of NfV0 and Nf̂V0 spanned by η and ξ, respectively. Then

condition (C1) in (12.9) is trivially satisfied, for L and L̂ have rank one, and (C2)
holds in view of part (iii) of Proposition 1.22. It follows from Proposition 12.5 that
there exist ruled isometric immersions F : Nn+1 → Rn+p and F̂ : Nn+1 → Ln+2 and an
isometric inclusion j : V0 → Nn+1 such that

f = F ◦ j and f̂ = F̂ ◦ j.

We can assume that V0 and Nn+1 are chosen sufficiently small so that F̂ is an isometric
embedding, in which case, taking into account that f̂ takes values in Vn+1, j is an
isometry of V0 onto F̂−1(F̂ (N) ∩ Vn+1). �

Remarks 16.11. (i) For p = 1, the map F in Theorem 16.10 becomes a local isometry.
Therefore, in this case the theorem roughly says that any conformally flat hypersurface
f : Mn → Rn+1, n ≥ 4 is locally obtained as the intersection of a flat hypersurface
F̂ : U ⊂ Rn+1 → Ln+2 with the light-cone Vn+1 ⊂ Ln+2. This remains true for a
conformally flat hypersurface f : M3 → R4 that carries a principal curvature of constant
multiplicity two.

(ii) The isometric extensions F and F̂ of f and f̂ have been constructed so as to
replace the leaves of the distribution U by the leaves of the common relative nullity
distributions of F and F̂ . In Exercise 16.8, the reader is asked to prove that, for any
pair of isometric immersions F : Nn+1 → Rn+p, p ≤ n, and F̂ : Nn+1 → Ln+2, there
exists at any x ∈ Nn+1 a subspace ∆(x) of TxN with dimension at least n− p+ 1 that
is contained in the relative nullity subspaces of both F and F̂ at x.

16.4 A parametrization for codimension two

In this section we provide an explicit parametrization of the conformally flat
submanifolds f : Mn → Rn+2 of dimension n ≥ 5 that are called generic. The latter
assumption is needed to exclude compositions of conformally flat hypersurfaces in Rn+1

with local isometric immersions of Rn+1 into Rn+2.

A conformally flat submanifold f : Mn → Rn+2, n ≥ 5, is said to be generic if
it carries a nowhere vanishing principal normal vector field of multiplicity n − 2. It
follows from part (iii) of Exercise 16.4 that Mn cannot have flat points.

Proposition 16.12. Let f : Mn → Rn+2, n ≥ 5, be a conformally flat submanifold
free of flat points. Then f is locally either generic or a composition along an open
dense subset of Mn.

Proof: By Theorem 16.5 there is an open dense subset of Mn along any connected
component of which f is either generic or carries a unit principal normal vector field η
of multiplicity ` ≥ n− 1. In the latter case, it follows from part (iii) of Exercise 16.4



490 16.5. Conformally flat hypersurfaces of dimension three

that rank Aξ ≤ 1 where ξ is a unit vector field orthogonal to η. On any open subset
where Aξ has constant rank, it is easy to verify that Aη satisfies the Gauss and Codazzi
equations for a hypersurface in Rn+1. The proof now follows from Corollary 12.27. �

Now let g : L2 → Sn+1 be a surface of first or second species with conjugate
coordinates (u, v) and set h = i ◦ g : L2 → Rn+2. Then

huv − Γ1hu − Γ2hv + Fh = 0,

where F = 〈∂u, ∂v〉. Let T ∗ denote the adjoint of T ∈ Γ(End(TL)) given by

T∂u =
1

θ
∂u and T∂v = −θ∂v,

where θ =
√
−τ and τ is a negative solution of system (11.36). For β : L2 → Rn+2,

consider the system of first order{
βu = θρhu − ρu

θ
h

βv = −ρ
θ
hv + θρvh,

(16.12)

where ρ ∈ C∞(L). It is easy to see that the integrability condition of the system is
satisfied if and only if ρ is a solution of the differential equation

ρuv + θ2Γ2ρv +
1

θ
Γ1ρu + ρF = 0.

Hence, choosing such a ρ, system (16.12) has a unique solution up to translations.

One has the following procedure to generate parametrically all generic confor-
mally flat submanifolds Mn of Rn+2, n ≥ 5, which we state without proof.

Theorem 16.13. The map ψ : N1
hL → Rn+2 defined on the unit normal bundle of h

by
ψ(y, w) = β(y)− T ∗grad ρ(y) +

√
ρ2(y)− ‖T ∗grad ρ(y)‖2w

parametrizes a generic conformally flat submanifold Mn of Rn+2.
Conversely, any generic conformally flat submanifold f : Mn → Rn+2, n ≥ 5, can

be locally parametrized this way.

16.5 Conformally flat hypersurfaces of dimension

three

According to Corollary 16.8, a conformally flat hypersurface f : Mn → Rn+1 of
dimension n ≥ 4 always has a principal curvature with multiplicity at least n − 1 at
any point. This is no longer true for n = 3, as shown by the following examples.
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Examples 16.14. (i) Let g : M2 → R3 be a umbilic-free surface with nonzero constant
Gaussian curvature and let f = g× id : M3 = M2 ×R→ R3 ×R = R4 be the cylinder
over g. Then f has three distinct principal curvatures and M3 = M2×R is conformally
flat by part (iii) of Examples 16.2.

(ii) Let g : M2 → S3 be a umbilic-free surface with constant Gaussian curvature c 6= 1
and let f : R+ ×M2 → R4 be the cone over g (see Exercise 1.5). Again, f has three
distinct principal curvatures and the metric induced on R+ ×M2 by f is a warped
product metric

ds2 = dt2 + t2dσ2,

where dσ2 is the constant curvature metric of M2. Thus ds2 is conformal to the
product metric dt̃2 + dσ2 on R+ ×M2, t̃ = −t−1, and therefore f is a conformally flat
hypersurface.

(iii) Let g : M2 → H3 be an umbilic-free surface with constant Gaussian curvature
c 6= −1. Consider the half-space model R3

+ of H3, and regard g as a surface into R3
+.

Now let f : S1 ×M2 → R4 be the rotation hypersurface having g as profile. Then f
has also three distinct principal curvatures and the metric induced on S1×M2 by f is
again a warped product metric

ds2 = ρ2dt2 + dσ̃2,

where dσ̃2 is the metric on M2 induced by g from the Euclidean metric on R3
+. Thus

ds2 = ρ2

(
dt2 +

1

ρ2
dσ̃2

)
= ρ2(dt2 + dσ2),

where dσ2 is the constant curvature metric on M2 induced by g from the hyperbolic
metric on R3

+. Thus f is a conformally flat hypersurface.

In order to give a characterization of conformally flat hypersurfaces f : M3 → R4

with three distinct principal curvatures as holonomic hypersurfaces satisfying some
additional conditions, we first prove the following result.

Proposition 16.15. Let f : M3 → R4 be an isometric immersion with three distinct
principal curvatures λ1 < λ2 < λ3. Let e1, e2, e3 be a correspondent orthonormal frame
of principal directions and let ω1, ω2, ω3 be its dual frame. The following assertions are
equivalent:

(i) M3 is conformally flat.

(ii) The relations
〈∇eiej, ek〉 = 0 (16.13)

and
(λj − λk)ei(λi) + (λi − λk)ei(λj) + (λj − λi)ei(λk) = 0 (16.14)

hold for all 1 ≤ i 6= j 6= k 6= i ≤ 3.
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(iii) The one-forms γj defined by

γj =
√
δj(λj − λi)(λj − λk)ωj, 1 ≤ j 6= i 6= k 6= j ≤ 3, (16.15)

where (δ1, δ2, δ3) = (1,−1, 1), are closed.

Proof: If M3 is conformally flat, then the Schouten tensor L is a Codazzi tensor by
Theorem 16.3. Denoting by µ1, µ2, µ3 the eigenvalues of L, then the Codazzi equations
for f and L are equivalent, respectively, to the sets of equations

ei(λj) = (λi − λj)〈∇ejei, ej〉, i 6= j, (16.16)

(λj − λk)〈∇eiej, ek〉 = (λi − λk)〈∇ejei, ek〉, i 6= j 6= k, (16.17)

and

ei(µj) = (µi − µj)〈∇ejei, ej〉, i 6= j, (16.18)

(µj − µk)〈∇eiej, ek〉 = (µi − µk)〈∇ejei, ek〉, i 6= j 6= k. (16.19)

From (16.1) we have

2µj = λiλj + λkλj − λiλk, 1 ≤ j ≤ 3. (16.20)

Substituting (16.20) into (16.19) and using (16.17) yield

(λi − λj)(λj − λk)〈∇eiej, ek〉 = 0, i 6= j 6= k.

Since λ1, λ2 and λ3 are pairwise distinct, then (16.13) follows.
Differentiating (16.20) with respect to ei gives

2ei(µj) = (λi + λk)ei(λj) + (λj − λk)ei(λi) + (λj − λi)ei(λk). (16.21)

On the other hand, from (16.16), (16.18) and (16.20) we obtain

ei(µj) = λkei(λj). (16.22)

Hence (16.14) follows from (16.21) and (16.22). This completes the proof that (i)
implies (ii).

To prove that (ii) implies (i), assume that (16.13) and (16.14) hold. In order to
show that M3 is conformally flat, again by Theorem 16.3 it suffices to prove that L
is a Codazzi tensor, that is, that (16.18) and (16.19) are satisfied. The latter is clear
from (16.13). In view of (16.16), the former is equivalent to

ei(µj)(λi − λj) = ei(λj)(µi − µj), i 6= j. (16.23)

It follows from (16.20) that
µi − µj = λk(λi − λj).

Since (16.14) and (16.21) give (16.22), then (16.23) holds.
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We now prove the equivalence between (ii) and (iii), that is, that (16.13) and
(16.14) are precisely the conditions for the one-forms γj, 1 ≤ j ≤ 3, to be closed. Set

xj =
√
δj(λj − λi)(λj − λk), 1 ≤ j ≤ 3,

so that γj = xjωj. We have

dγj(ei, ek) = eiγj(ek)− ekγj(ei)− γj([ei, ek])
= xj(〈∇ekei, ej〉 − 〈∇eiek, ej〉) (16.24)

if 1 ≤ i 6= j 6= k 6= i ≤ 3. Therefore, if (16.13) holds then

dγj(ei, ek) = 0 (16.25)

for all 1 ≤ i 6= j 6= k 6= i ≤ 3. Conversely, if (16.25) is satisfied, then

〈∇eiej, ek〉 = −〈∇eiek, ej〉 = −〈∇ekei, ej〉 = 〈∇ekej, ei〉 = 〈∇ejek, ei〉 = −〈∇ejei, ek〉
= −〈∇eiej, ek〉

by (16.24), hence (16.13) holds.
On the other hand, using (16.16) we obtain

dγj(ei, ej) = eiγj(ej)− ejγj(ei)− γj([ei, ej])
= ei(xj) + xj〈∇ejei, ej〉

= ei(xj) +
xj

λi − λj
ei(λj).

Thus γj is closed if and only if

ei(xj) =
xj

λj − λi
ei(λj), 1 ≤ i 6= j ≤ 3,

or equivalently, if and only if

ei(δjx
2
j)(λj − λi) = 2δjx

2
jei(λj), 1 ≤ i 6= j ≤ 3,

which is easily checked to be the same as (16.14). �

Theorem 16.16. Let f : M3 → R4 be a holonomic hypersurface whose associated pair
(v, V ) satisfies

〈v, v〉 = 0, 〈V, v〉 = 0 and 〈V, V 〉 = 1 (16.26)

with respect to an inner product of Lorentzian signature. Then M3 is conformally flat
and f has three distinct principal curvatures.

Conversely, any conformally flat hypersurface f : M3 → R4 with three distinct
principal curvatures is locally a holonomic hypersurface whose associated pair (v, V )
satisfies (16.26).
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Proof: Let f : M3 → R4 be a holonomic hypersurface whose associated pair (v, V )
satisfies (16.26). We may assume that

3∑
i=1

δiv
2
i = 0,

3∑
i=1

δiviVi = 0 and
3∑
i=1

δiV
2
i = 1 (16.27)

where (δ1, δ2, δ3) = (1,−1, 1). That (16.13) holds follows from (1.22). We now prove
that the principal curvatures λi = Vi/vi of f , 1 ≤ i ≤ 3, satisfy (16.14). We can write
the left-hand side of (16.14) as

1

v2
i

(
Vj
vj
− Vk
vk

)(
vi
∂Vi
∂ui
− Vi

∂vi
∂ui

)
+

1

v2
j

(
Vi
vi
− Vk
vk

)(
vj
∂Vj
∂ui
− Vj

∂vj
∂ui

)
+

1

v2
k

(
Vj
vj
− Vi
vi

)(
vk
∂Vk
∂ui
− Vk

∂vk
∂ui

)
. (16.28)

Differentiating (16.26) we obtain

δi∂vi/∂ui + δjhijvj + δkhikvk = 0 (16.29)

and
δi∂Vi/∂ui + δjhijVj + δkhikVk = 0, 1 ≤ i 6= j 6= k 6= i ≤ 3. (16.30)

Substituting (16.29) and (16.30) into (16.28) and using (i) and (iv) of (1.26), it follows
that (16.28) vanishes if and only if

hijvk(vjVi − viVj) (δjvj(vkVj − vjVk) + δivi(vkVi − viVk))
−hikvj(vkVi − viVk) (δkvk(vjVk − vkVj) + δivi(vjVi − viVj)) = 0.

Thus it suffices to observe that the first two relations in (16.26) give

δkvk(vjVk − vkVj) + δivi(vjVi − viVj) = vj(δiviVi + δjvjVj + δkvkVk)

= 0

and

δjvj(vkVj − vjVk) + δivi(vkVi − viVk) = vk(δiviVi + δjvjVj + δkvkVk)

= 0.

It remains to show that the principal curvatures of f are pairwise distinct. Since
v = (v1, v2, v3) is a null vector and V = (V1, V2, V3) is a unit space-like vector orthogonal
to v, we may write

V =
ρ

v2

v +
λ

v2

(−v3, 0, v1)

where λ = ±1 and ρ ∈ C∞(M). This is equivalent to

V1 =
1

v2

(V2v1 − λv3) and V3 =
1

v2

(V2v3 + λv1).
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In particular,

Vivj − Vjvi = −λvk, 1 ≤ i < j ≤ 3 and k 6∈ {i, j},

hence λi − λj 6= 0 for 1 ≤ i 6= j ≤ 3.
Conversely, assume that f : M3 → R4 is a conformally flat hypersurface with

three distinct principal curvatures λ1 < λ2 < λ3. Let {e1, e2, e3} be a correspondent
orthonormal frame of principal directions and let ω1, ω2, ω3 be its dual frame. By
Proposition 16.15, the one-forms γj, 1 ≤ j ≤ 3, given by (16.15), are closed. Thus each
point x ∈M3 has an open neighborhood V where one can find functions uj ∈ C∞(V ),
1 ≤ j ≤ 3, such that duj = γj. Choosing V small enough, Φ = (u1, u2, u3) is a diffeo-
morphism of V onto an open subset U ⊂ R3, that is, u1, u2, u3 define local coordinates
on V . From

δij = duj(∂/∂ui) = xjωj(∂/∂ui)

it follows that ∂/∂uj = vjej, 1 ≤ j ≤ 3, with

vj =
1√

δj(λj − λi)(λj − λk)
·

Now notice that

3∑
j=1

δjv
2
j =

3∑
i,k 6=j=1

1

(λj − λi)(λj − λk)

= 0,

that

3∑
j=1

δjvjVj =
3∑
j=1

δjλjv
2
j

=
3∑

i,k 6=j=1

λj
(λj − λi)(λj − λk)

= 0

and that

3∑
j=1

δjV
2
j =

3∑
j=1

δjλ
2
jv

2
j

=
3∑

i,k 6=j=1

λ2
j

(λj − λi)(λj − λk)

= 1.

It follows that (v, V ) satisfies (16.26). �
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16.6 Notes

The classical characterization of conformally flat manifolds in terms of the Weyl
and Schouten tensors in Theorem 16.3 is due to Schouten [313]. The fact that con-
formally flat manifolds are precisely those Riemannian manifolds that admit locally
(globally, if simply connected) an isometric immersion with codimension one into the
light-cone of Lorentzian space, and that this yields Schouten’s characterization of con-
formally flat manifolds, was shown by Asperti-Dajczer [21], although the first state-
ment goes back to Brinkmann [42]. Theorem 16.4 on global conformal immersions into
Sn of an n-dimensional simply connected conformally flat manifold is due to Kuiper
[228]. A classification of conformally flat warped product manifolds with arbitrarily
many factors, extending the classification in part (iv) of Examples 16.2 for the case of
warped products with two factors, was independently obtained by Tojeiro [334] and
Brozos-Garćıa Ŕıo-Vázquez [43].

The assertion in part (i) of Theorem 16.5 on the existence of principal normal
vectors of multiplicity at least n − p at any point of a Euclidean conformally flat
submanifold of dimension n ≥ 4 and codimension p ≤ n − 3 was proved by Moore
[256], where he also derived Corollary 16.6 on the topology of such submanifolds. The
assertion in part (ii) of Theorem 16.5 does not seem to be part of the literature.

Corollary 16.8 on conformally flat hypersurfaces was already known to Cartan
[65], who proved with his own methods that a conformally flat Euclidean hypersurface
of dimension n ≥ 4 is locally an envelope of a one-parameter family of hyperspheres. For
a class of Euclidean hypersurfaces that contain the conformally flat ones, called almost
conformally flat hypersurfaces, see Onti-Vlachos [281]. Restrictions on the topology
of almost conformally flat Euclidean submanifolds were given by Onti-Vlachos [282].
Theorem 16.7 on conformally flat submanifolds with flat normal bundles is due to
Dajczer-Onti-Vlachos [124], generalizing previous results by Donaldson-Terng [164].

The explicit parametrization in Corollary 16.9 of conformally flat Euclidean hy-
persurfaces of dimension n ≥ 4, as well as of those with dimension three that have a
principal curvature with multiplicity two, is due to do Carmo-Dajczer-Mercuri [57]. It
was used as part of the tools needed for the description of compact conformally flat
Euclidean hypersurfaces, which is roughly as follows: a compact conformally flat Eu-
clidean hypersurface Mn is diffeomorphic to a sphere Sn with b1(M) handles attached,
where b1(M) is the first Betti number of Mn. Geometrically, it is made up by (per-
haps infinitely many) non-umbilical submanifolds of Rn+1 that are foliated by complete
round (n− 1)-spheres, and are joined through their boundaries to the following three
types of umbilical submanifolds of Rn+1: (a) an open piece of an n-sphere or an n-plane
bounded by a round (n− 1)-sphere, (b) a round (n− 1)-sphere, (c) a point.

Compact conformally flat Euclidean hypersurfaces were also studied by Pinkall
[294] and Suyama [319]. Pinkall proved that every compact conformally flat hypersur-
face of dimension at least four of Euclidean space is conformally equivalent to a classical
Schottky manifold. Classical Schottky manifolds are constructed by starting with the
standard sphere Sn, closed round balls B1, . . . , Bk and B̃1, . . . , B̃k which are pairwise
disjoint, and Moebius transformations f1, . . . , fk : Sn → Sn such that fi(B

0
i ) = Snr B̃i,
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1 ≤ i ≤ k, and then taking the quotient space obtaining from Sn r ∪(B0
i ∪ B̃0

i ) by
identifying ∂Bi with ∂B̃i via fi, 1 ≤ i ≤ k, in the canonical way. Suyama constructed
explicit examples of compact conformally flat hypersurfaces in the sphere Sn+1 without
umbilical points and which are diffeomorphic to Sn−1 × S1, n > 3. He then derived
an explicit conformal correspondence between these hypersurfaces and some classical
Schottky manifolds using Pinkall’s method.

The nonparametric description in Theorem 16.10 of Euclidean conformally flat
submanifolds Mn of dimension n ≥ 4 and codimension p ≤ n−3 free of flat points was
obtained by Dajczer-Florit [94], where also Theorem 16.13, that is, the parametrization
of Euclidean conformally flat submanifolds of dimension n ≥ 5 and codimension two,
was derived.

The parametric procedure to generate the Euclidean conformally flat submani-
folds Mn of dimension n ≥ 5 and codimension two, given by Theorem 16.13, is due to
Dajczer-Florit [94]. In that paper, it is shown that these submanifolds can be divided
into three classes, namely, the surface-like ones, those which admit locally a continuous
one-parameter family of isometric deformations, and those which are locally isometri-
cally rigid. In addition, explicit examples of elements in the first and second classes are
provided. Examples belonging to the third class were constructed by Dajczer-Florit
[96], each of which is determined by two curves and two functions in one variable. They
can be obtained by a geometric procedure, namely, as intersections starting from two
flat hypersurfaces. It was shown in [94] that the claims on conformally flat submanifolds
in codimension two made in [272] and [273] are not correct.

The existence of conformally flat Euclidean hypersurfaces of dimension three with
three distinct principal curvatures was already observed by Cartan [65], who provided
a somewhat mysterious characterization of them in terms of the integrability of six
umbilic complex distributions on the hypersurface (see Lafontaine [231] for details).
Hertrich–Jeromin [219] proved the closedness of the “conformal fundamental forms” γj
in our Proposition 16.15. From this he derived the existence of a Guichard net on every
conformally flat Euclidean hypersurface of dimension three with three distinct principal
curvatures, that is, local coordinates u1, u2, u3 with respect to which the metric of the
hypersurface can be written as

ds2 =
3∑
i=1

v2
i du

2
i ,

with, say, v2
2 = v2

1 + v2
3. Then he used the conformal invariance of this condition to

associate with each such hypersurface a Guichard net in R3, that is, a conformally flat
metric on an open subset of R3 satisfying the Guichard condition, which is unique up to
a Moebius transformation. He also proved in [219] (see also Section 2.4.6 in [220]) that
the converse holds, that is, that each conformally flat 3-metric satisfying the Guichard
condition gives rise to a unique (up to a Moebius transformation) conformally flat
hypersurface in R4. In this way, the classifications of conformally flat Euclidean hyper-
surfaces of dimension three with three distinct principal curvatures and of conformally
flat 3-metrics satisfying the Guichard condition are equivalent problems.
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This point of view was pursued in some subsequent papers; see, for instance,
Hertrich–Jeromin-Suyama [221] (respectively, Hertrich–Jeromin-Suyama [222]), where
a classification was given of conformally flat Euclidean hypersurfaces associated with
cyclic (respectively, Bianchi-type) Guichard nets in R3, that is, Guichard nets in R3

for which one of the coordinate line families consists of circular arcs (respectively, the
coordinate surfaces have constant sectional curvature).

The understanding of the space of conformally flat 3-metrics that satisfy the
Guichard condition has had some significant advances in Burstall-Hertrich–Jeromin-
Suyama [47]. Namely, for a conformally flat 3-metric with the Guichard condition
in the interior of the space, an evolution of orthogonal Riemannian 2-metrics with
constant Gauss curvature −1 was determined; conversely, for a 2-metric belonging to
a certain class of orthogonal analytic 2-metrics with constant Gauss curvature −1, a
one-parameter family of conformally flat 3-metrics with the Guichard condition was
determined as evolutions issuing from the 2-metric.

However, it is generally not an easy task to translate results on conformally flat
3-metrics satisfying the Guichard condition to corresponding ones for their associated
conformally flat Euclidean hypersurfaces, making even the construction of further ex-
amples of conformally flat Euclidean hypersurfaces in R4 with three distinct principal
curvatures a challenging problem.

The characterization of conformally flat Euclidean hypersurfaces of dimension
three with three distinct principal curvatures in Theorem 16.16 is due to Canevari-
Tojeiro [52]. It allowed to derive in Canevari-Tojeiro [53] a Ribaucour transformation
for this class of hypersurfaces, providing a process to generate, from a given element
of the class, a family of new ones, which depend on the solutions of a linear system
of PDEs. In particular, explicit parametrizations of new examples of such hypersur-
faces were given. On the other hand, making use of Theorem 16.16, the existence
of precisely a one-parameter family of minimal conformally flat Euclidean hypersur-
faces of dimension three with three distinct principal curvatures was established by
do Rei Filho-Tojeiro [299], whereas conformally flat Euclidean hypersurfaces of dimen-
sion three with three distinct principal curvatures and constant scalar curvature were
classified by do Rei Filho-Tojeiro [300].

The result in Exercise 16.6 was obtained by Dajczer-Florit-Tojeiro [104]. The
assertion in part (ii) of Exercise 16.11 under the assumptions in (a) and (b) were
taken from Moore-Morvan [260] and Chen-Verstraelen [84], respectively. Related to
Exercise 16.11, it was shown by Dajczer-Onti-Vlachos [124] that if f : Mn → Rn+p,
n ≥ 4, is an isometric immersion with flat normal bundle of a conformally flat manifold
having a constant number of principal normal vector fields, then one of them can have
multiplicity greater than one only if p ≥ n−m and f is quasiumbilical.

16.7 Exercises

Exercise 16.1. Prove that any conformally flat Einstein manifold has constant sec-
tional curvature.
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Exercise 16.2. Show that Theorem 16.5, and hence Corollary 16.8, remains valid if
the ambient space Rn+p is replaced by an arbitrary conformally flat manifold. Show
that the same is true for Theorem 16.7.

Hint: Use Exercise 9.2.

Exercise 16.3. LetMn, n ≥ 4, be a conformally flat Riemannian manifold. Show that
the sectional curvature along a plane spanned by the orthonormal vectors X, Y ∈ TxM
at x ∈Mn is given in terms of the Schouten tensor L by

K(X, Y ) = L(X,X) + L(Y, Y ).

Exercise 16.4. Let Mn, n ≥ 4, be a Riemannian manifold. Show that the following
assertions are equivalent:

(i) Mn is conformally flat.

(ii) At any x ∈ Mn, and for every four-dimensional subspace S ⊂ TxM , there is a
constant C(S) such that

K(σ1) +K(σ2) = C(S)

for any two mutually orthogonal 2-planes σ1, σ2 spanning S.

(iii) At any x ∈Mn, the condition

K(X1, X2) +K(X3, X4) = K(X1, X3) +K(X2, X4)

holds for every quadruple of pairwise orthogonal vectors X1, X2, X3, X4 ∈ TxM .

Exercise 16.5. Let f : M3 → R4 be a conformally flat hypersurface with three dis-
tinct principal curvatures. If one of the principal curvatures is everywhere vanishing,
show that there exists a conformal transformation T of R4 such that T (f(M)) is an
open subset of a hypersurface as in parts (i) or (ii) of Examples 16.14.

Hint: Let λ1, λ2 and λ3 be the principal curvatures of f and let e1, e2, e3 be a correspon-
dent orthonormal frame of principal directions. Use the Codazzi equation and (16.13)
to show that

∇eiei =
∑
j 6=i

ej(λi)

λi − λj
ej. (16.31)

If, say, λ3 = 0, show that (16.14) yields

λ2e3(λ1) = λ1e3(λ2).

Conclude from (16.31) that the distribution spanned by e1 and e2 is umbilic in M3,
and then apply Proposition 7.6.
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Exercise 16.6. Let f : M3 → R4 be a conformally flat hypersurface with three dis-
tinct principal curvatures. Assume that (the images by f of) the lines of curvature
correspondent to one of the principal curvatures are segments of circles or straight lines
in R4. Show that there exists a conformal transformation T of R4 such that T (f(M))
is an open subset of a hypersurface as in one of Examples 16.14.

Hint: With notations as in the preceding exercise, if, say, e3(λ3) = 0, argue as in the
hint of that exercise to show that the distribution spanned by e1 and e2 is umbilic in
M3, and then apply Corollary 9.33.

Exercise 16.7. Let f : Mn → Rm be a conformally flat submanifold with flat
normal bundle and a constant number of principal normal vector fields η1, . . . , η` such
that Eη1 , . . . , Eη` have constant rank. Show that E⊥ηk is integrable if the rank of Eηk is
at least 2.

Hint: Use part (iii) of Exercise 16.4, the assumption on the rank of Eηk and the Gauss
equation to show that

〈ηi − ηk, ηj − ηk〉 = 0

for any pair i 6= j with i 6= k and j 6= k. Then use Exercise 1.40.

Exercise 16.8. Let F : Nn+1 → Rn+p, p ≤ n, and F̂ : Nn+1 → Ln+2 be isometric
immersions of a Riemannian manifold. Show that at each x ∈ Nn+1 there exists a
subspace of TxN with dimension at least n − p + 1 that is contained in the relative
nullity subspaces of both F and F̂ at x.

Exercise 16.9. Let γ : I → Rn+1, n ≥ 3, be a unit-speed curve and let r ∈ C∞(I)
be a positive smooth function such that ‖r′‖ < 1. Show that a point (t, u) ∈ N1

γ I is a
singular point for the map φ : N1

γ I → Rn+1 defined by (16.9) if and only if the functions

S = rr′/‖γ′‖2 and R = r
√

1− (r′/‖γ′‖)2

satisfy

1− S ′ = 1

‖γ′‖2
(R〈u, γ′′〉+ S〈γ′, γ′′〉)

and
R′ = S〈γ′′, u〉.

Moreover, show that the first equation implies the second, and that they are equivalent
if S ′ 6= 0 (that is, r′ 6= 0).

Exercise 16.10. A Riemannian manifold Mn, n ≥ 3, is said to satisfy the axiom
of conformally flat hypersurfaces if for every point x ∈ Mn and every hyperplane
H ⊂ TxM there exists a conformally flat hypersurface S of Mn passing through x
such that TxS = H. Show that if Mn, n ≥ 4, admits an isometric immersion as a
hypersurface into the Lorentz space Ln+1, then Mn satisfies the axiom of conformally
flat hypersurfaces.
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Exercise 16.11. An isometric immersion f : Mn → M̃n+p is said to be quasiumbilical
at x ∈ Mn if there exists an orthonormal basis ξ1, . . . , ξp of NfM(x) such that the
shape operator Aξj has an eigenvalue of multiplicity at least n − 1 for all 1 ≤ j ≤ p.
If f is quasiumbilical at any x ∈ Mn, then it is said to be a quasiumbilical isometric
immersion.

Show that, if f : Mn → Rn+p, n ≥ 4, is an isometric immersion, then the following
assertions hold:

(i) Mn is conformally flat if f is quasiumbilical,

(ii) f is quasiumbilical if Mn is conformally flat and either of the conditions below is
satisfied:

(a) p ≤ min{4, n− 3};
(b) p ≤ n− 3 and f has flat normal bundle.

Hint for (ii): If f : Mn → Rn+p, with n ≥ 4 and p ≤ n − 3, is a conformally flat
submanifold, for each x ∈ Mn let η ∈ NfM(x) be the principal normal at x with
dimEη(x) ≥ n−p given by Theorem 16.5. Set λ = ‖η‖. IfX1, . . . , Xn is an orthonormal
basis of TxM , use the formula

Ric(Y,X) = 〈α(Y,X), nH〉 −
n∑
i=1

〈α(Y,Xi), α(X,Xi)〉

to show that
Ric(T,X) = (n− 1)λ2〈T,X〉

for all T ∈ Eη(x) and X ∈ TxM . Then use the definition of L to obtain

L(T,X) =
1

2
λ2〈T,X〉

for all T ∈ Eη(x) and X ∈ TxM . Prove first that this implies that

L(Y,X)− λ〈α(Y,X), ξ〉+
1

2
λ2〈Y,X〉 = 0

for Y = T ∈ Eη(x) and X ∈ TxM , and then for all Y,X ∈ TxM by using that

L(T, T ) + L(X,X) = K(T,X)

= 〈α(T, T ), α(X,X)〉

for all T ∈ Eη(x) and X ∈ TxM . Conclude that β : TxM × TxM → NfM(x) given by

β(X, Y ) = α(X, Y )− 〈X, Y 〉η

is a flat bilinear form. If N(β) = n− dimS(β), use Theorem 5.2. Now prove that one
always has N(β) = n−dimS(β) if f has flat normal bundle, and if N(β) > n−dimS(β)
and p ≤ 4, then the conclusion follows by applying the result due to Cartan, given in
part (ii) of Remark 5.4.
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Exercise 16.12. Prove that an isometric immersion f : Mn → M̃n+p being quasium-
bilical is a conformal invariant, that is, it is preserved under a conformal change of the
metric of the ambient space. Conclude that Exercise 16.11 remains true if in assertions
(i) and (ii) the ambient space Rn+p is replaced by any conformally flat manifold.



Chapter 17

Conformally deformable
hypersurfaces

This chapter is devoted to provide a modern presentation of Cartan’s classification
of Euclidean hypersurfaces Mn of dimension n ≥ 5 that admit nontrivial conformal
deformations. Besides conformally flat hypersurfaces, the simplest examples are those
that are conformally congruent to cylinders and rotation hypersurfaces over surfaces
in R3, and to cylinders over three-dimensional hypersurfaces of R4 that are cones over
surfaces in S3. These examples are called conformally surface-like hypersurfaces.

Other examples are the conformally ruled hypersurfaces, which are foliated by
round spheres of codimension one. But the most interesting examples are envelopes
of some two-parameter congruences of hyperspheres, which are determined by certain
space-like surfaces in the de Sitter space Sn+2

1,1 . Our approach is to determine which
of those surfaces give rise to conformally deformable hypersurfaces that are neither
conformally surface-like nor conformally ruled.

17.1 Cartan hypersurfaces

Let f : Mn → Rn+1, n ≥ 5, be an isometric immersion whose principal curvatures
have multiplicity at most n − 2 at any point. Assume that Mn admits a conformal
immersion f̃ : Mn → Rn+1 that is not conformally congruent to f on any open subset
of Mn. It follows from Corollary 9.25 that f has a principal curvature with constant
multiplicity n− 2. For the convenience of the reader, we provide below a direct proof
of that result as well as of some additional facts needed in the classification of the
conformally deformable hypersurfaces.

Proposition 17.1. Let f : Mn → Rn+1, n ≥ 5, be an orientable hypersurface whose
principal curvatures have multiplicity at most n − 2 at any point. Assume that there
exists a conformal immersion f̃ : Mn → Rn+1 that is not conformally congruent to f
on any open subset of Mn, and let F̃ = I(f̃) : Mn → Vn+2 ⊂ Ln+3 be its isometric
light-cone representative. Then the following assertions hold:
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(i) At each point y of a closed subset V ⊂ Mn, there exists a pseudo-orthonormal
basis ζ1, ζ2, F̃ of NF̃M(y) with

〈ζ2, ζ2〉 = 0, 〈ζ2, F̃ 〉 = 1 and ζ1 ∈ L = span{ζ2, F̃}⊥

such that
αF̃L(X, Y ) = −〈X, Y 〉ζ2 (17.1)

for all X, Y ∈ TyM . Moreover, kerAfN ∩ kerAF̃ζ1 has dimension n − 2, where N
is a unit normal vector field.

(ii) For each x ∈ U = Mn\V there exist µ ∈ NF̃M(x) of unit length and a flat bilinear
form γ : TxM × TxM → span{µ}⊥ such that

αF̃ (X, Y ) = 〈AfNX, Y 〉µ+ γ(X, Y )

for all X, Y ∈ TxM . Moreover, 〈µ, F̃ 〉 6= 0, the function λ = −1/〈µ, F̃ 〉 is a
principal curvature of f and ∆ = N(γ) is an (n − 2)-dimensional eigenspace of
both λ and a principal curvature λ̃ of f̃ .

Proof: The normal bundle of F̃ splits orthogonally as

NF̃M = Ψ∗Nf̃M ⊕ L2,

where Ψ is given by (9.1) and L2 is a Lorentzian plane bundle having the position
vector field F̃ as a section. Thus there exist unique sections ξ and η of L2 satisfying

〈ξ, ξ〉 = −1, 〈ξ, η〉 = 0 and 〈η, η〉 = 1

such that
F̃ = ξ + η.

At any x ∈ Mn, endow W = NfM(x)⊕NF̃M(x) with the inner product of signature
(2, 2) given by

〈〈 , 〉〉NfM⊕NF̃M = 〈 , 〉NfM − 〈 , 〉NF̃M .

The bilinear form
β = αf ⊕ αF̃ : TxM × TxM → W

is flat by the Gauss equations of f and F̃ . Moreover, N(β) = {0} since

〈αF̃ (X, Y ), F̃ 〉 = −〈X, Y 〉 (17.2)

for all X, Y ∈ TxM . It follows from the Main lemma 4.22 for (p, q) = (2, 2) that the
subspace S(β) is degenerate, that is, the isotropic vector subspace

Ω = S(β) ∩ S(β)⊥

is nontrivial.
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Since the metric 〈〈 , 〉〉 is positive definite on W1 = span{N, ξ} and negative def-

inite on W2 = span{Ψ∗N f̃ , η}, where N f̃ is a unit normal vector field to f̃ , then the
orthogonal projections P1 : W → W1 and P2 : W → W2 map Ω isomorphically onto
P1(Ω) and P2(Ω), respectively.

Assume first that Ω has dimension two on some open subset U ⊂ Mn, that is,
the bilinear form β is null at any point of U . The projections P1 and P2 then map Ω
isomorphically onto W1 and onto W2, respectively, for all x ∈ U . Let ζ ∈ Ω be such
that ξ = P1(ζ). Then ζ is an isotropic vector contained in S(αF̃ )⊥. Since F̃ 6∈ Ω in view
of (17.2), the vectors ζ and F̃ are linearly independent, and hence span a Lorentzian
plane inNF̃M(x). Choosing a unit vector ζ1 ∈ NF̃M(x) spanning {ζ, F̃}⊥ and denoting
ζ2 = 〈F̃ , ζ〉−1ζ, we obtain a pseudo-orthonormal basis ζ1, ζ2, F̃ of NF̃M(x) such that
(17.1) holds. Moreover, since β is null so is

β̂ = αf ⊕ 〈αF̃ , ζ1〉ζ1 : TxM × TxM → span{N, ζ1}.

Hence AF̃ζ1 = AfN , after changing the sign of ζ1 if necessary. Summarizing, we have

αF̃ (X, Y ) = 〈AfNX, Y 〉ζ1 − 〈X, Y 〉ζ2 (17.3)

for all X, Y ∈ TxM .
It is easily seen from (17.3) that ζ1 and ζ2 define smooth vector fields on U . We

now prove that they are parallel in the normal connection of F̃ .
Comparing the Codazzi equations of f and F̃ for AfN = AF̃ζ1 , we obtain

AF̃∇⊥Xζ1
Y = AF̃∇⊥Y ζ1

X (17.4)

for all X, Y ∈ X(U). Since F̃ is parallel in the normal connection, then

∇⊥Xζ1 = 〈∇⊥Xζ1, ζ2〉F̃

for all X ∈ X(U). We conclude from (17.4) that ζ1 is parallel, and hence ζ1, ζ2, F̃ is a
parallel normal frame.

Now set
F = I(f) = Ψ ◦ f : Mn → Vn+2 ⊂ Ln+3,

regarded as a map into Ln+3. Then

αF (X, Y ) = 〈AfNX, Y 〉Ψ∗N − 〈X, Y 〉w (17.5)

for all X, Y ∈ X(U). Define a vector bundle isometry τ : NFU → NF̃U by setting

τ(Ψ∗N) = ζ1, τ(w) = ζ2 and τ(F ) = F̃ .

Then αF̃ = τ ◦αF from (17.3) and (17.5). Moreover, since {Ψ∗N,w, F} is also parallel
in the normal connection of F , it follows that τ is parallel. By the Fundamental theorem
of submanifolds, there exists T ∈ O1(n+ 3) such that F̃ = T ◦ F and T∗|NFU = τ . By
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Proposition 9.18, there is a conformal transformation ν of Rn+1 such that f̃ |U = ν◦f |U .
This contradicts the assumption and proves that Ω must have dimension one at every
point of Mn.

Assume that P1(Ω) = span{ξ} at some point x ∈ Mn. Arguing as before, we
obtain a pseudo-orthonormal basis ζ1, ζ2, F̃ of NF̃M(x) such that (17.1) holds, but now
the bilinear form

β̂ = αf ⊕ 〈αF̃ , ζ1〉ζ1 : TxM × TxM → span{N, ζ1}

is flat and S(β̂) is nondegenerate. Therefore N(β̂) has dimension at least n− 2. Since

N(β̂) = kerAfN ∩ kerAF̃ζ1 ,

we must have dimN(β̂) = n− 2 and

kerAfN = N(β̂) = kerAF̃ζ1

by the assumption that f does not have a principal curvature with multiplicity greater
than n − 2. Therefore 0 is a principal curvature of f with multiplicity at least n − 2
and N(β̂) is a common eigenspace of 0 and a principal curvature λ̃ of f̃ .

Suppose now that P1(Ω) 6= span{ξ}. This is equivalent to requiring the orthog-
onal projection Π1 : W → NfM to map Ω isomorphically onto NfM , say, N = Π1(ν)
for some ν ∈ Ω. Set µ = Π2(ν), where Π2 : W → NF̃M is the orthogonal projection

onto NF̃M . Then AF̃µ = AfN , for N + µ = ν ∈ Ω ⊂ S(β)⊥, and hence

αF̃ (X, Y ) = 〈AfNX, Y 〉µ+ γ(X, Y )

where γ : TxM × TxM → {µ}⊥ is a flat bilinear form such that S(γ) is nondegenerate.
By Lemma 4.14, the subspace ∆ = N(γ) has dimension at least n− 2. Moreover,

−〈T,X〉 = 〈αF̃ (T,X), F̃ 〉

= 〈µ, F̃ 〉〈αF̃ (T,X), µ〉
= 〈µ, F̃ 〉〈AfNT,X〉

for all T ∈ ∆ and X ∈ TxM . This implies that 〈µ, F̃ 〉 6= 0, and that λ = −1/〈F̃ , µ〉 is a
principal curvature of f whose eigenspace contains ∆. By the assumption that f does
not have a principal curvature with multiplicity greater than n − 2, we conclude that
dim ∆ = n− 2 and that ∆ is the common eigenspace of λ and a principal curvature λ̃
of f̃ . �

As a consequence of Proposition 17.1, if f : Mn → Rn+1, n ≥ 5, is an isometric
immersion that satisfies its assumptions, then f has, in particular, a principal curvature
λ with constant multiplicity n − 2. We call f a Cartan hypersurface if, in addition,
λ is nowhere vanishing. In the remaining of this chapter we determine which oriented
hypersurfaces f : Mn → Rn+1, n ≥ 5, carrying a nowhere vanishing principal curvature
with constant multiplicity n− 2, are indeed Cartan hypersurfaces.
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17.2 The first step

This section contains the first step towards the classification of Cartan hypersur-
faces f : Mn → Rn+1 that are not conformally surface-like on any open subset of Mn.
It is shown that the existence of a conformal immersion f̃ : Mn → Rn+1 that is not
conformally congruent to f on any open subset of Mn is equivalent to the existence
of a tensor on Mn satisfying several properties, which come from putting together the
Gauss and Codazzi equations of f and the Gauss, Codazzi and Ricci equations of the
isometric light-cone representative of f̃ .

Let f : Mn → Rn+1 be a hypersurface that carries a principal curvature of con-
stant multiplicity n− 2 with eigenbundle ∆, and let

C : Γ(∆)→ Γ(End(∆⊥))

be its splitting tensor. As in the case in which ∆ is the relative nullity distribution,
the hypersurface f is said to be hyperbolic (respectively, parabolic or elliptic) if there
exists J ∈ Γ(End(∆⊥)) satisfying the following conditions:

(i) J2 = I (respectively, J2 = 0, with J 6= 0, and J2 = −I),

(ii) ∇h
TJ = 0 for all T ∈ Γ(∆),

(iii) CT ∈ span{I, J} for all T ∈ Γ(∆).

Lemma 17.2. Let f : Mn → Rn+1 be an oriented hypersurface with shape operator A
with respect to a unit normal vector field N . Assume that f carries a nowhere vanishing
principal curvature λ of constant multiplicity n − 2 and let ∆ denote its eigenbundle.
Assume also that f is not conformally surface-like on any open subset of Mn. If f is
a Cartan hypersurface, then it is either hyperbolic, parabolic or elliptic with respect to
J ∈ Γ(End(∆⊥)) on each connected component of an open dense subset of Mn, and
there exists D ∈ Γ(End(∆⊥)) such that:

(i) D ∈ span{I, J}, and D 6= ±I everywhere,

(ii) ∇h
TD = 0 for all T ∈ Γ(∆),

(iii) detD = 1,

(iv) (∇X(A− λI)D)Y − (∇Y (A− λI)D)X = X ∧ Y (Dtgradλ)

for all X, Y ∈ Γ(∆⊥),

(v) 〈(∇YD)X − (∇XD)Y, gradλ〉+ Hessλ(DX, Y )− Hessλ(X,DY )

= λ(〈AX, (A− λI)DY 〉 − 〈(A− λI)DX,AY 〉)
for all X, Y ∈ Γ(∆⊥).
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Conversely, if Mn is simply connected, the hypersurface is either hyperbolic,
parabolic or elliptic with respect to J ∈ Γ(End(∆⊥)) and there exists a tensor D ∈
Γ(End(∆⊥)) satisfying conditions (i) to (v) above, then f is a Cartan hypersurface.
Moreover, two such tensors that do not coincide up to sign on any open subset of Mn

give rise to conformal immersions of Mn into Rn+1 that are not conformally congruent
on any open subset of Mn.

Proof: Let f̃ : Mn → Rn+1 be a conformal immersion that is not conformally congruent
to f on any open subset of Mn, and let F̃ = Iw(f̃) : Mn → Vn+2 ⊂ Ln+3 be its isometric
light-cone representative. Since f is Cartan, only part (ii) of Proposition 17.1 occurs
at any point. Thus there exist µ ∈ Γ(NF̃M) of unit length and a smooth flat bilinear
form γ : X(M)× X(M)→ {µ}⊥ such that

αF̃ (X, Y ) = 〈AX, Y 〉µ+ γ(X, Y )

for all X, Y ∈ X(M). Since µ spans the line bundle Π2(Ω) defined in the proof of Propo-
sition 17.1, it is indeed smooth. Moreover, λ = −1/〈µ, F̃ 〉 is the principal curvature of
f with multiplicity n− 2 with respect to N and ∆ = N(γ) is its eigenbundle.

Defining ζ ∈ Γ(NF̃M) by ζ = λF̃ + µ, we have 〈ζ, ζ〉 = −1 and 〈µ, ζ〉 = 0. Using
(17.2), it follows that

Aζ = A− λI.
Extend µ, ζ to an orthonormal frame µ, ζ, ζ̄ of NF̃M and denote also by A,Aζ , Aζ̄ the
restrictions of these shape operators to ∆⊥. Define D ∈ Γ(End(∆⊥)) by

D = (A− λI)−1Aζ̄ .

The flatness of γ implies that

detD det(A− λI) = det(A− λI)D

= detAζ̄
= detAζ

= det(A− λI),

and this yields part (iii).
The Codazzi equation for A gives

∇h
TA = (A− λI)CT (17.6)

whereas the Codazzi equation for Aζ̄ yields

∇h
TAζ̄ = Aζ̄ CT . (17.7)

In particular, the endomorphisms on the right-hand sides of (17.6) and (17.7) are
symmetric, that is,

(A− λI)CT = Ct
T (A− λI) and Aζ̄ CT = Ct

TAζ̄ . (17.8)
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Using (17.8) we obtain

(A− λI)DCT = Aζ̄ CT

= Ct
TAζ̄

= Ct
T (A− λI)D

= (A− λI)CTD.

Hence
[D,CT ] = 0 (17.9)

for all T ∈ Γ(∆).
Equation (17.6) yield

(A− λI)CTD = (∇h
TA)D,

whereas (17.7) gives

(A− λI)DCT = Aζ̄ CT

= ∇h
TAζ̄

= ∇h
T (A− λI)D

= ∇h
T (AD)− λ∇h

TD.

Thus
(A− λI)[D,CT ] = (A− λI)∇h

TD

and part (ii) follows from (17.9).
Differentiating ζ − µ = λF̃ and taking normal components yields

∇⊥X(ζ − µ) =
1

λ
X(λ)(ζ − µ) (17.10)

for all X ∈ X(M). Define ω ∈ Γ(T ∗M) by

ω(X) = 〈∇⊥X ζ̄ , µ〉.

Using (17.10) we obtain

∇⊥Xµ = −1

λ
X(λ)ζ − ω(X)ζ̄ , ∇⊥Xζ = −1

λ
X(λ)µ− ω(X)ζ̄ (17.11)

and
∇⊥X ζ̄ = ω(X)(µ− ζ). (17.12)

In view of the Codazzi equation for A, the Codazzi equation for Aµ = A reduces
to

A∇⊥XµY = A∇⊥Y µX (17.13)
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for all X, Y ∈ X(M). Using (17.11) and T (λ) = 0 for all T ∈ Γ(∆), it follows that

ω(T ) = 0 (17.14)

for all T ∈ Γ(∆). Hence the vector fields µ, ζ and ζ̄ are parallel along ∆.
Equation (17.13) also yield

λω(X)DY +X(λ)Y = λω(Y )DX + Y (λ)X (17.15)

for all X, Y ∈ Γ(∆⊥). Using that detD = 1, this can also be written as

D(λω(X)Y − λω(Y )X) = Y (λ)X −X(λ)Y

= 〈Y, gradλ〉X − 〈X, gradλ〉Y
= X ∧ Y (gradλ)

= (DX ∧DY )(gradλ)

= 〈DY, gradλ〉DX − 〈DX, gradλ〉DY
= D(〈DY, gradλ〉X − 〈DX, gradλ〉Y ).

Hence

ω(X) = −1

λ
〈DX, gradλ〉 (17.16)

for all X ∈ Γ(∆⊥). On the other hand, the Codazzi equation for Aζ̄ = (A− λI)D and
(17.12) give

(∇X(A− λI)D)Y − λω(X)Y = (∇Y (A− λI)D)X − λω(Y )X. (17.17)

Notice that, here and elsewhere, wherever necessary we regard D as an element of
Γ(End(TM)) by assuming that ker D = ∆. From (17.16) we have

λω(X)Y − λω(Y )X = 〈DY, gradλ〉X − 〈DX, gradλ〉Y
= 〈Y,Dtgradλ〉X − 〈X,Dtgradλ〉Y
= X ∧ Y (Dtgradλ),

and then part (iv) follows from (17.17).
Using (17.11) and (17.12), the Ricci equations for µ, ζ̄ or ζ, ζ̄ yields

dω(X, Y ) +
1

λ
(X(λ)ω(Y )− Y (λ)ω(X))

= 〈AX, (A− λI)DY 〉 − 〈(A− λI)DX,AY 〉
(17.18)

for all X, Y ∈ Γ(∆⊥). Using (17.16) we obtain

Y ω(X) =
1

λ2
Y (λ)〈DX, gradλ〉 − 1

λ
〈∇YDX, gradλ〉 − 1

λ
Hessλ(DX, Y )

= −1

λ
(Y (λ)ω(X) + 〈∇YDX, gradλ〉+ Hessλ(DX, Y )).
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Hence

dω(X, Y ) +
1

λ
(X(λ)ω(Y )− Y (λ)ω(X))

=
1

λ
(〈(∇YD)X − (∇XD)Y, gradλ〉 − Hessλ(DX, Y ) + Hessλ(X,DY )),

(17.19)

and part (v) follows from (17.18).
We now show that one cannot have D = ±I on any open subset of Mn. Assume

otherwise that D = δI on the open subset U ⊂ Mn, where δ = ±1. Then the second
fundamental form of F̃ on U is given by

αF̃ (X, Y ) = 〈AX, Y 〉µ− 〈(A− λI)X, Y 〉ζ + 〈(A− λI)δX, Y 〉ζ̄
= 〈AX, Y 〉(µ− ζ + δζ̄) + λ〈X, Y 〉(ζ − δζ̄) (17.20)

for all X, Y ∈ X(U). By (17.16), the one-form ω is given on U by

ω(X) = − δ
λ
X(λ)

for all X ∈ X(U). In particular, the vector field γ = δζ̄ − ζ satisfies

∇⊥Xγ = δ∇⊥X ζ̄ −∇⊥Xζ

= δω(X)(µ− ζ)) +
1

λ
X(λ)µ+ ω(X)ζ̄

= −1

λ
X(λ)γ.

On the other hand,

∇⊥Xµ = −1

λ
X(λ)ζ − ω(X)ζ̄

= −1

λ
X(λ)γ.

Thus the vector fields ρ1 = µ− γ and ρ2 = λγ are parallel in the normal connection.
Let

F = I(f) = Ψ ◦ f : Mn → Vn+2 ⊂ Ln+3

be the isometric light-cone representative of f , regarded as a map into Ln+3. Define a
vector bundle isometry τ : NFU → NF̃U by setting

τ(Ψ∗N) = ρ1, τ(w) = ρ2 and τ(F ) = F̃ .

Then αF̃ = τ ◦αF from (17.5) and (17.20). Moreover, since {Ψ∗N,w, F} and {ρ1, ρ2, F̃}
are parallel in the normal connections of F and F̃ , respectively, it follows that τ is
parallel. By the Fundamental theorem of submanifolds there exists T ∈ O1(n + 3)
such that F̃ = T ◦ F and T∗|NFU = τ . By Proposition 9.18, there is a conformal
transformation ν of Rn+1 such that f̃ |U = ν ◦ f |U . This contradicts the assumption
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that f̃ is not conformally congruent to f on any open subset and proves that one cannot
have D = δI on U .

Let U be the open dense subset of Mn where D 6= δI. Then let U ⊂ U be an open
subset where D has either two smooth distinct real eigenvalues, a single real eigenvalue
of multiplicity two or a pair of smooth complex conjugate eigenvalues. Looking at the
Jordan form of D, there exists J ∈ Γ(End(∆⊥)) satisfying J2 = εI, with ε = 1, 0 or
−1, respectively, such that

D = aI + bJ,

where a, b ∈ C∞(U), with b nowhere vanishing and b = 1 if ε = 0.
If S ⊂ Γ(End(∆⊥)) is the subspace of all elements that commute with D, or

equivalently, with J , then S = span{I, J}, and C(Γ(∆)) ⊂ S by (17.9). To complete
the proof that f is either hyperbolic, parabolic or elliptic with respect to J , corre-
sponding to ε = 1, 0 or −1, respectively, it remains to show that ∇h

TJ = 0 for any
T ∈ Γ(∆).

Proceeding as in the proof of Lemma 11.1, from part (ii) we obtain

T (a)I + T (b)J + b∇h
TJ = 0

for any T ∈ Γ(∆). Hence

T (a)J + ε T (b)I + b(∇h
TJ)J = 0 and T (a)J + ε T (b)I + bJ(∇h

TJ) = 0.

Adding the two equations yields T (a) = T (b) = 0, and hence ∇h
TJ = 0.

Conversely, consider the trivial vector bundle E = Mn × L3, where L3 is the
three-dimensional Lorentz space. Let µ, ζ, ζ̄ be an orthonormal frame of E such that
〈ζ, ζ〉 = −1. Define on E the connection ∇′ determined by (17.11), (17.12) and (17.14),
with ω ∈ Γ(T ∗M) given by (17.16). Let α ∈ C∞(Hom(TM × TM,E)) be given by

α = 〈A , 〉µ− 〈Aζ , 〉ζ + 〈Aζ̄ , 〉ζ̄ ,

where Aζ = A− λI and Aζ̄ = Aζ ◦D.
Notice that one cannot have C(Γ(∆) ⊂ span{I} on any open subset U ⊂ Mn.

Otherwise, the distribution ∆⊥ would be umbilical on U , and hence f |U would be
conformally surface-like by Corollary 9.33.

Since C(Γ(∆) ⊂ span{I, J} and C(Γ(∆) 6⊂ span{I} on any open subset, it follows
from the first equation of (17.8) that

(A− λI)J = J t(A− λI). (17.21)

Thus Aζ̄ , and hence α, is symmetric. We claim that (E,∇′, α) satisfies the Gauss,
Codazzi and Ricci equations for an isometric immersion into Ln+3.

The Gauss equation can be written as

R(X, Y ) = AX ∧ AY − AζX ∧ AζY + Aζ̄X ∧ Aζ̄Y
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for all X, Y ∈ X(M). Since kerAζ = ∆ = kerAζ̄ , this follows immediately from
the Gauss equation of f if either X or Y belongs to ∆. If {X, Y } spans ∆⊥, it is a
consequence of the Gauss equation of f and the fact that

Aζ̄X ∧ Aζ̄Y = detAζ̄(X ∧ Y )

= detAζ(X ∧ Y )

= AζX ∧ AζY,

where we used that detD = 1 in the second equality.
Using the Codazzi equation for A, the Codazzi equation for Aµ = A reduces to

A∇′XµY = A∇′Y µX

for all X, Y ∈ X(M). The preceding equation is trivially satisfied if either X or Y
belongs to ∆, because ζ is parallel along ∆ with respect to ∇′ and kerAζ = ∆ = kerAζ̄ .
If {X, Y } spans ∆⊥, it is equivalent to (17.15), which follows from

λω(X)DY − λω(Y )DX = 〈DY, gradλ〉DX − 〈DX, gradλ〉DY
= DX ∧DY (gradλ)

= X ∧ Y (gradλ)

= Y (λ)X −X(λ)Y

where we used again that detD = 1.
To verify the Codazzi equation for Aζ , it suffices to do the same for Aµ−ζ = λI,

that is, it suffices to verify that

X(λ)Y − A∇′X(µ−ζ)Y = Y (λ)X − A∇′Y (µ−ζ)X

for all X, Y ∈ X(M). Again, this is trivial if either X or Y belongs to ∆, because λ is
constant along ∆ and µ− ζ is parallel along ∆ with respect to ∇′. For X, Y ∈ Γ(∆⊥),
it follows from

∇′X(µ− ζ) =
1

λ
X(λ)(µ− ζ).

The Codazzi equation for Aζ̄ is

(∇X(A− λI)D)Y − (∇Y (A− λI)D)X = A∇′X ζ̄Y − A∇′Y ζ̄X
= λω(X)Y − λω(Y )X (17.22)

for all X, Y ∈ X(M). For X ∈ Γ(∆⊥) and Y = T ∈ Γ(∆), the horizontal component
of (17.22) is

(A− λI)DCT = ∇h
T (A− λI)D, (17.23)

whereas the vertical component can be written as

〈(A− λI)∇TS,DX〉 = λω(X)〈T, S〉 (17.24)
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for all T, S ∈ Γ(∆).
To prove (17.23), first notice that condition (i) and C(∆) ⊂ span{I, J} imply

that
[D,CT ] = 0

for all T ∈ Γ(∆). On the other hand,

∇h
TA = (A− λI)CT

by the Codazzi equation of f . Therefore

∇h
T (A− λI)D = ∇h

TAD − λ∇h
TD

= (∇h
TA)D + (A− λI)∇h

TD

= (A− λI)CTD

= (A− λI)DCT ,

where we have also used part (ii) in the third equality. By (1.28) we have

(A− λI)∇TS = −〈T, S〉gradλ

for all T, S ∈ Γ(∆). Hence (17.24) follows from (17.16). Finally, that (17.22) holds for
X, Y ∈ Γ(∆⊥) follows from part (iv) and (17.16).

Let R′ denote the curvature tensor of (E,∇′). It follows easily from (17.11) that
the left-hand side of the Ricci equation

〈R′(X, Y )µ, ζ〉 = 〈[Aµ, Aζ ]X, Y 〉

vanishes, and the same holds for the right-hand side since Aµ = A and Aζ = (A− λI)
commute. From (17.10) and (17.12) we obtain

R′(X, Y )ζ̄ = (dω(X, Y )− (1/λ)Y (λ)ω(X) + (1/λ)X(λ)ω(Y )) (µ− ζ).

On the other hand,

〈[Aζ̄ , Aµ]X, Y 〉 = 〈AX, (A− λI)DY 〉 − 〈(A− λI)DX,AY 〉
= 〈[Aζ̄ , Aζ ]X, Y 〉,

where in the second equality we have used that (A − λI)D is symmetric. Thus the
Ricci equations

〈R′(X, Y )ζ̄ , µ〉 = 〈[Aζ̄ , Aµ]X, Y 〉
and

〈R′(X, Y )ζ̄ , ζ〉 = 〈[Aζ̄ , Aζ ]X, Y 〉
are both equivalent to

dω(X, Y )− 1

λ
(Y (λ)ω(X)−X(λ)ω(Y ))

= 〈AX, (A− λI)DY 〉 − 〈(A− λI)DX,AY 〉
(17.25)
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for all X, Y ∈ X(M). In view of (17.19), Eq. (17.25) follows from part (v), and this
completes the proof of the claim.

By Theorem 1.25, there exist an isometric immersion F̃ : Mn → Ln+3 and a
vector bundle isometry Φ: E→ NF̃M such that Φα = αF̃ and Φ∇′ = ∇⊥Φ. Moreover,
the vector field ρ = (1/λ)Φ(ζ − µ) satisfies

λ∇̃Xρ = −X(λ)ρ+ ∇̃XΦ(ζ − µ)

= −X(λ)ρ− F̃∗AF̃Φ(ζ−µ)X +∇⊥XΦ(ζ − µ)

= −X(λ)ρ− F̃∗(Aζ − A)X + Φ∇′X(ζ − µ)

= λF̃∗X

for all X ∈ X(M). Therefore
∇̃X(F̃ − ρ) = 0

for all X ∈ X(M). Hence F̃ − ρ is a constant vector P0 ∈ Ln+3. It follows that

〈F̃ − P0, F̃ − P0〉 = 〈ρ, ρ〉 = 0,

that is, F̃ takes values in P0 + Vn+2. Thus F̃ gives rise to a conformal immersion
f̃ = C(F̃ ) : Mn → Rn+1 by Proposition 9.9.

We now show that f̃ is not conformally congruent to f on any open subset of
Mn. Assume otherwise that U ⊂ Mn is an open subset such that f̃ |U is conformally
congruent to f |U . Then F̃ |U is congruent to F |U by Proposition 9.18, where F =
I(f) = Ψ ◦ f , that is, there exists T ∈ O1(n + 3) such that T ◦ F = F̃ . In particular,

αF̃ = T ◦ αF .
Write {

TΨ∗N = a11µ+ a12ζ + a13ζ̄

Tw = a21µ+ a22ζ + a23ζ̄ .

From

〈AX, Y 〉µ− 〈(A− λI)X, Y 〉ζ + 〈(A− λI)DX, Y 〉ζ̄ = αF̃ (X, Y )

= T ◦ αF (X, Y )

= 〈AX, Y 〉TΨ∗N − 〈X, Y 〉Tw

for all X, Y ∈ Γ(∆⊥|U) we obtain
a11A− a21I = A

a12A− a22I = −(A− λI)

a13A− a23I = (A− λI)D.

(17.26)

Set a = a11. Since

TF = F̃ =
1

λ
(ζ − µ),

〈TΨ∗N, TΨ∗N〉 = 1 = 〈Tw, TF 〉
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and
0 = 〈Tw, Tw〉 = 〈TΨ∗N, TF 〉 = 〈TΨ∗N, Tw〉

then

a12 = −a, a13 = δ = ±1, a21 =
λ

2
(a2 − 1) and a22 = −λ

2
(a2 + 1).

If a = 1, then the last equation in (17.26) reduces to

(A− λI)D = (A− λI)δI.

Hence D = δI. Otherwise, either of the first two equations in (17.26) imply that

A =
λ

2
(a+ 1)I.

Then the last equation gives

λδ(a− 1)δI = λδ(a− 1)D

and we conclude as before that D = δI. This is a contradiction with part (i) and shows
that f̃ |U is not conformally congruent to f |U .

It remains to prove that if two tensors D1, D2 ∈ Γ(∆⊥) satisfying conditions (i)
to (v) do not coincide up to sign on any open subset of Mn, then they give rise to
conformal immersions f̃1 : Mn → Rn+1 and f̃2 : Mn → Rn+1 that are not conformally
congruent on any open subset of Mn. In other words, we must show that if f̃1|U and
f̃2|U are conformally congruent for some open subset U ⊂ Mn, then D2 = ±D1 on U .
For simplicity, we may assume that U = Mn.

By Proposition 9.18, if f̃1 and f̃2 are conformally congruent, then their isometric
light-cone representatives F̃1 = I(f̃1) and F̃2 = I(f̃2) are congruent, that is, there exists

T ∈ O1(n+ 3) such that T ◦ F̃1 = F̃2. In particular, αF̃2 = T ◦ αF̃1 . We have

αF̃i(X, Y ) = 〈AX, Y 〉µi − 〈(A− λI)X, Y 〉ζi + 〈(A− λI)DiX, Y 〉ζ̄i

for all X, Y ∈ Γ(∆⊥), and

F̃i =
1

λ
(ζi − µi),

where µi, ζi, ζ̄ is an orthonormal frame of NF̃i
M such that 〈µi, µi〉 = 1 = 〈ζ̄i, ζ̄i〉 and

〈ζi, ζi〉 = −1, 1 ≤ i ≤ 2. Write
Tµ1 = b11µ2 + b12ζ2 + b13ζ̄2

Tζ1 = b21µ2 + b22ζ2 + b23ζ̄2

T ζ̄1 = b31µ2 + b32ζ2 + b33ζ̄2.

From αF̃2 = T ◦ αF̃1 we obtain
b11A− b21(A− λI) + b31(A− λI)D1 = A

b12A− b22(A− λI) + b32(A− λI)D1 = −(A− λI)

b13A− b23(A− λI) + b33(A− λI)D1 = (A− λI)D2,
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whereas T F̃1 = F̃2 gives 
b21 − b11 = −1

b22 − b12 = 1

b23 − b13 = 0.

Therefore 
λb21I + b31(A− λI)D1 = 0

λb12I + b32(A− λI)D1 = 0

λb23I + b33(A− λI)D1 = (A− λI)D2.

In particular, the first two of the preceding equations imply that b21b32 = b12b31. Set
b31 = b. Using that the matrix B = (bij) satisfies BθBt = θ, where θ = diag(1,−1, 1),
it follows that

B =

 1− 1
2
b2 1

2
b2 −δb

−1
2
b2 1 + 1

2
b2 −δb

b −b δ

 .

If b = 0, then the last of the preceding equations yields

(A− λI)(D2 − δD1) = 0.

Hence D2 = δD1. Otherwise, either of the remaining ones gives

(A− λI)D1 =
1

2
λbI,

and then the last one yields

(A− λI)D2 =
δ

2
λbI.

Thus, also in this case, we conclude that D2 = δD1. �

A hypersurface f : Mn → Rn+1, n ≥ 3, is said to be conformally ruled if it carries
an umbilical distribution L of rank n− 1 such that the restriction of f to each leaf of
L is also umbilical.

The next result shows that parabolic Cartan hypersurfaces are precisely the con-
formally ruled ones.

Proposition 17.3. Any parabolic Cartan hypersurface f : Mn → Rn+1 is conformally
ruled.

Conversely, if f : Mn → Rn+1, n ≥ 3, is a simply connected conformally ruled
hypersurface free of points with a principal curvature of multiplicity at least n − 1
which is not conformally surface-like on any open subset of Mn, then f is a parabolic
Cartan hypersurface. Moreover, all conformal immersions of Mn into Rn+1 that are
not conformally congruent to f on any open subset are conformally ruled with the same
rulings, and their congruence classes are in one-to-one correspondence with the smooth
functions on an open interval.



518 17.2. The first step

Proof: Let J ∈ Γ(End(∆⊥)) be such that J2 = 0, J 6= 0, ∇h
TJ = 0 for all T ∈ Γ(∆) and

C(Γ(∆)) ⊂ span{I, J}. Choose Y ∈ Γ(ker J) of unit length and X ∈ Γ(∆⊥) orthogonal
to Y such that JX = Y . Arguing as in the beginning of the proof of Proposition 11.2,
we may assume that also X has unit length.

We prove next that the distribution L = ∆ ⊕ span{Y } is umbilical. Since
C(Γ(∆)) ⊂ span{I, J} and JY = 0, it follows that 〈CTY,X〉 = 0 for all T ∈ Γ(∆).
Hence

〈∇Y T,X〉 = −〈CTY,X〉 = 0. (17.27)

On the other hand,
0 = (∇h

TJ)Y = −J∇h
TY

for all T ∈ Γ(∆). Hence ∇h
TY = 0, or equivalently,

〈∇TY,X〉 = 0. (17.28)

Let D ∈ Γ(End(∆⊥)) satisfy conditions (i) to (v) in Lemma 17.2. Since D ∈
span{I, J} and detD = 1, there exists θ ∈ C∞(M) such that

D = δI + θJ

where δ = ±1. Now observe that

(A− λI)D = δ(A− λI) + θ(A− λI)J.

The tensor
Φ = θ(A− λI)J

is symmetric by (17.21). By part (iv) and the Codazzi equation for A it satisfies

(∇XΦ)Y − (∇Y Φ)X = 〈(D − δI)Y, gradλ〉X − 〈(D − δI)X, gradλ〉Y
= 〈θJY, gradλ〉X − 〈θJX, gradλ〉Y
= −θY (λ)Y. (17.29)

Writing

µ = 〈AY,X〉
= 〈(A− λI)Y,X〉,

it follows that ΦX = θµX and ΦY = 0. Substituting in (17.29) and taking the inner
product of both sides with Y yield

µ〈∇Y Y,X〉 = −Y (λ). (17.30)

Similarly, the inner product of both sides with X gives

θµ〈∇XX, Y 〉 = Y (θµ). (17.31)
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On the other hand, taking the inner product with T ∈ Γ(∆) of unit length of both
sides of the Codazzi equation

∇TAY − A∇TY = ∇YAT − A∇Y T

we obtain
〈∇TT, (A− λI)Y 〉 = −Y (λ). (17.32)

Now, from (17.21) and JY = 0 we have

〈(A− λI)Y, Y 〉 = 〈(A− λI)JX, Y 〉
= 〈X, (A− λI)JY 〉
= 0. (17.33)

Using (17.32) we obtain
µ〈∇TT,X〉 = −Y (λ) (17.34)

for any T ∈ Γ(∆) of unit length. It follows from (17.27), (17.28), (17.30) and (17.34)
that the distribution L is umbilical. Finally, Eq. (17.33) and ∆ ⊂ ker(A − λI) imply
that the restriction of f to each leaf of L is umbilical. Thus f is conformally ruled.

We now prove the converse. Let L be an umbilical distribution of rank n− 1 on
Mn such that the restriction of f to each leaf of L is also umbilical . Then, at each
point x ∈Mn, the subspace (A−λI)L(x) is contained in the one-dimensional subspace
L⊥(x). Thus the kernel ∆(x) of A− λI at x has dimension at least n− 2. Since ∆(x)
cannot have dimension greater than n−2 by assumption, it follows that λ is a principal
curvature of f with constant multiplicity n−2. Since Mn is simply connected, there is
a global orthonormal frame X, Y of ∆⊥ such that X is orthogonal to L. In particular,

〈(A− λI)Y, Y 〉 = 0. (17.35)

Define J ∈ Γ(End(∆⊥)) by setting

JX = Y and JY = 0.

We prove that f is parabolic with respect to J . First notice that

J tX = 0 and J tY = X,

hence (17.35) implies that

(A− λI)J = J t(A− λI).

Now, since L is umbilical, then
∇h
TY = 0, (17.36)

which is equivalent to ∇h
TJ = 0. To show that C(Γ(∆)) ⊂ span{I, J} it suffices to

prove that
CT ◦ J = J ◦ CT
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for all T ∈ Γ(∆), which is easily seen to be equivalent to

〈∇Y T,X〉 = 0

and
〈∇XX,T 〉 = 〈∇Y Y, T 〉

for all T ∈ Γ(∆). The first equation follows from the fact that L is umbilical. To prove
the latter, set

µ = 〈AX, Y 〉
= 〈(A− λI)X, Y 〉,

so that (A− λI)Y = µX. Now, taking the Y -component of the Codazzi equation

∇h
T (A− λI) = ∇h

TA

= (A− λI)CT

applied to X, the X-component applied to Y and using (17.36) give

〈∇XX,T 〉 = T (log µ) = 〈∇Y Y, T 〉.

It remains to prove the last assertion. According to Lemma 17.2, each tensor
D ∈ Γ(End(∆⊥)) satisfying conditions (i) to (v) gives rise to a conformal immersion
f̃ : Mn → Rn+1 that is not conformally congruent to f on any open subset of Mn, and
two such tensors that do not coincide up to sign on any open subset of Mn give rise
to conformal immersions of Mn into Rn+1 that are not conformally congruent on any
open subset of Mn.

Any D ∈ Γ(End(∆⊥)) satisfying conditions (i) to (iii) is given by

D = δI + θJ, (17.37)

where δ = ±1, θ ∈ C∞(M) is nowhere vanishing and T (θ) = 0 for all T ∈ Γ(∆). Now,
part (v) holds for D if and only if it is satisfied for θJ in the place of D. We have

〈(∇Y θJ)X − (∇XθJ)Y, gradλ〉 = 〈Y (θ)Y + θ∇Y Y + θJ∇XY, gradλ〉
= (Y (θ)− θ〈∇XX, Y 〉)Y (λ) + θ〈∇Y Y,X〉X(λ)

= − θ
µ
Y (λ)(Y (µ) +X(λ))

where for the last equality we have used (17.30) and (17.31). On the other hand,

Hessλ(θJX, Y )− Hessλ(X, θJY ) = θ(Y Y (λ)− 〈∇Y Y,X〉X(λ))

= θ(Y Y (λ) + (1/µ)Y (λ)X(λ))

and
λ(〈(A− λI)θJX,AY 〉 − 〈AX, (A− λI)θJY 〉) = λθµ2.
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Therefore part (v) for D is equivalent to

Y Y (λ)− 1

µ
Y (λ)Y (µ) = −λµ2,

which can also be written as

Y ((1/µ)Y (λ)) = −λµ. (17.38)

We claim that (17.38) is a consequence of the Gauss equation

〈R(Y, T )T,X〉 = 〈AT, T 〉〈AY,X〉 − 〈AY, T 〉〈AT,X〉
= λµ. (17.39)

Indeed, on one hand,

〈∇Y∇TT,X〉 = Y 〈∇TT,X〉 − 〈∇TT,∇YX〉
= −Y ((1/µ)Y (λ)) + 〈∇TT, Y 〉〈∇Y Y,X〉.

On the other hand,
〈∇T∇Y T,X〉 = −〈∇Y T,∇TX〉 = 0

and

〈∇[Y,T ]T,X〉 = −〈∇∇TY T,X〉
= 〈∇TT, Y 〉〈∇TT,X〉.

Therefore
〈R(Y, T )T,X〉 = −Y ((1/µ)Y (λ)),

and hence (17.39) is equivalent to (17.38).
Finally, in view of the Codazzi equation of f , the tensor D given by (17.37)

satisfies part (iv) if and only if (17.29) holds for the tensor Φ = θ(A−λI)J . As shown
in the proof of the direct statement, the Y -component of that equation is equivalent
to

µ〈∇Y Y,X〉 = −Y (λ)

which is satisfied because the distribution L = ∆⊕ span{Y } is umbilical, and

µ〈∇TT,X〉 = −Y (λ)

is Eq. (17.34) for any T ∈ Γ(∆) of unit length. On the other hand, the X-component
of Eq. (17.29) is equivalent to the equation

Y (log θµ) = 〈∇XX, Y 〉.

Choosing an arbitrary smooth function as initial condition along one maximal integral
curve of X, there exists a unique function θ such that T (θ) = 0 for all T ∈ Γ(∆) and
θµ is a solution of the preceding equation. �
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17.3 The reduction

Let f : Mn → Rn+1, n ≥ 5, be an oriented hypersurface with a nowhere vanishing
principal curvature λ of constant multiplicity n−2 with respect to a unit normal vector
field N . By Proposition 9.4, the map h : Mn → Rn+1 given by

h(x) = f(x) +
1

λ(x)
N(x)

and the function r = 1/λ determine a two-parameter congruence of hyperspheres
S : Mn → Sn+2

1,1 that is enveloped by f , with kerS∗ = Eλ. By (9.7), the map S is
given by

S(x) = λ(x)Ψ(f(x)) + Ψ∗(f(x))N(x) (17.40)

and gives rise to a map s : Mn → Sn+2
1,1 such that S ◦ π = s, where π : Mn → L2 is the

canonical projection onto the quotient space of leaves of Eλ.
The next result shows that if f is either hyperbolic or elliptic, then the problem

of whether there exists a tensor D satisfying all the conditions in Lemma 17.2 can be
reduced to a similar but easier one for the surface s.

Lemma 17.4. Let f : Mn → Rn+1 be a hypersurface that envelops a two-parameter
congruence of hyperspheres s : L2 → Sn+2

1,1 ⊂ Ln+3 and is not conformally surface-like
on any open subset of Mn. Let ∆ be the eigenbundle of f correspondent to its principal
curvature λ of multiplicity n− 2. If f is hyperbolic (respectively, elliptic) with respect
to J ∈ Γ(End(∆⊥)) and there exists D ∈ Γ(End(∆⊥)) satisfying conditions (i) to (v)
in Lemma 17.2, then J and D are the horizontal lifts of tensors J̄ and D̄ ∈ span{Ī , J̄}
on L2, with J̄2 = Ī (respectively, J̄2 = −Ī), the surface s is hyperbolic (respectively,
elliptic) with respect to J̄ and the tensor D̄ satisfies:

(i) det D̄ = 1,

(ii)
(
∇′
X̄
D̄
)
Ȳ −

(
∇′
Ȳ
D̄
)
X̄ = 0 for all X̄, Ȳ ∈ X(L),

where ∇′ is the Levi-Civita connection of the metric induced by s.

Conversely, if s : L2 → Sn+2
1,1 ⊂ Ln+3 is hyperbolic (respectively, elliptic) with

respect to a tensor J̄ on L2 satisfying J̄2 = Ī (respectively, J̄2 = −Ī), then the hyper-
surface f is hyperbolic (respectively, elliptic) with respect to the horizontal lift J of J̄ ,
and the horizontal lift D of a tensor D̄ ∈ span{Ī , J̄} satisfying parts (i) and (ii) has
all the properties (i) to (v) in Lemma 17.2.

Proof: Since D ∈ span{I, J} and CT ∈ span{I, J} for all T ∈ Γ(∆), then (17.9) holds.
By Corollary 11.7, this and condition (ii) in Lemma 17.2 imply that D is projectable,
that is, there exists a tensor D̄ on L2 such that

D̄ ◦ π∗ = π∗ ◦D

where π : Mn → L2 is the canonical projection. In particular, det D̄ = 1 by part (iii).
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Since [J,CT ] = 0 and ∇h
TJ = 0 for all T ∈ Γ(∆), also J is projectable, thus there

exists a tensor J̄ on L2 such that

J̄ ◦ π∗ = π∗ ◦ J.

Clearly, the tensor J̄ satisfies J̄2 = I (respectively, J̄2 = −I) if f is hyperbolic (re-
spectively, elliptic), and D̄ ∈ span{Ī , J̄}. In the following, we prove that D̄ satisfies
condition (ii) in the statement and that s is hyperbolic (respectively, elliptic) with
respect to J̄ .

Differentiating (17.40) with respect to Y ∈ Γ(∆⊥) gives

S∗Y = −Ψ∗f∗(A− λI)Y + Y (λ)Ψ ◦ f.

Hence
Ψ∗f∗(A− λI)DY = 〈DY, gradλ〉Ψ ◦ f − S∗DY.

Differentiating with respect to X ∈ Γ(∆⊥) yields

∇̃XΨ∗f∗(A− λI)DY = (〈∇XDY, gradλ〉+ Hessλ(X,DY ))Ψ ◦ f
+ 〈DY, gradλ〉Ψ∗f∗X − ∇̃XS∗DY.

Given X̄, Ȳ ∈ X(L), let X, Y ∈ Γ(∆⊥) be their horizontal lifts to Mn. We have

∇̃XS∗DY = ∇̃π∗Xs∗π∗DY

= ∇̃X̄s∗D̄Ȳ

= s∗∇′X̄D̄Ȳ + αs(X̄, D̄Ȳ )− 〈X̄, D̄Ȳ 〉′s ◦ π

and

〈X̄, D̄Ȳ 〉′ = 〈s∗π∗X, s∗D̄π∗Y 〉
= 〈S∗X,S∗DY 〉
= 〈f∗(A− λI)X, f∗(A− λI)DY 〉
= 〈(A− λI)X, (A− λI)DY 〉.

It follows that

∇̃XΨ∗f∗(A− λI)DY = (〈∇XDY, gradλ〉+ Hessλ(X,DY ))Ψ ◦ f
+ 〈DY, gradλ〉Ψ∗f∗X − s∗∇′X̄D̄Ȳ − α

s(X̄, D̄Ȳ )

+ (〈(A− λI)X, (A− λI)DY 〉)(λΨ ◦ f + Ψ∗N).

On the other hand,

∇̃XΨ∗f∗(A− λI)DY = Ψ∗∇̄Xf∗(A− λI)DY + αΨ(f∗X, f∗(A− λI)DY )
= Ψ∗f∗∇X(A− λI)DY + Ψ∗〈AX, (A− λI)DY 〉N − 〈X, (A− λI)DY 〉w
= Ψ∗f∗(∇X(A− λI)D)Y + Ψ∗f∗(A− λI)D∇XY + Ψ∗〈AX, (A− λI)DY 〉N
−〈X, (A− λI)DY 〉w

= Ψ∗f∗(∇X(A− λI)D)Y + 〈D∇XY, gradλ〉Ψ ◦ f − S∗D∇XY
+ 〈AX, (A− λI)DY 〉Ψ∗N − 〈X, (A− λI)DY 〉w

= Ψ∗f∗(∇X(A− λI)D)Y + 〈D∇XY, gradλ〉Ψ ◦ f − s∗D̄π∗∇XY
+ 〈AX, (A− λI)DY 〉Ψ∗N − 〈X, (A− λI)DY 〉w.
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Comparing the two expressions for

∇̃XΨ∗f∗(A− λI)DY − ∇̃Y Ψ∗f∗(A− λI)DX

that follow from the above and using that

π∗∇XY − π∗∇YX = π∗[X, Y ]

= [π∗X, π∗Y ]

= [X̄, Ȳ ],

we obtain

Ψ∗f∗B(X, Y )− λψ(X, Y )Ψ∗N + ϕ(X, Y )Ψ ◦ f + ψ(X, Y )w
= s∗((∇̄Ȳ D̄)X̄ − (∇̄X̄D̄)Ȳ ) + αs(Ȳ , D̄X̄)− αs(D̄X̄, Ȳ )

(17.41)

where

B(X, Y ) = (∇X(A− λI)D)Y − (∇Y (A− λI)D)X −X ∧ Y (Dtgradλ),

ψ(X, Y ) = 〈Y, (A− λI)DX〉 − 〈X, (A− λI)DY 〉,
ϕ(X, Y ) = 〈(∇YD)X − (∇XD)Y, gradλ〉+ Hessλ(DX, Y )− Hessλ(X,DY )

− λ(〈(A− λI)X, (A− λI)DY 〉 − 〈(A− λI)DX, (A− λI)Y 〉)

for all X, Y ∈ Γ(∆⊥).
It follows from parts (iv) and (v) that B and ϕ vanish. On the other hand,

arguing as in the proof of Lemma 17.2, the endomorphism (A − λI)D is symmetric,
hence ψ also vanishes identically.

Therefore (17.41) implies that condition (ii) in the statement holds, as well as

αs
(
D̄X̄, Ȳ

)
= αs

(
X̄, D̄Ȳ

)
. (17.42)

Since D̄ ∈ span{I, J̄} and D̄ 6∈ span{I}, the preceding equation is equivalent to

αs
(
J̄X̄, Ȳ

)
= αs

(
X̄, J̄ Ȳ

)
. (17.43)

Thus s is hyperbolic (respectively, elliptic) with respect to J̄ .
Conversely, suppose that s : L2 → Sn+2

1,1 ⊂ Ln+3 is hyperbolic (respectively, ellip-
tic) with respect to a tensor J̄ on L2 satisfying J̄2 = I (respectively, J̄2 = −I), and
that D̄ ∈ span{Ī , J̄} satisfies parts (i) and (ii). Let J ∈ Γ(End(∆⊥)) (respectively,
D ∈ Γ(End(∆⊥))) be the horizontal lift of J̄ (respectively, D̄). Let us prove that D
satisfies conditions (i) to (v) in Lemma 17.2 and that f is hyperbolic (respectively,
elliptic) with respect to J .

Conditions (i) and (iii) are clear. Since s is hyperbolic (respectively, elliptic)
with respect to J̄ , then (17.43) holds for all X, Y ∈ Γ(∆⊥). This and the fact that
D̄ ∈ span{Ī , J̄} imply that (17.42) holds for all X̄, Ȳ ∈ X(L). Using that D̄ also
satisfies part (ii), it follows from (17.41) that (A − λI)D is a symmetric tensor and
that parts (iv) and (v) hold.
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To prove part (ii), recall from Corollary 11.7 that

∇h
TD = [D,CT ] (17.44)

for all T ∈ Γ(∆). Therefore

∇h
T (A− λI)D − (A− λI)DCT = (∇h

TA)D + (A− λI)∇h
TD − (A− λI)DCT

= (A− λI)(∇h
TD − [D,CT ]

= 0

where we have used the Codazzi equation

∇h
T (A− λI) = (A− λI)CT

in the second equality. In particular, this implies that (A − λI)DCT is symmetric.
Hence

(A− λI)DCT = Ct
TD

t(A− λI)

= Ct
T (A− λI)D

= (A− λI)CTD

where we have used that (A − λI)D is symmetric in the second equality and that
(A− λI)CT = ∇h

TA is symmetric in the third equality. In view of (17.44), this proves
part (ii). Moreover, from [D,CT ] = 0 for all T ∈ Γ(∆) and J ∈ span{I,D} it also
follows that C(Γ(∆)) ⊂ span{I, J}. Finally, arguing as in the proof of Lemma 17.2 we
see that ∇h

TJ = 0. Thus f is hyperbolic (respectively, elliptic) with respect to J . �

17.4 The classification

We are now ready to state and prove the classification of Cartan hypersurfaces.

Theorem 17.5. Let f : Mn → Rn+1 be a Cartan hypersurface that is neither con-
formally surface-like nor conformally ruled on any open subset of Mn. Then, on each
connected component of an open dense subset of Mn, the hypersurface f is the envelope
of a two-parameter congruence of hyperspheres s : L2 → Sn+2

1,1 , which is a surface of first
or second species of real or complex type.

Conversely, a simply connected hypersurface that envelops such a two-parameter
congruence of hyperspheres s : L2 → Sn+2

1,1 is a Cartan hypersurface that admits either
a one-parameter family of conformal deformations (continuous class) or a single one
(discrete class), according to whether s is of first or second species, respectively.

Proof: By Proposition 17.1, the hypersurface f carries a nowhere vanishing principal
curvature of constant multiplicity n − 2, and hence it envelops a two-parameter con-
gruence of hyperspheres s : L2 → Sn+2

1,1 ⊂ Ln+3 by Proposition 9.4. By Lemma 17.2,
on each connected component of an open dense subset of Mn, the hypersurface f is
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either hyperbolic, parabolic or elliptic with respect to J ∈ Γ(End(∆⊥)), and there
exists D ∈ Γ(End(∆⊥)) satisfying conditions (i) to (v). Proposition 17.3 rules out the
possibility that f be parabolic on an open subset of Mn.

By Lemma 17.4, if f is hyperbolic (respectively, elliptic) with respect to J , then
J and D can be projected down to tensors J̄ and D̄ ∈ span{I, J̄} on L2, with J̄2 = I
(respectively, J̄2 = −I). Moreover, the surface s is hyperbolic (respectively, ellip-
tic) with respect to J̄ , and the tensor D̄ satisfies parts (i) and (ii). It follows from
Proposition 11.13 that s is a surface of first or second species of real or complex type.

Conversely, suppose that f : Mn → Rn+1 is a simply connected hypersurface that
envelops a two-parameter congruence of hyperspheres given by a surface s : L2 → Sn+2

1,1

of first or second species of real or complex type. If the surface s is of real (respectively,
complex) type, by Proposition 11.13 it is hyperbolic (respectively, elliptic) with respect
to a tensor J̄ on L2 satisfying J̄2 = Ī (respectively, J̄2 = −Ī), and there exists a tensor
D̄ ∈ span{Ī , J̄} satisfying parts (i) and (ii). It now follows from Lemma 17.4 that the
hypersurface f is hyperbolic (respectively, elliptic) with respect to the horizontal lift J
of J̄ , and the horizontal lift D of a tensor D̄ ∈ span{Ī , J̄} satisfying parts (i) and (ii)
satisfies conditions (i) to (v) in Lemma 17.2. We conclude from Lemma 17.2 that f is
a Cartan hypersurface.

The only thing left to prove is the last assertion. By (11.49) and (11.50) in
Exercise 11.6, if the surface s : L2 → Sn+2

1,1 is of first (respectively, second) species,
then there exists a one-parameter family of nontrivial positive solutions (respectively,
a single nontrivial positive solution) of either system (11.36) or Eq. (11.37), according
to whether the surface s is of real or complex type. By Propositon 11.13, each such
solution gives rise to a tensor D̄ on L2 satisfying parts (i) and (ii) in Lemma 17.4, with
distinct solutions yielding tensors that do not coincide up to sign on any open subset
of L2. The horizontal lift D of such a tensor D̄, in turn, satisfies conditions (i) to (v)
in Lemma 17.2, as follows from Lemma 17.4. Finally, Lemma 17.2 implies that each
such tensor D gives rise a conformal immersion f̃ : Mn → Rn+1 that is not congruent
to f on any open subset of Mn, with tensors D1 and D2 that do not coincide up to
sign on any open subset of Mn yielding conformal immersions f̃1 : Mn → Rn+1 and
f̃2 : Mn → Rn+1 that are not conformally congruent on any open subset of Mn. �

17.5 Notes

Starting in 1916, E. Cartan devoted five years to the study of isometric, conformal
and projective deformations of Euclidean hypersurfaces by using the method of moving
frames. Shortly after his paper on isometric deformations [64], he released a long and
much more difficult paper [65], where he classified conformally deformable Euclidean
hypersurfaces of dimension n ≥ 5. The special cases n = 4 and n = 3 were subsequently
treated by Cartan in [66], although in these cases a classification is far from being
complete. For reasons we can only guess (maybe uncertainty about the very existence
of examples), Cartan’s statement in the introduction of [64] completely ignores the
discrete class, although the possibility of existence of the latter arises in his proof.
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A version of Cartan’s parametric result, closer in spirit to the one in this chapter,
was provided by Dajczer-Tojeiro [139]. In the same paper, the nonparametric descrip-
tion of all conformally deformable Euclidean hypersurfaces of dimension n ≥ 5 given
by Corollary 12.41 for q = 1 was derived. Roughly speaking, it was shown that a
hypersurface Mn in Rn+1, n ≥ 5, which admits a conformal deformation can be lo-
cally characterized as the intersection Mn = Nn+1 ∩Vn+2 of a flat (n+1)-dimensional
Riemannian submanifold Nn+1 of Ln+3 with the light cone.

It was shown in [139] that the classification due to Sbrana and Cartan of the
isometrically deformable hypersurfaces, namely Theorem 11.16, can be obtained from
the results in this chapter, but only for dimension at least five. The result given by
Exercise 17.2 has been taken from [139].

A classification of the Euclidean hypersurfaces that admit conformal deformations
preserving the Gauss map was given by Dajczer-Vergasta [150]. The corresponding
problem for surfaces in R3, namely, finding all surfaces f : M2 → R3 that are not
determined, up to homothety and translation, by its conformal structure and its Gauss
map, was studied by Christoffel [89] and became known as Christoffel’s problem. For
Euclidean surfaces of arbitrary codimension, the problem was studied by the eminent
algebraic geometer P. Samuel [309] in 1947 in his very first publication. He showed that
exceptions are, as in the case of surfaces in R3, minimal surfaces and isothermic surfaces,
depending on whether the deformation preserves or reverses orientation, respectively.
Samuel’s result was totally or partially rediscovered by several authors later on.

The general problem of looking for all Euclidean submanifolds f : Mn → Rm that
admit nontrivial conformal deformations preserving the Gauss map was also addressed
by Samuel [309], who obtained partial results on their classification. The classification
was completed by Dajczer-Tojeiro [149].

Surprisingly, there exits few examples of submanifolds that admit conformal non-
isometric deformations preserving the Gauss map. A trivial example is obtained by
taking the cone over a submanifold contained in a sphere and then considering its image
under an inversion with respect to that sphere. Since the Gauss map is constant along
the rulings and these are preserved by the inversion, the deformation is conformal and
preserves the Gauss map. Notice that in this example the submanifold is left invariant
under the deformation.

The preceding construction can be combined with a special type of isometric de-
formation preserving the Gauss map to produce examples of conformal deformations of
a submanifold that preserve the Gauss map but do not leave the submanifold invariant.
Namely, start with a minimal real Kaehler cone f : Mn → Rm. Any such submanifold
arises as the real part of a holomorphic isometric immersion of Mn into Cm obtained by
lifting a holomorphic isometric immersion of Mn into complex projective space CPm−1

(see Exercise 15.8). Any member of the associated family {fθ}θ∈[0,π) of f is also a
(minimal real Kaehler) cone. Hence the composition of any such fθ with an inversion
with respect to a sphere centered at the vertex of fθ is conformal to f and has the
same Gauss map as f . It was shown in [149] that, apart from these examples with
somewhat trivial deformations in the conformal realm, all remaining ones of dimension
n ≥ 3 are extrinsic warped products of either curves or minimal surfaces with spherical
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submanifolds. An interesting example of this type that cannot occur as a hypersurface
is a triply warped product submanifold having as profile a degenerate minimal surface,
a minimal surface that has a pair of nonconstant harmonic functions as coordinate
functions. The related problem of classifying the Euclidean hypersurfaces that admit
conformal deformations preserving the third fundamental form was solved by Vlachos
[340].

Prescribing the Gauss map of a surface f : M2 → R3 can be thought of as giving a
two-parameter congruence of affine subspaces of R3 to be enveloped by f . Christoffel’s
problem can thus be rephrased as finding which surfaces are not determined by their
conformal structure and a prescribed plane congruence which they are to envelop. A
similar problem in the realm of Moebius geometry was studied by Blaschke [38] (see
also [220]) and is known as Blaschke’s problem. It consists of finding the surfaces that
are not determined, up to Moebius transformations, by their conformal structure and
a given two-parameter congruence of spheres enveloped by them. Blaschke’s problem
for hypersurfaces, namely, finding all hypersurfaces f, f̃ : Mn → Rn+1 that envelop
a common sphere congruence and induce conformal metrics on Mn, was solved by
Dajczer-Tojeiro [145].

Umbilic-free Euclidean hypersurfaces with principal curvatures of constant multi-
plicities that are not conformally congruent and admit deformations that preserve the
Moebius metric, which are special types of conformal deformations, were classified by
Li-Ma-Wang [236].

17.6 Exercises

Exercise 17.1. Let f : Mn → Rn+1, n ≥ 5, be a hypersurface that carries a relative
nullity distribution of rank n − 2 everywhere. Prove that any conformal immersion
f̃ : Mn → Rn+1 is given by f̃ = ν ◦ f̄ , where f̄ : Mn → Rn+1 is an isometric immersion
and ν is a conformal transformation of Rn+1.

Exercise 17.2. Show that a hypersurface f : Mn → Rn+1, n ≥ 5, is conformally but
not isometrically congruent to a Sbrana-Cartan hypersurface if and only if it is a Car-
tan hypersurface such that the spheres in Rn+1 containing n− 2-dimensional spherical
leaves have a common point. Moreover, any conformal (nowhere conformally congru-
ent) deformation of the hypersurface is conformally congruent to an isometric (nowhere
congruent) deformation of the Sbrana-Cartan hypersurface. Conclude that any hyper-
surface conformally congruent to a Sbrana-Cartan hypersurfaces in the discrete class
of Sbrana-Cartan’s classification belongs to the discrete class in the classification of
Cartan hypersurfaces.



Appendix A

Vector bundles

In this appendix we recall some basic definitions and results on vector bundles
that are used throughout the book.

Let E and M be differentiable manifolds. A differentiable map π : E → M is
called a differentiable vector bundle of rank k, or simply a vector bundle, if for each
point x ∈M ,

(i) π−1(x) is a real vector space of dimension k,

(ii) there is an open neighborhood U of x in M and a diffeomorphism

ϕ : π−1(U)→ U × Rk

whose restriction to π−1(y) is an isomorphism onto {y} × Rk for each y ∈ U .

The manifolds E and M are called the total space and the base, respectively, and
the map π the projection. It is a common abuse of language to refer to the “vector
bundle E”. For each x ∈ M , the vector space Ex = π−1(x) is called the fiber of π
over x.

The simplest examples of vector bundles of rank k are the product vector bundles,
which consist of the projection

π : M × V →M

onto the first factor of a product of a differentiable manifold M with a vector space
V of dimension k. These are also called trivial vector bundles. For this reason, the
map ϕ : π−1(U)→ U ×Rk in the definition of a vector bundle π : E →M is said to be
a local trivialization of π. Note that, by condition (ii), the diffeomorphism ϕ has the
form

ϕ(e) = (π(e), ϕπ(e)(e)),

where ϕπ(e) : π−1(π(e)) → Rk is an isomorphism for every e ∈ π−1(U). A family of
local trivializations {(Uα, ϕα)} such that {Uα} is an open cover of M is called a vector
bundle atlas for π : E →M .
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Given local trivializations (U,ϕ) and (V, ψ) such that U ∩ V 6= ∅, for each
x ∈ U ∩ V the map g(x) = ϕx ◦ ψ−1

x is an automorphism of Rk. For any w ∈ Rk

and x ∈ V we have
ϕ ◦ ψ−1(x,w) = (x, g(x)w),

hence g : U ∩ V → Aut(Rk) is a differentiable mapping, called the transition function
from ψ to ϕ.

In order to construct vector bundles, the following Gluing Principle is useful.

Theorem A.1. Assume that E and L are sets, M is a differentiable manifold and
π : E → M is a surjective map. Set Ex = π−1(x) for each x ∈ M . Assume that
V is a real vector space of dimension k and that for each λ ∈ L there is a map
ψλ : π−1(Uλ)→ Uλ × V of the form

e 7→ (π(e), ψλ,π(e)e)

such that the family {(Uλ, ψλ) : λ ∈ L} satisfies the following conditions:

(i) ∪λ∈LUλ = M ,

(ii) ψλ,x : Ex → V is a bijection for every x ∈ Uλ and λ ∈ L,

(iii) ψλ◦ψ−1
µ is a diffeomorphism from (Uλ∩Uµ)×V onto itself whenever Uλ∩Uµ 6= ∅,

(iv) ψλ,x ◦ ψ−1
µ,x ∈ Aut(V ) whenever x ∈ Uλ ∩ Uµ.

Then there exists a unique differentiable structure on E that makes each ψλ a diffeo-
morphism and π a submersion. Moreover, endowing Ex with the vector space structure
that makes each ψλ,x, with x ∈ Uλ, an isomorphism (this is well defined by condition
(iv)), then π : E →M becomes a vector bundle of rank k over M .

Note that the second condition implies that each ψλ is a bijection, so that the
third one makes sense. To obtain local trivializations of π : E → M , it is enough to
choose an isomorphism S : V → Rk and then define ϕλ = (id× S) ◦ ψλ, λ ∈ L.

Examples A.2. (i) The dual vector bundle: Given a vector bundle π : E → M
we define a projection θ : E∗ →M by setting

θ−1(x) = E∗(x) = Hom(Ex;R).

Thus, E∗ is the disjoint union of the dual vector spaces of the fibers of π. To make
θ : E∗ → M into a vector bundle, take an atlas (Uλ, ϕλ)λ∈L of local trivializations of
E with transition functions (gλµ). Given λ ∈ L and x ∈ Uλ, the isomorphism ϕλ,x has
a transpose ϕtλ,x : (Rk)∗ → E∗x, which is also an isomorphism. Let ψλ,x be its inverse.
Then,

ψλ(f) = (θ(f), ψλ,x(f))
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defines a bijection between θ−1(Uλ) and Uλ × (Rk)∗. Moreover, if Uλ ∩ Uµ 6= ∅, then

ψλ,x ◦ ψ−1
µ,x = (ϕµ,x ◦ ϕ−1

λ,x)
t = (gµλ)(x)t,

which implies that ψλ ◦ψ−1
µ is a diffeomorphism. Thus, we can apply the above Gluing

Principle to obtain the dual vector bundle.

(ii) The homomorphism bundle: Let π : E →M and ρ : F →M be vector bundles
with ranks k and m, respectively. Define a projection σ : Hom(E;F )→M by making

σ−1(x) = Hom(Ex;Fx),

so that the set Hom(E;F ) is the disjoint union of the spaces of linear maps from Ex
to Fx for x ranging over M .

Let (Uλ)λ∈L be an open cover of M for which one can define atlases (Uλ, ϕλ) for E
and (Uλ, ψλ) for F , with respective transition functions (gλµ) and (hλµ). Given λ ∈ L
and x ∈ Uλ, we have a homomorphism

Hom(ϕ−1
λ,x, ψλ,x) : Hom(Ex;Fx)→ Hom(Rk;Rm)

that takes L ∈ Hom(Ex;Fx) to ψλ,x ◦ L ◦ ϕ−1
λ,x ∈ Hom(Rk;Rm). Arguing in a similar

way as in the construction of the dual vector bundle, we arrive at a vector bundle atlas
for Hom(E;F ) whose transition functions are given by

fλµ(x) = Hom(gλµ(x), hλµ(x))

for x ∈ Uλ ∩ Uµ, hence take values in Aut(Hom(Rk;Rm)). When π : E → M and
ρ : F →M coincide, we write End(E) instead of Hom(E;E).

More generally, if E1, . . . , Ek and F are vector bundles over M , one may define a
vector bundle σ : Homk(E1, . . . , Ek;F )→M such that

σ−1(x) = Homk((E1)x, . . . , (Ek)x;Fx),

the vector space of k-linear maps of (E1)x × · · · × (Ek)x into Fx.

(iii) The Whitney sum: With notations as in the previous example, we define
E ⊕ F 7→M by setting (E ⊕ F )x = Ex ⊕ Fx. To obtain an atlas (Uλ, νλ), start from

νλ,x = ϕλ,x ⊕ ψλ,x : Ex ⊕ Fx → Rk ⊕ Rm = Rk+m,

and the transition function from νµ to νλ is given by

x 7→ gλµ(x)⊕ hλµ(x).

(iv) Tensor bundles: The vector bundle E ⊗ F → M is constructed by setting
(E ⊗ F )x = Ex ⊗ Fx and starting from

ϕλ,x ⊗ ψλ,x : Ex ⊗ Fx → Rk ⊗ Fx → Rk ⊗ Rm = Rkm,
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where (Uλ, ϕλ) and (Uλ, ψλ) are atlases of local trivializations for E and F , respectively.
Theorem A.1 can again be applied since the transition functions have the form

x 7→ gλµ(x)⊗ hλµ(x).

The standard identification

V ∗1 ⊗ · · · ⊗ V ∗k ⊗W ∼= Homk(V1, . . . , Vk;W )

for any vector spaces V1, . . . , Vk,W allows us also to identify the vector bundles

E∗1 ⊗ · · · ⊗ E∗k ⊗ F ∼= Homk(E1, . . . , Ek;F )

for any vector bundles E1, . . . , Ek, F over M .

Vector bundle morphisms: Given vector bundles πi : Ei → M , 1 ≤ i ≤ 2, a
differentiable map α : E1 → E2 is called a vector bundle morphism over M if it maps
π−1

1 (x) linearly into π−1
2 (x) for every x ∈ M . If α is a bijection (in which case α−1 is

also a morphism), then α is said to be a vector bundle isomorphism.
More generally, a morphism between vector bundles θ : D → N and π : E → M

over possibly distinct differentiable manifolds M and N is a differentiable map f̂ : D →
E that takes fibers linearly into fibers. The morphism f̂ induces a differentiable map
f : N →M such that π ◦ f̂ = f ◦ θ. The map f̂ is also said to be a morphism over f.

Vector subbundles: Let π : E → M is a vector bundle of rank k. If F ⊂ E is a
subset such that the restriction πF : F →M has also the structure of a vector bundle of
rank j such that the inclusion i : F → E is a vector bundle morphism, then F is called
a vector subbundle of E. In this case, the inclusion is always an embedding and F ∩Ex
is a vector subspace of Ex, and this is precisely the linear structure of the fiber Fx. In
particular, a subset of E admits at most one vector bundle structure with respect to
which it becomes a vector subbundle of E.

The induced vector bundle: Let π : E →M be a vector bundle and let f : N →M
be a differentiable map. Define

Ê = {(x, e) ∈ N × E : f(x) = π(e)}

and denote π̂(x, e) = x and f̂(x, e) = e. For each x ∈ N , set Êx = π̂−1(x) = {x}×Ef(x)

and f̂x = f̂ |Êx . Then Êx has a natural structure of vector space that makes f̂x an
isomorphism. Let (Uλ, ϕλ)λ∈L be an atlas of local trivializations for E, and let (gλµ)
be the corresponding transition functions. Defining

ϕ̂λ,x = ϕλ,f(x) ◦ f̂x, x ∈ Ûλ = f−1(Uλ),

we obtain, for each λ ∈ L, a bijection ϕ̂λ : π̂−1(Ûλ)→ Ûλ × Rk, where k is the rank of
E. It is immediate to verify that

ϕ̂λ,x ◦ ϕ̂−1
µ,x = gλµ(f(x)), x ∈ Ûλ ∩ Ûµ.



Appendix A. Vector bundles 533

Hence the Gluing Principle can be applied, making π̂ : Ê → N into a vector bundle.
The map f̂ is automatically a morphism over f . The total space Ê is usually denoted
by f ∗E.

Sections: A local section of the vector bundle π : E →M over an open set U ⊂M is
a differentiable mapping ξ : U → E such that π ◦ ξ = idU , that is, ξ(x) ∈ Ex for every
x ∈ U ; if U = M , then ξ is said to be a global section, or simply a section of π.

The set of sections over U is denoted by Γ(U,E), and Γ(M,E) is written Γ(E)
for short. The set Γ(U,E) is a module over C∞(U).

A section X : M → TM of the tangent bundle π : TM → M of a differentiable
manifold is a vector field on M . We write X(M) = Γ(TM). If f : N → M is a
differentiable map and π : E →M is a vector bundle, then a section ξ ∈ Γ(f ∗E) of the
induced bundle f ∗E is also called a section of E along f . In particular, a vector field
along f is a section of f ∗TM .

Given a vector bundle π : E → M of rank k, a local trivialization (U,ϕ) and a
section ξ ∈ Γ(E), there exists a differentiable map ξϕ : U → Rk, called the principal
part of ξ with respect to ϕ, such that

ϕ(ξ(x)) = (x, ξϕ(x))

for any x ∈ U . Differentiability of ξ is equivalent to differentiability of ξϕ for any local
trivialization (U,ϕ). In particular, the zero section of E, taking each x ∈ M to the
origin of Ex, is clearly differentiable, for its principal part with respect to any local
trivialization is a constant map.

If A ⊂ M is not necessarily an open subset, then a section of the vector bundle
π : E → M over A is a map ξ : A → E such that, for each x ∈ A, there exist an open
neighborhood Ux of x and a local section ξx ∈ Γ(Ux, E) such that ξx and ξ coincide in
Ux ∩ A.

A partition of unity argument shows that any section over a closed subset A ⊂M
can be extended to a global section on M . In particular, for every e ∈ E there is a
section ξ such that ξ(π(e)) = e.

Given vector bundles π1 : E1 → M and π2 : E2 → M , it is a basic fact that
Γ(Hom(E1;E2)) and Hom(Γ(E1); Γ(E2)) are naturally isomorphic as C∞(M)-modules.
Namely, to each section s ∈ Γ(Hom(E1;E2)) let φs : Γ(E1)→ Γ(E2) be given by

φs(σ)(p) = s(p)σ(p)

for any σ ∈ Γ(E1). It is easily seen that φs ∈ Hom(Γ(E1); Γ(E2)) and that the map

Φ: Γ(Hom(E1;E2))→ Hom(Γ(E1); Γ(E2))

defined by Φ(s) = φs is a module homomorphism. To construct its inverse, given a
module homomorphism φ : Γ(E1)→ Γ(E2) define s ∈ Γ(Hom(E1;E2)) by

s(x)(e) = φ(σ)(x)

for e ∈ E1(x), where σ is any section in Γ(E1) such that σ(x) = e. Using that φ is
linear over C∞(M) one can show that this is well defined, that is, the right-hand side
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of the preceding expression does not depend on the choice of σ. The constructed map
is easily checked to be the inverse of Φ.

More generally, if E1, . . . , Ek and F are vector bundles over M , then there is a nat-
ural isomorphism between Γ(Homk(E1, . . . , Ek;F )) and Homk(Γ(E1), . . . ,Γ(Ek); Γ(F ))
as C∞(M)-modules.

Moving frames: Let π : E → M be a vector bundle of rank k. A moving frame
on an open subset U ⊂ M is a set of k sections ξ1, . . . , ξk ⊂ Γ(U,E) such that
{ξ1(x), . . . , ξk(x)} is a basis of Ex for every x ∈ U . Each local trivialization (U,ϕ)
of E determines a moving frame η1, . . . , ηk on U by setting

ηi(x) = ϕ−1(x, ei), 1 ≤ i ≤ k,

where {e1, . . . , ek} is the canonical basis of Rk. Conversely, a moving frame ξ1, . . . , ξk
on U determines a local trivialization ϕ : π−1(U)→ U × Rk given by

ϕ(e) = (π(e), ϕπ(e)e),

where, for each x ∈ U , ϕx is the isomorphism between Ex and Rk determined by the
basis {ξ1(x), . . . , ξk(x)}. In other words,

ϕ−1(x, c1, . . . , ck) =
k∑
i=1

ciξi(x).

It follows that a vector bundle of rank k is trivial if and only if it admits a global
moving frame.

Semi-Riemannian metrics on vector bundles: Let π : E →M be a vector bundle
and let g : Γ(E) × Γ(E) → C∞(M) be a symmetric C∞(M)-bilinear map, or equiv-
alently, a symmetric section of E∗ ⊗ E∗. Then g is said to be a semi-Riemannian
metric on E if for every e ∈ E, e 6= 0, there exists f ∈ E such that π(e) = π(f) and
g(e, f) 6= 0. The index of the vector bundle is the index of g. If g(e, e) > 0 for every
e ∈ E, e 6= 0, then g is a Riemannian metric on E. Using partitions of unity it is easy
to show that any vector bundle admits a semi-Riemannian metric.

Linear connections: Let π : E → M be a vector bundle. A linear connection on E
is an R-bilinear map

X(M)× Γ(E)→ Γ(E)

(X, ξ) 7→ ∇Xξ

satisfying the properties

(i) ∇fXξ = f∇Xξ,

(ii) ∇Xfξ = X(f)ξ + f∇Xξ
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for all f ∈ C∞(M), X ∈ X(M) and ξ ∈ Γ(E).
From (i) it follows that the map X 7→ ∇Xξ is C∞(M)-linear and, consequently,

the value of ∇Xξ at x ∈M depends only on the value of X at x. It is also easy to see
that the operator ∇X : Γ(E)→ Γ(E) is a local operator in the sense that the value of
∇Xξ at x ∈M depends only on the values of ξ in a neighborhood of x.

Any section of the trivial bundle π : M × Rk →M has the form

ξ(x) = (x, f(x))

for some smooth function f : M → Rk, called the principal part of ξ. The canonical
connection on that bundle is defined by requiring that the principal part of ∇Xξ be
the function X(f).

A section ξ ∈ Γ(U ;E) is said to be parallel on U if ∇Xξ = 0 for every X ∈ X(U).
A vector subbundle F of E is parallel if ∇Xξ is a section of F for every X ∈ X(M)
whenever ξ is a section of F .

If π : E →M is a semi-Riemannian vector bundle, a linear connection ∇ on E is
said to be compatible with the metric g on E if

Xg(ξ, η) = g(∇Xξ, η) + g(ξ,∇Xη)

for all X ∈ X(M) and ξ, η ∈ Γ(E).

Induced connection: Let π : E → M be a vector bundle with connection ∇ and let
f : N → M be a differentiable map. Then there exists a unique connection f ∗∇ on
f ∗E, called the induced connection, such that

f ∗∇X(ξ ◦ f) = ∇f∗Xξ

for all X ∈ X(N) and ξ ∈ Γ(E). We often use the same symbol ∇ for the induced
connection, when there is no risk of confusion. For instance, if σ is a curve in M and
ξ ∈ Γ(E), we denote σ∗∇d/dt(ξ ◦ σ) simply by ∇d/dtξ.

If π : TM →M is the tangent bundle of a Riemannian manifold M , ∇ is its Levi-
Civita connection and f : N →M is a differentiable map, then the induced connection
on f ∗TM satisfies

∇Xf∗Y −∇Y f∗X = f∗[X, Y ]

for all X, Y ∈ X(N).

Parallel transport: Let π : E →M be a vector bundle with connection ∇. A section
ξ of E along a curve σ in M (that is, a section ξ of σ∗E) is said to be parallel if
∇d/dtξ = 0. If ξ ∈ Γ(E) and ∇d/dt(ξ ◦ σ) = 0 (that is, σ∗∇d/dt(ξ ◦ σ) = 0), then ξ is
said to be parallel along σ.

Given a curve σ : J →M , then for any a ∈ J and e ∈ Eσ(a) there exists a unique
section η along σ such that η is parallel and η(a) = e. It is called the parallel extension
of e along σ, and its value η(b) at any b ∈ J is the parallel transport of e along σ from
σ(a) to σ(b).

The map σab : Eσ(a) → Eσ(b) taking each element e ∈ Eσ(a) to its parallel transport
to Eσ(b) is an isomorphism which is an isometry if E is a semi-Riemannian vector bundle
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and ∇ is compatible with the metric. The connection ∇ can be recovered from the
parallel transport by the formula

∇Xξ =
d

dt
|t=aσtaξ(σ(t)), X = σ′(a).

Connections on tensor bundles: If π : E → M is a vector bundle, there exists a
unique connection ∇∗ on the dual vector bundle θ : E∗ → M that preserves duality,
that is, that satisfies

X(ω(η)) = (∇∗Xω)(η) + ω(∇Xη)

for all ω ∈ Γ(E∗), η ∈ Γ(E) and X ∈ X(M). Namely, just define the first term on the
right-hand side so that the preceding equation is satisfied, and check that this indeed
defines a connection on E∗. For instance,

(∇∗Xfω)(η) = X(fω(η))− (fω)(∇Xη)

= X(f)ω(η) + fX(ω(η))− fω(∇Xη)

= (X(f)ω + f∇∗Xω)(η)

for all f ∈ C∞(M), ω ∈ Γ(E∗) and η ∈ Γ(E). One often uses the same symbol ∇ for
the dual connection without risk of confusion.

If the vector bundle π : E → M is equipped with a semi-Riemannian metric
g : Γ(E)× Γ(E)→ C∞(M), then one has the musical isomorphism

η ∈ Γ(E) 7→ ηb ∈ Γ(E∗) ∼= Hom(Γ(E);C∞(M))

defined by
ηb(ξ) = 〈η, ξ〉

for all η, ξ ∈ Γ(E). In this case, the reader may easily check that the dual connection
∇∗ was defined so that

∇∗Xηb = (∇Xη)b

for all X ∈ X(M) and η ∈ Γ(E).
Now let E1, . . . , Ek be vector bundles over M , and let ∇i be a connection on Ei

for all 1 ≤ i ≤ k. Then there exists a unique way of defining a canonical connection

∇ : X(M)× Γ(E)→ Γ(E)

on the tensor bundle E = E1 ⊗ · · · ⊗ Ek in such a way that

∇X(η1 ⊗ · · · ⊗ ηk) =
k∑
i=1

η1 ⊗ · · · ⊗ ∇i
Xηi ⊗ · · · ⊗ ηk (A.1)

for all X ∈ X(M) and ηi ∈ Γ(Ei), 1 ≤ i ≤ k. Namely, using the identification

Γ(E) ∼= Homk(E∗1 , . . . , E
∗
k ;C

∞(M))
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one may define

(∇Xη)(ω1, . . . , ωk) = X(η(ω1, . . . , ωk))−
k∑
i=1

η(ω1, . . . ,∇i
Xωi, . . . , ωk)

for all X ∈ X(M), η ∈ Γ(E) and ωi ∈ Γ(E∗i ), 1 ≤ i ≤ k, where we have used the
symbol ∇i also for the dual connection on E∗i . With this definition, one can easily
check that (A.1) is satisfied for any η = η1 ⊗ · · · ⊗ ηk ∈ Γ(E). In fact, one may use
(A.1) as the definition of the connection ∇ on E once one takes into account that ∇X

is a local operator, that Γ(E) is locally generated by sections of the type η1 ⊗ · · · ⊗ ηk
and that the right-hand side of equation is k-linear over R on (η1, . . . , ηk), which makes
the left-hand side well defined.

Given vector bundles E and F , since Hom(E;F ) is naturally identified with
E∗ ⊗ F , the preceding definition yields a canonical connection on Hom(E;F ), which
satisfies

(∇XB)η = ∇XBη −B(∇Xη)

for all X ∈ X(M), B ∈ Γ(Hom(E;F )) ∼= Hom(Γ(E); Γ(F )) and η ∈ Γ(E), where we
have denoted with the same symbol ∇ the connections on Hom(E;F ), E and F .

One says that B ∈ Γ(Hom(E;F )) is parallel if ∇XB is the zero section of
Hom(E;F ) for any X ∈ X(M).

As another case of special interest for us in this book, let E1, E2 and F be vector
bundles over M . Then the canonical connection on Hom(E1, E2;F ) ∼= E∗1 ⊗E∗2 ⊗ F is
such that

(∇XB)(η1, η2) = ∇XB(η1, η2)−B(∇Xη1, η2)−B(η1,∇Xη2)

for all X ∈ X(M), B ∈ Γ(Hom(E1, E2;F )) ∼= Hom2(Γ(E1),Γ(E2); Γ(F )) and η ∈ Γ(E),
where ∇ stands for the connections on all the vector bundles Hom(E1, E2;F ), E1, E2

and F . Also in this case, that B ∈ Γ(Hom(E1, E2;F )) is parallel means that ∇XB = 0
for any X ∈ X(M).

The horizontal distribution: Let π : E → M be a vector bundle. Since π is a
submersion, the kernel of π∗ is a vector subbundle V of TE with the same rank as
that of E, called the vertical subbundle of TE. A linear connection ∇ on π : E → M
determines a horizontal map β : π∗TM → TE, that is, a vector bundle morphism from
π∗TM into TE such that π∗ ◦ β = idTM .

Namely, given (e, v) ∈ π∗TM , let σ be a curve in M with initial velocity v; the
parallel extension of e along σ is a curve in E whose initial velocity is, by definition,
β(e, v). It is easy to check that β is well defined and satisfies π∗ ◦β = idTM . The image
subbundle H of β is thus a vector subbundle of TE such that TE is the Whitney sum
TE = V⊕H. It is called the horizontal subbundle of TE.

A curve τ in E is said to be horizontal if it is everywhere tangent to H. The
construction of the parallel transport shows that, given e ∈ E, any curve in M with
initial point π(e) has a unique horizontal lift with initial point e. Note also that a curve
τ in E is horizontal if, and only if, τ is a parallel section of E along π ◦ τ .
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Let π : E → M be a vector bundle with a linear connection ∇. If the horizontal
distribution H is integrable, then each e ∈ E admits a parallel local extension, that is,
there exists a local section ξ on a neighborhood of π(e) such that ξ(π(e)) = e and ξ is
parallel along any curve in its domain. For if S is an integral manifold of H and e ∈ S,
then the restriction π|S is a local diffeomorphism, hence there exists a neighborhood U
of π(e) in M and a local inverse ξ : U → S. Clearly, ξ ∈ Γ(U ;E) and ξ(π(e)) = e. If σ
is a curve in U , then ξ ◦ σ is a horizontal curve, that is, ξ is parallel along σ. For the
converse it suffices to observe that the image of any parallel local section is an integral
manifold of H.

The curvature tensor: The curvature tensor of a vector bundle π : E → M with
linear connection ∇ is the R-trilinear map R : X(M)× X(M)× Γ(E)→ Γ(E) defined
by

R(X, Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ.

It is easily seen that R is trilinear over C∞(M), hence the value of R(X, Y )ξ at x ∈M
depends only on the values of X, Y and ξ at x. In other words, we can also regard R
as a section of Hom(TM, TM,E;E).

If π : M ×Rk →M is a product vector bundle and ∇ is its canonical connection,
then it follows from the definition of the bracket of vector fields that its curvature
tensor is identically zero.

Given a vector bundle π : E → M with connection ∇ and a differentiable map
f : N →M , the curvature tensor R̄ of the induced connection on f ∗E is given in terms
of the curvature tensor R of E at any point x ∈ N by

R̄(X, Y )e = R(f∗X, f∗Y )e

for all X, Y ∈ TxN and for all e ∈ Ef(x).

Flat connections: A linear connection ∇ on a vector bundle π : E → M is said
to be flat if its curvature tensor R vanishes identically. A fundamental fact is that
flatness of ∇ is a necessary and sufficient condition for integrability of the horizontal
distribution H.

Theorem A.3. Let π : E → M be a vector bundle with a linear connection ∇. Then
each e ∈ E has a local parallel extension if and only if ∇ is flat.

A global version of the preceding theorem is as follows.

Theorem A.4. Let π : E → M be a vector bundle of rank k with a linear connection
∇ over a simply connected manifold. Then the following assertions are equivalent:

(i) The connection ∇ is flat.

(ii) There exists a global parallel moving frame ξ1, . . . , ξk.

(iii) There exists a parallel vector bundle isomorphism Φ: E →M × Rk.
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The proof of the Fundamental theorem of submanifolds relies on the following
consequence of Theorem A.4 for semi-Riemannian vector bundles.

Corollary A.5. Let π : E →M be a semi-Riemannian vector bundle of rank k with a
compatible linear connection ∇ over a simply connected manifold. Then the following
assertions are equivalent:

(i) The connection ∇ is flat.

(ii) There exists a global parallel orthonormal moving frame ξ1, . . . , ξk.

(iii) There exists a parallel vector bundle isometry Φ: E →M × Rk.



Bibliography

[1] Abe, K., A characterization of totally geodesic submanifolds in SN and CPN by
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[130] Dajczer, M. and Rodŕıguez, L., Euclidean hypersurfaces which make a constant
angle, “Differential Geometry” Pitman Monographs and Surveys in Pure and
Applied Mathematics 52 (1991), 103–110.
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[248] Mirandola, H. and Vitório, F., Global isometric embeddings of multiple warped
product metrics into quadrics, Kodai Math. J. 38 (2015) 119–134.

[249] Miyaoka, R., Complete hypersurfaces in the space form with three principal cur-
vatures, Math. Z. 179 (1982), 345–354.

[250] Miyaoka, R., Correction of “Complete hypersurfaces in the space form with three
principal curvatures”. Bol. Soc. Brasil. Mat. 18 (1987), 83–94.



556 Bibliography

[251] Molzan, R., Extrinsische Produkte und symmetrische Untermannigfaltigkeiten
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[252] Moore, J. D., Isometric immersions of Riemannian products, J. Differential
Geom. 5 (1971), 159–168.

[253] Moore, J. D., Isometric immersions of space forms in space forms, Pacific J.
Math. 40 (1972), 157–166.

[254] Moore, J. D., An application of the second variation to submanifold theory, Duke
Math. J. 42 (1975), 191–193.

[255] Moore, J. D., Submanifolds of constant positive curvature I, Duke Math. J 44
(1977), 449–484.

[256] Moore, J. D., Conformally flat submanifolds of Euclidean space, Math. Ann.
225 (1977), 89–97.

[257] Moore, J. D., On conformal immersions of space forms, “Global Differential
Geometry and Global Analysis (Berlin, 1979),” Lectures Notes in Math. 838,
Springer-Verlag, Berlin, 1981,

[258] Moore, J. D., Isometric homotopy in codimension two, Trans. Amer. Math. Soc.
292 (1985), 653–663.

[259] Moore, J. D., Codimension two submanifolds of positive curvature, Proc. Amer.
Math. Soc. 70 (1978), 72–74.

[260] Moore, J. D. and Morvan, J-M., Conformally flat submanifolds of codimension
four, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), A655–A657.

[261] Moore, J. D. and Noronha, M., Isometric immersions with congruent Gauss
maps, Proc. Amer. Math. Soc. 110 (1990), 463–469.

[262] Mori, H., Remarks on complete deformable hypersurfaces in Hn+1, Indiana Univ.
Math. J. 42 (1993), 361–366.

[263] Mori, H., Remarks on complete deformable hypersurfaces in R4, J. Differential
Geom. 40 (1994), 1–6.

[264] Moutinho, I. and Tojeiro, R., Polar actions on compact Euclidean hypersurfaces,
Ann. Global Anal. Geom. 33 (2008), 323–336.

[265] Nash, J., The imbedding problem for Riemannian manifolds, Ann. of Math. 63
(1956), 20–63.

[266] Nikolayevsky, Y., Non-immersion theorem for a class of hyperbolic manifolds,
Differential Geom. Appl. 9 (1998), 239–242.



Bibliography 557

[267] Nölker, S., Isometric immersions of warped products, Differential Geom. Appl.
6 (1996), 1–30.

[268] Nomizu, K., Characteristic roots and vectors of a differentiable family of sym-
metric matrices, Linear Multilinear Algebra 1 (1973), 159–162.

[269] Nomizu, K., Isometric immersions of the hyperbolic plane into the hyperbolic
space, Math. Ann. 205 (1973), 181–192.

[270] Nomizu, K., Uniqueness of the normal connections and congruence of isometric
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[303] Rodŕıguez, L., Immersions of non-zero relative nullity in manifolds of constant
positive curvature, Arch. Math. 32 (1979), 181–184.

[304] Ros, A., Compact hypersurfaces with constant scalar curvature and a congruence
theorem, J. Differential Geom. 27 (1988), 215–220.

[305] Ryan, P., Homogeneity and some curvature conditions for hypersurfaces,
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