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§1. Notations

Top. manifolds: Hausdorff + countable basis. Partitions of unity.

n-dimensional differentiable manifolds: Mn. Everything is C∞.

F(M) := C∞(M,R); F(M,N) := C∞(M,N).

(x, U) chart ⇒ coordinate vector fields = ∂i := ∂/∂xi ∈ X(U).

Tangent bundle TM , vector fields X(M) := Γ(TM) ∼= D(M).

Immersions, embeddings, local diffeomorphisms and submersions.

Vector bundles, trivializing charts, transition functions, sections.

Tensor fields Xr,s(M), k-forms Ωk(M), orientation, integration.

Pull-back of a vector bundle π : E → N over N : f ∗(E).

Vector fields along a map f : M → N : Xf
∼= Γ(f ∗(TN)).

Immersions, submersions, diffeomorphisms, and local diffeos.

Example: Lie Groups G, Lg, Rg; g := TeG is an algebra;

Integral curve γ of X ∈ g through e is a homomorphism ⇒
expG : g→ G, expG(X) := γ(1) ⇒ expG(tX) = γ(t).

§2. Geometry = Measurement of the Earth

Geography: Eratosthenes (276 BC,194 BC), measured the Earth

circumference in ‘stadia’. He computed the angle as “a fiftieth

of a circle.” Total error < 16.3%. (Columbus knew Eratosthenes

measurement, and lied!). He also measured the angle of the Earth

axis with respect to the ecliptic, and its distance to the Sun.
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§3. Riemannian metrics

Gauss, 1827: M 2 ⊂ R3 ⇒ 〈 , 〉|M2, KM = KM(〈 , 〉), distances,

areas, volumes... Non-Euclidean geometries.

Riemann, 1854: 〈 , 〉 ⇒ KM (relations proved decades later).

Slow development. General Relativity pushed up!

Riemannian metric, Riemannian manifold: (Mn, 〈 , 〉) = Mn.

gij := 〈∂i, ∂j〉 ∈ F(U)⇒ (gij) ∈ C∞(U, S(n,R) ∩Gl(n,R)).

Isometries, local isometries, isometric immersions.

Product metric. TpV ∼= V, TV ∼= V× V.

Examples: (Rn, 〈 , 〉can), Euclidean submanifolds. Nash.

Example: (bi-)invariant metrics on Lie groups.

Proposition 1. Every differentiable manifold admits a Rie-

mannian metric.

Angles between vectors at a point. Norm.

It always exists local orthonormal frames: {e1, . . . , en}. ⇒

Proposition 2. Given an oriented Riemannian manifold

Mn, there exists a unique volume form dvol ∈ Ωn(Mn) such

that dvol(e1, . . . , en) = 1 for any positively oriented orthonor-

mal basis {e1, . . . , en} at any point.

If ∂i=
∑

j Cijej ⇒ (gij) = CCt ⇒ dvol(∂1,· · ·, ∂n) = det(C)⇒

dvol|U =
√

det(gij) dx1 ∧ · · · ∧ dxn.

So, we can “integrate functions”. Volume of (compact) sets.

Riemannian vector bundles: (E, 〈 , 〉).
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§4. Distance

Length of a piecewise differentiable curve ⇒ Riem. distance d.

The topology of d coincides with the original one on M .

§5. Linear connections

If Mn = RN , or even if Mn ⊂ RN , there is a natural way to

differentiate vector fields. And this depends only on 〈 , 〉.
Def.: An affine connection or a linear connection or a covari-

ant derivative on M is a map

∇ : X(M)× X(M)→ X(M)

with∇XY being R-bilinear, tensorial in X and a derivation in Y .

Tensoriality in X ⇒ (∇XY )(p) = ∇X(p)Y makes sense.

Local oper.: Y |U =0⇒ (∇XY )|U =0⇒ (∇XZ)|U =∇U
X|U (Z|U)

⇒ The Christoffel symbols Γkij of ∇ in a coordinate system⇒
Christoffel symbols completely determine the connection: all that

is needed is to have local basis of sections ⇒
Connections on vector bundles: formally exactly the same.

The above property on U is a particular case of the following:

Proposition 3. Let ∇ be a linear connection on M (or any

vector bundle). Then, for every smooth map f : N → M ,

there exists a unique linear connection ∇f : X(N)×Xf → Xf

on f ∗(TM) such that

∇f
Y (X ◦ f ) = ∇f∗YX, ∀ Y ∈ X(N), X ∈ X(M).
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We will omit the superindex f in ∇f .

In particular, Proposition 3 holds for any smooth curve α(t) =

α : I ⊂ R→M , and if V ∈ Xα we denote V ′ := ∇∂tV ∈ Xα.

So, if α′(0) = v, ∇vY = (Y ◦ α)′(0). But beware of “∇α′α
′”!!

Def.: V ∈ Xα is parallel if V ′ = 0. We denote by X′′α the set of

parallel vector fields along α.

Proposition 4. Let α : I ⊂ R → M be a piecewise smooth

curve, and t0 ∈ I. Then, for each v ∈ Tα(t0)M , there exists a

unique parallel vector field Vv ∈ Xα such that Vv(t0) = v.

The map v 7→ Vv is an isomorphism between Tα(t0)M and X′′α,

and the map (v, t) 7→ Vv(t) is smooth when α is smooth ⇒
Def.: The parallel transport of v ∈ Tα(t)M along α between t

and s is the map P α
ts : Tα(t)M → Tα(s)M given by P α

ts(v) = Vv(s).

Notice that F(M) = X0(M) = X0,0(M) and X(M) = X0,1(M).

Covariant differentiation of 1-forms and tensors: ∀r, s ≥ 0,

∇ ⇒


∇ : Xr(M)→ Xr+1(M);

∇ : Xr,s(M)→ Xr+1,s(M);

∇ : Xr,s(E, ∇̂)→ Xr+1,s(E, ∇̂);

for any affine vector bundle (E, ∇̂) (in partic., forE = (TM,∇)).

§6. The Levi-Civita connection !

Def.: A linear connection∇ on a Riemannian manifold (M, 〈 , 〉)
is said to be compatible with 〈 , 〉 if, for all X, Y, Z ∈ X(M),

X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉.
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Exercise. ∇ is compatible with 〈 , 〉 ⇐⇒ ∀V,W ∈ Xα, 〈V,W 〉′ = 〈V ′,W 〉 + 〈V,W ′〉 ⇐⇒

∀V,W ∈ X′′α, 〈V,W 〉 is constant ⇐⇒ Pαts is an isometry, ∀α, t, s ⇐⇒ ∇〈 , 〉 = 0.

Def.: The tensor T∇(X, Y ) := ∇XY −∇YX − [X, Y ] is called

the torsion of ∇. We say that ∇ is symmetric if T∇ = 0.

Miracle: For a Riemannian manifold (M, 〈 , 〉), there exists

a unique linear connection on M that is symmetric and com-

patible with 〈 , 〉 : the Levi-Civita connection of (M, 〈 , 〉).
This is a consequence of the Koszul formula: ∀X, Y, Z ∈ X(M),

2〈∇XY,Z〉 = X〈Y,Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉 − 〈X, [Y, Z]〉 − 〈Y, [X,Z]〉+ 〈Z, [X,Y ]〉.

Exercise. Verify that this formula defines a linear connection with the desired properties.

This is the only connection that we will work with. In coordinates,

if (gij) := (gij)
−1,

Γkij =
1

2

∑
r

(
∂gir
∂xj

+
∂gjr
∂xi
− ∂gij
∂xr

)
grk .

Exercise. Show that, for (Rn, 〈 , 〉can), Γkij = 0 and ∇ is the usual vector field derivative.

Exercise. Use Koszul formula to show that the Levi-Civita connection of a bi-invariant metric

of a Lie Group satisfies, and is characterized, by the property that ∇XX = 0 ∀X ∈ g.

Lemma 5. (Symmetry and Compatibility Lemma) Let N

be any manifold, and f : N → M a smooth map into a

Riemannian manifold M . Then:

• Since ∇ compatible with the metric, ∇f is also compatible

with the natural metric on f ∗(TM);

• Since ∇ symmetric, ∇f is also symmetric, that is, we

have ∇f
Xf∗Y −∇

f
Y f∗X = f∗[X, Y ], ∀ X, Y ∈ X(N).
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Example: f : N → M an isometric immersion ⇒ f ∗(TM) =

f∗(TN)⊕⊥ T⊥f N ⇒ ∀ Z ∈ Xf , Z = Z> + Z⊥ ⇒ the relation

between the Levi-Civita connections is f∗∇N
XY = (∇f

Xf∗Y )>.

Remark 6. f : N →M ⇒ Xf = Tf(F(N,M)).

§7. Geodesics !!

When do we have minimizing curves? What are those curves?

The Brachistochrone problem and the Calculus of Variations.
Galileo, 1638: wrong solution (circle) in the Discorsi. Johann Bernoulli posed the problem in

1696 and gave 6 months to solve it (he already knew the solution was a cycloid). Leibniz asked

for more time for ‘foreign mathematicians’ to attack the problem. They tempted Newton, who

didn’t like to be teased ‘by foreigners’, but solved the problem in less than half a day. The Royal

Society published Newton’s solution anonymously, but there is a legend of Johann Bernoulli

claiming in awe with the solution in his hands: “I recognize the lion by his paw.”

Critical points of the arc-length funct. L : Ωp,q → R: geodesics:

γ′′ := ∇d
dt
γ′ = 0.

Geodesics = second order nonlinear nice ODE ⇒

Proposition 7. ∀ v ∈ TM , ∃ ε > 0 and a unique geodesic

γv : (−ε, ε)→M such that γ′v(0) = v (⇒ γv(0) = π(v)).

γ a geodesic ⇒ ‖γ′‖ = constant.

γ and γ ◦ r nonconstant geodesics ⇒ r(t) = at + b, a, b ∈ R⇒
γv(at) = γav(t); γv(t + s) = γγ′v(s)(t)⇒ geodesic field G of M :

Proposition 8. There is a unique vector field G ∈ X(TM)

such that its trajectories are γ′, where γ are geodesics of M .

The local flux of G is called the geodesic flow of M . In particular:
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Corollary 9. For each p ∈M , there is a neighborhood Up ⊂
M of p and positive real numbers δ, ε > 0 such that the map

γ : TεUp × (−δ, δ)→M, γ(v, t) = γv(t),

is differentiable, where TεUp := {v ∈ TUp : ‖v‖ < ε}.

Since γv(at) = γav(t), changing ε by εδ/2 we can assume δ = 2⇒
We have the exponential map of M (terminology from O(n)):

exp : TεUp →M, exp(v) = γv(1).

⇒ exp(tv) = γv(t)⇒ expp = exp |TpM : Bε(0p)⊂TpM →M ⇒

Proposition 10. For every p ∈ M there is ε > 0 such that

Bε(p) := expp(Bε(0p)) ⊂ M is open and expp : Bε(0p) → Bε(p)

is a diffeomorphism.

An open set p ∈ V ⊂M onto which expp is a diffeomorphism as

above is called a normal neighborhood of p, and when V = Bε(p)

it is called a normal or geodesic ball centered at p.

Proposition 10 ⇒
(
expp |Bε(0p)

)−1
is a chart of M in Bε(p)⇒

We always have (local!) polar coordinates for any (M, 〈 , 〉):

ϕ : (0, ε)× Sn−1 → Bε(p)\{p}, ϕ(s, v) = γv(s), (1)

where Sn−1 = {v ∈ TpM : ‖v‖ = 1} is the unit sphere in TpM .

Examples: (Rn, can); (Sn, can).

Exercise. Show that for a bi-invariant metric on a Lie Group, it holds that expe = expG.
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§8. Geodesics are (local) arc-length minimizers

Lemma 11. (Gauss’ Lemma) Let p ∈M and v ∈ TpM such

that γv(s) is defined up to time s = 1. Then,

〈(expp)∗v(v), (expp)∗v(w)〉 = 〈v, w〉, ∀ w ∈ TpM.

Proof: If f (s, t) := γv+tw(s) = expp(s(v + tw)) then, for t = 0,

fs = (expp)∗sv(v), ft = (expp)∗sv(sw) and 〈fs, ft〉s = 〈v, w〉.

Gauss’ Lemma⇒ Sε(p) := ∂Bε(p) ⊂M is a regular hypersurface

of M orthogonal to the geodesics emanating from p, called the

geodesic sphere of radius ε centered at p.

Now, Bε(p) := expp(Bε(0p)) ⊂ M as in Proposition 10 agrees

with the metric ball of (M,d) !!!!! More precisely:

Proposition 12. Let Bε(p) ⊂ U a normal ball centered at

p ∈ M . Let γ : [0, a] → Bε(p) be the geodesic segment with

γ(0) = p, γ(a) = q. If c : [0, b]→ M is another piecewise dif-

ferentiable curve joining p and q, then l(γ) ≤ l(c). Moreover,

if equality holds, then c is a monotone reparametrization of γ.

Proof: In polar coordinates, c(t) = expp(s(t)v(t)) in Bε(p)\{p},
and if f (s, t) := expp(sv(t)) = γv(t)(s), we have that c′ = s′fs+ft.

Now, use that fs ⊥ ft, by Gauss’ Lemma.

Corollary 13. d is a distance on M , dp := d(p, ·) is differ-

entiable in Bε(p)\{p}, and d2
p is differentiable in Bε(p).

Exercise. Compute ‖∇dp‖ and the integral curves of ∇dp inside Bε(p)\{p}.

Remark 14. Proposition 12 is LOCAL ONLY, and ε = ε(p):

Rn; Sn; Rn \ {0}.
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§9. Geodesics: convex neighborhoods

Problem: a normal ball Bε(p) may not be a convex set, like in Sn.

But it is a strongly convex set for ε small enough!

Proposition 15. For each p ∈ M , there is an open neigh-

borhood W of p and δ > 0 such that, for all q ∈ W , Bδ(q) is

a normal ball around q and W ⊂ Bδ(q) (e.g., W = Bδ/2(p)).

That is, W is a normal neighborhood of all of its points.

Proof: Following the notations in Corollary 9, consider F :

TεUp → M × M , F (v) = (π(v), exp(v)) for the usual bundle

projection π : TM →M ⇒ F∗0p =
(
I 0
I I

)
⇒ F : TδU

′
p →W is

a diffeo, with p ∈ U ′p and F (0p) = (p, p) ∈ W ⊂ M ×M . Now

take any W ⊂M with (p, p) ∈ W ×W ⊂ W .

W as Proposition 15 is called a totally normal neighborhood.

Remark 16. The proof shows that, ∀q, q′ ∈ W,∃ ! geodesic

γv joining q and q′ with l(γv) < δ. Moreover, v = v(q, q′) is a

differentiable function, so γv depends differentiably of q and q′.

Corollary 17. If a piecewise differentiable curve c : [a, b]→
M p.b.a.l. realizes the distance between c(a) and c(b), then c

is a geodesic. In particular, c is regular (see Proposition 12).

Lemma 18. Given p ∈ M , there exists an ε > 0 such that,

for all 0 < r < ε, every geodesic γ tangent to Sr(p) at γ(0)

stays outside of Br(p) around 0.

Proof: Let W and δ as in Proposition 15, and consider γ :

(−δ, δ)×T1W →M , γ(t, v) = γv(t). If w(t, v) := exp−1
p (γv(t)),
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then F (t, v) := ‖w(t, v)‖2 = d2(p, γv(t)) for |t| < δ. Observe

that for q = p, ∂2F/∂t2(0, v) = 2, and hence ∂2F/∂t2(0, v) > 0

for q ∈ W close to p and all unit v ∈ TqM . But for Bs(p) ⊂ W

and v ∈ Tq(Ss(p)), by Gauss Lemma ∂F/∂t(0, v) = 0. Therefore,

t = 0 is a local minimum of F (·, v) for v ∈ Tq(Ss(p)).

Proposition 19. For every p ∈M , there is α > 0 such that

Bα(p) is strongly convex.

Proof: Take α < ε/2 for ε as in Lemma 18 in such a way that

Bε(p) ⊂ W for any W as in Proposition 15.

What we have shown can be summarized as follows:

Theorem 20. For all p ∈ M , there is ε0 > 0 such that,

for every 0 < ε < ε0, Bε(p) is a totally normal and strongly

convex neighborhood. In particular, for every q 6= q′ ∈ Bε(p),

there exists a unique minimizing (p.b.a.l.) piecewise differ-

entiable curve joining q and q′, which is a smooth geodesic

segment (whose interior is) contained in Bε(p), and that de-

pends differentiably on q and q′.

§10. Curvature !!

Gauss: K(M 2⊂R3)=K(〈 , 〉). Riemann: K(σ)=Kp(expp(σ)).

Def.: The curvature tensor or Riemann tensor of M is (sign!)

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

We also call R the (4,0) tensor given by

R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉.
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Curvature tensor R∇̂ of a vector bundle E with a connection ∇̂:

exactly the same.

Proposition 21. For all X, Y, Z,W ∈ X(M), it holds that:

• R is a tensor;

• R(X, Y, Z,W ) is skew-symmetric in X, Y and in Z,W ;

• R(X, Y, Z,W ) = R(Z,W,X, Y );

• R(X, Y )Z+R(Y, Z)X+R(Z,X)Y = 0 (first Bianchi id.);

• Rs
ijk =

∑
l Γ

l
ikΓ

s
jl−
∑

l Γ
l
jkΓ

s
il+∂jΓ

s
ik−∂iΓsjk (⇒ R ∼= ∂2〈 , 〉).

Proof: Exercise.

〈 , 〉 ⇒ X(M) ∼= Ω1(M) and 〈 , 〉 extends to the tensor algebra

⇒ the curvature operator R : Ω2(M)→ Ω2(M) is self-adjoint.

Def.: If σ ⊂ TpM is a plane, then the sectional curvature of

M in σ is given by

K(σ) :=
R(u, v, v, u)

‖u‖2‖v‖2 − 〈u, v〉2
, σ = span{u, v}.

Proposition 22. If R and R′ are tensors with the symme-

tries of the curvature tensor + Bianchi such that R(u,v,v,u) =

R′(u,v,v,u) for all u, v, then R = R′ (⇒ K determines R).

Corollary 23. If M has constant sectional curvature c ∈ R,

then R(X, Y, Z,W ) = c(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉).
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Def.: The Ricci tensor is the symmetric (2,0) tensor given by

Ric(X, Y ) :=
1

n− 1
traceR(X, ·, ·, Y ),

and the Ricci curvature is Ric(X) = Ric(X,X) for ‖X‖ = 1.

Def.: The scalar curvature of M is scal := traceRic/n.

Lemma 24. (Compare with Lemma 5) Let f : U ⊂ R2 →M

be a map into a Riemannian manifold and V ∈ Xf . Then,

∇∂t∇∂sV −∇∂s∇∂tV = R(f∗∂t, f∗∂s)V.

Equivalently, R∇f (·, ·)V = f ∗(R∇(·, ·)V ) for every f : N→M .

Proof: Since R∇f is a tensor, we can fix p ∈ N , x1, x2 ∈ TpN ,

v ∈ Tf(p)M , f -related vector fields Xi ∼ X i and V = V ◦ f
satisfying xi = X(p), v = V (p), and compute R∇f (x, y)v.

§11. Jacobi fields

There’s a strong relationship between geodesics and curvature,

since curvature measures how fast geodesics come apart. The

same tool to prove this is used also to understand the singularities

of the exponential map: the Jacobi fields.

Given a variation of a geodesic γ by geodesics, the variational

vector field J ∈ Xγ satisfies the Jacobi equation, i.e.,

J ′′ + R(J, γ′)γ′ = 0.

A vector field along a geodesic γ satisfying the Jacobi equation

above is called a Jacobi field : XJ
γ ={J ∈ Xγ : J ′′ = R(γ′, J)γ′}.
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The Jacobi equation is a second order linear ODE (take a parallel

frame if not convinced)⇒ ∀ geodesic γ and every u, v ∈ Tγ(t0)M ,

there exists a unique J ∈ XJ
γ such that J(t0) = u, J ′(t0) = v.

Remark 25. γ′(t), tγ′(t) ∈ XJ
γ , 〈J, γ′〉′′ = 0 ⇒ WLG, J ⊥ γ.

Proposition 26. Let γ(s) a geodesic, v = γ′(0) ∈ TpM , and

J ∈ XJ
γ with J(0) = 0, J ′(0) = w ⇒ J(t) = d(expp)∗tv(tw), and

there is a variation ξ of γ by geodesics such that J = ξt(0, ·).

Example: If K = c = constant ⇒ J(t) = h(t)w(t), where

w ∈ X′′γ and h(t) = sin(t), t, sinh(t) according to c = 1, 0,−1.

Proposition 27. With the notations of Proposition 26,

‖J(t)‖2 = t2‖w‖2 − 1

3
〈R(w, v)v, w〉t4 + O(t4).

Exercise. Show that d(γv(t), γw(t)) = t‖v−w‖− 1
6
〈R(w,v)v,w〉
‖v−w‖ t3 +O(t4); see eq.(9) in [Me].

Corollary 28. If in addition v ⊥ w, ‖v‖ = ‖w‖ = 1, then

‖J(t)‖ = t− 1

6
K(v, w)t3 + O(t3).

OBS: Geometric relation between geodesics and curvature!!!

Exercise. Prove that a bi-invariant metric on a Lie
group has K ≥ 0 justifying the following diagram:
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§12. Conjugate points

Conjugate points and their multiplicity = singularities of expp.

C(p) = locus of the first conjugate points to p.

Example: Sn.

NCP manifolds.

Proposition 29. If p′ = γ(t0) is not conjugate to p = γ(0)

along γ ⇒ ∀ v ∈ TpM, ∀ v′ ∈ Tp′M , there exists a unique

J ∈ XJ
γ such that J(0) = v and J(t0) = v′. In particular, if

{J1, . . . , Jn−1} is a basis of the space of Jacobi fields orthogo-

nal to γ vanishing at 0, then {J1(t0), . . . , Jn−1(t0)} is a basis

of γ′(t0)⊥ ⊂ Tp′M .

This is useful to construct special bases of vector fields along

geodesics.

§13. Isometric immersions

As we have seen in the Example in page 5, if f : M → N is

an isometric immersion ⇒ f ∗(TN) = f∗(TM) ⊕⊥ T⊥f M , and

∇M
X Y = (∇f

Xf∗Y )>, ∀X, Y ∈ TM . Moreover, we have that

α(X, Y ) :=
(
∇f
Xf∗Y

)⊥
is a symmetric tensor, called the second fundamental form of f .

In addition, ∇⊥ : TM × Γ(T⊥f M)→ Γ(T⊥f M) given by

∇⊥Xη =
(
∇f
Xη
)⊥
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is a connection in T⊥f M , called the normal connection of f .

Identifications.

Exercise. Show that ∇⊥ is a connection, and is compatible with the induced metric on T⊥f M .

α(p) is the quadratic approximation of f (M) ⊂ N at p ∈ M .

Picture!

η ∈ T⊥f(p)M ⇒ (self-adjoint!) shape operatorAη : TpM → TpM .

Hypersurfaces: Principal curvatures and directions; mean curva-

ture; Gauss-Kronecker curvature; Gauss map.

The Fundamental Equations. Particular case: K = constant ⇒
the Fundamental Theorem of Submanifolds.

Gauss equation⇔ K(σ) = K(σ)+〈α(u, u), α(v, v)〉−‖α(u, v)‖2

⇒ Riemann notion of sectional curvature agrees with ours.

Example: Sn−1
r ⊂ Rn ⇒ K ≡ 1/r2: it had to be constant.

Model of the Hyperbolic Space as a submanifold in Ln+1.

§14. An interesting example: the geodesic spheres

If γ is a unit geodesic, p = γ(0), we consider the shape operator

A(s) = −Aγ′(s) ∈ End(Tγ(s)M) with respect to the unit inward

normal at γ(s) of a small geodesic sphere of radius s centered

at p, then AJ = J ′ for any J ∈ XJ
γ with J(0) = 0 and J ⊥ γ.

In particular: K≡0⇒ A(s) = s−1I ; K≡1⇒ A(s) = cot(s)I .

Exercise. Show that A = −Hessdp |γ⊥ , and lims→0 sA(s) = Id (Sug: use normal coordinates).

If RX := R(·, X)X , then AJ = J ′ ⇒

A′ + A2 + Rγ′ = 0 (2)

This is known as the Riccati equation, and has the same informa-
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tion as the Jacobi equation. Moreover, it implies that: if we can

compare the curvature of two manifolds, we can also compare

the shape of geodesic balls (like s−1I < cot(s)I above). We will

see this in Section 25 and Section 26.

Global Riemannian Geometry

§15. Completeness and the Hopf-Rinow Theorem

Until now, only local stuff. We have problems: Geodesics not

defined in R; domain of the exponential map may be strange; far

away points may not have geodesics joining them; even if they do,

may not be minimizing; the manifolds may have ”holes”; (M,d)

may not be complete... All these problems have the same solution!

Def.: M is (geod.) complete if all geodesics are defined in R.

Proposition 30. M complete ⇒ M is non-extendible.

Lemma 31. If q 6∈ Bε(p) normal⇒ d(q, ∂Bε(p)) = d(q, p)−ε.

Theorem 32. (H-R) Let (M, 〈 , 〉) be a connected Rieman-

nian manifold, and p0 ∈M . The following are equivalent:

a) expp0
is defined in Tp0M ;

b) Closed bounded subsets of M are compact;

c) (M,d) is a complete metric space;

d) (M, 〈 , 〉) is (geodesically) complete;
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e) There is a sequence of compact sets Kn ⊂ Kn+1 ⊂ M ,

∪nKn=M such that if pn 6∈ Kn ∀n⇒ lim
n→+∞ d(p0, pn) = +∞.

In addition, any of these is equivalent to the following:

f ) ∀p, q ∈M , there is a minimizing geodesic joining p and q.

Corollary 33. M compact ⇒M is complete ∀ 〈 , 〉.

Corollary 34. If S ⊂ M is a closed embedded submanifold

of a complete Riemannian manifold M , then S is complete.

§16. Quick review of covering spaces (see [Ha])

Group actions, proper discontinuous group actions, quotients.

Def.: A covering map is a surjective local diffeo π : M̃ → M

such that ∀p ∈ M, ∃ p ∈ Up ⊂ M for which π−1(Up) = ·∪λVλ,

where each π|Vλ : Vλ → Up is a diffeomorphism.

Example: π(θ) = e2πiθ is a covering map from R to S1 ⊂ C,

but π|(−1,1) is not.

Proposition 35. A surjective local diffeomorphism π is a

covering map ⇔ π lifts curves: ∀p′ ∈ π−1(p),∀c : I → M

with c(0) = p, ∃ ! c̃ : I → M̃ such that c̃(0) = p′ and π ◦ c̃ = c.

Def.: Deck(π) := {g ∈ Diff(M̃) : π ◦ g = π}, the deck group.

Deck(π) acts properly discontinuously on M̃ , transitively on the

fibers, and M̃/Deck(π) ∼= M .

Def.: Homotopic loops at p0 ∈M .

Def.: π1(M) = π1(M, p0) = fundamental group of M .
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Def.: M is simply connected if π1(M) = 0.

Proposition 36. If σ1, σ2 : I → M are homotopic, then

σ̃1(1) = σ̃2(1). The converse holds if M̃ is simply connected.

Corollary 37. M̃ simply connected ⇒ j : π1(M)→ Deck(π)

given by j([σ]) = g where g(σ̃(0)) = σ̃(1) is an isomorphism.

Proposition 38. For any manifold M there exists a unique

(up to diffeomorphisms) simply connected manifold M̃ cover-

ing M , called the universal cover of M .

Exercise. ∀G ⊂ π1(M) subgroup ⇒ ∃ π′ : M̃ → M ′ with π1(M
′) = G. Particular case:

G = {g ∈ Deck(π) : g preserves orientation} has index 2 ⇒ oriented double covering.

Proposition 39. If M is compact and f : M → M ′ is a

surjective local diffeomorphism, then f is a covering map.

Exercise. Give a counterexample to Proposition 39 when M is only complete.

§17. Hadamard manifolds

Lemma 40. M complete, f : M → N local diffeo such that

‖f∗v‖ ≥ ε > 0 ∀ v ∈ T1M ⇒ f is a covering map (⇒ Pr.39.)

Proof: f has the lifting property (⇒ f is surjective).

Def.: A point p ∈M is called a pole if C(p) = ∅.

Theorem 41. (Hadamard) M complete simply connected

with a pole p⇒ expp is a diffeomorphism (⇒M ∼= Rn !!).

Lemma 42. K ≤ 0⇒ C(p) = ∅ ∀ p ∈M (M is said NCP).
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Proof: ‖J‖2
′′
≥ 0 for 0 6= J ∈ XJ

γ with J(0) = 0.

Def.: M is a Hadamard manifold if it is complete, simply con-

nected and K ≤ 0.

Corollary 43. (Hadamard) M Hadamard ⇒ expp is a dif-

feomorphism, ∀p ∈M .

Remark 44. M compact has NCP 6⇒ K ≤ 0. But is there

some metric on M with K ≤ 0?? This is a deep open problem!

§18. Manifolds with constant sectional curvature

These are the ”simplest” spaces: lots of (local) isometries; con-

gruencies; rigid motions: geometric postulates.

We can always assume that K ≡ −1, 0, 1: Qn
c = Sn,Rn,Hn are

complete, connected and simply connected. And they are unique!

Any isometry is locally constructed as i, φ, f like in the following:

Theorem 45. (Cartan) Given p ∈ Mn and p̂ ∈ M̂n, let

i : TpM → Tp̂M̂ be a linear isometry. Let Vp a star shaped

normal neighborhood of p such that expp̂ is defined in V̂p̂ :=

i(exp−1
p (Vp)). Define

f = expp̂ ◦ i ◦ exp−1
p |Vp : Vp → V̂p̂.

Let φ : TVp → TVp̂ be the natural bundle isometry defined

using radial parallel transports and i, that is,

φ(P 0,t
γv

(w)) = P 0,t
γ̂iv

(iw), ∀v, w ∈ TpM.

If φ∗R̂ = R, then f is a local isometry with f∗p = i and f∗ = φ.
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Proof: Observe that f∗J = Ĵ for Jacobi fields along correspond-

ing radial geodesics γv and γ̂iv such that J(0) = 0, Ĵ(0) = 0,

Ĵ ′(0) = iJ ′(0). Since φ is parallel in radial directions, φJ is Ja-

cobi: (φJ)′′ = φJ ′′ = −φRγ′vJ = −Rγ̂′iv
(φJ). Since φ|TpM = i,

then Ĵ = φJ and the result follows since φ is a bundle isometry.

Remark 46. φ∗R̂ = R⇔ K(γ′v, ·) = K̂(γ̂′iv, φ(·)) ∀v ∈ TpM .

Corollary 47. If Mn and M̂n have the same constant sec-

tional curvature, then ∀p ∈M , ∀p̂ ∈ M̂ , ∀i ∈ Iso(TpM,Tp̂M̂)

there exists an isometry f : Vp→ V̂p̂ with f (p)= p̂ and f∗p= i.

Remark 48. This holds in particular for M̂ = M : spaces of

constant curvature are rich (the richest!) in isometries.

Let π : M̃ → M be a covering map. Given a metric 〈 , 〉 in M ,

π∗〈 , 〉 is called the covering metric on M̃ ⇒ Deck(π) ⊂ Iso(M̃).

Conversely, given a metric in M̃ , if Γ ⊂ Iso(M̃) acts properly

discontinuous (called a crystallographic group when M̃ = Rn),

M := M̃/Γ is naturally a Riemannian manifold and the pro-

jection π is a local isometry. Moreover, M̃ is complete or has

constant K ⇔ same for M . In particular, Qn
c/Γ is a space form:

connected complete with constant sectional curvature K ≡ c.

Theorem 49. (Hopf-Killing) If Mn is a space form, then its

universal cover (with the covering metric) is isometric to Qn
c ,

and Mn is isometric to Qn
c/Γ, with π1(M) ∼= Γ ⊂ Iso(Qn

c ).

Therefore, the classification of space forms is purely an algebraic

problem (solved for c > 0 in the 60’s, well understood for c = 0,

wide open for c < 0).
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Corollary 50. M 2n complete with K ≡ 1 ⇒ M 2n isometric

to S2n or RP2n.

Remark 51. Rn/Zn is not isometric to Rn/2Zn, and two 3-

dimensional lens spaces L(p, q) and L(p, q′) are not even home-

omorphic if q 6= ±q′±1 mod (p). In particular, the isomorphism

type of π1(M) does not determine the space form. But this is

true if c < 0, n ≥ 3 and M has finite volume (Mostow rigidity

theorem), or if c > 0 and π1(M 3) is not cyclic.

Remark 52. Does the curvature determine the metric? More

precisely: if f is a diffeo with R = f ∗R̂ then f is an isometry?

This is false if n = 2 (just take the flow of a generic vector field

orthogonal to the gradient of the curvature), or if Mn contains

an open subset with constant curvature. However, we have:

If Mn has nowhere constant sectional curvature and n ≥ 4,

then any curvature preserving diffeomorphism is an isometry.

For n = 3 this is true for M compact. (Kulkarni-Yau). See here.

Exercise. Read from the book the classification of Iso(Hn).

§19. Geodesics as minimizers: Variations of energy

We already know that geodesics are the critical points of the arc-

length functional L(c) when restricted to piecewise differentiable

(p.d. from now on) curves c : [0, a] → M p.p.a.l.. To under-

stand when a geodesic is an actual minimizer, we will take second

derivatives. But it is easier to work with the energy functional:

E(c) :=
1

2

∫ a

0

‖c′(t)‖2dt.
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Cauchy-Schwarz ⇒ L(c)2 ≤ 2aE(c), with = ⇔ c is p.p.a.l.

Def.: Ωp,q = Ωa
p,q := {c : [0, a]→M p.d. : c(0) = p, c(a) = q}.

Proposition 53. If γ : [0, a] → M is a minimizing geodesic

between p = γ(0) and q = γ(a), then E(γ) ≤ E(c) for every

c ∈ Ωp,q, with equality ⇔ c is a minimizing geodesic.

Proof: 2aE(γ) = L(γ)2 ≤ L(c)2 ≤ 2aE(c).

That is, E is not only easier to work with than L, but it also takes

into account the parametrization. So let’s try to minimize E!

Def.: Variation c(s, t) of a curve c = c(0, ·): c(s, t) ∈ C0 and

there is a partition 0 = t0<t1< · · ·<tm+1 =a of [0, a] such that

c|(−ε,ε)×[ti,ti+1] ∈ C∞ (notice that this implies that css(0, ·) ∈ C0).

Let c = c0 : [0, a] → M be a p.d. curve, V ∈ Xc (⇒ V ∈ C0),

and c(s, ·) a variation of c with variational vector field V . For

E(s) = E(c(s, ·)) we have:

Proposition 54. (Formula for the first variation of energy)

E′(0) = −
∫ a

0
〈V (t), c′′(t)〉dt+

m∑
i=1

〈V (ti), c
′(t−i )− c′(t+i )〉+ 〈V, c′〉|a0.

Corollary 55. c is a geodesic ⇔ c is a critical point of E

for proper variations (i.e., for E|Ωc(0),c(a)
).

Exercise. Given N and N ′ two compact submanifolds of a complete Riemannian manifold⇒

there exists a minimizing geodesic γ between N and N ′. For such a γ, γ ⊥ N and γ ⊥ N ′.

Proposition 56. (Formula for the second variation of E)
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If γ(t) is a geodesic and f (s, t) a variation of γ with varia-
tional vector field V , then (recall that Rv := R(·, v)v)

E′′(0) = −
∫ a

0
〈V, V ′′+Rγ′V 〉dt+

m∑
i=1

〈V (ti), V
′(t−i )−V ′(t+i )〉+ 〈V, V ′〉|a0 + 〈γ′,∇∂sfs(0, ·)〉|a0

= Ia(V, V ) + 〈γ′,∇∂sfs(0, ·)〉|a0 ,

where Ia(V,W ) :=
∫ a

0 (〈V ′,W ′〉 − 〈Rγ′V,W 〉)dt is the index form of γ.

Corollary 57. (Jacobi) If a geodesic γ has a conjugate point

γ(b) to γ(0) ⇒ Ib+δ 6≥ 0 ⇒ γ does not minimize after b.

Proof: Let 0 6= J ∈ XJ
γ , J(0) = 0, J(b) = 0, δ > 0 and choose

any Z∈Xγ with Z|[0,b−δ] =0, Z(b+δ) = 0 and 〈Z(b), J ′(b)〉 < 0.

Define Vε ∈ Xγ as Vε = J + εZ in [0, b] and Vε = εZ in

[b, b + δ]. Then, Ib+δ(Vε, Vε) = 2εIb(J, Z) + ε2Ib+δ(Z,Z) =

2ε〈Z(b), J ′(b)〉 + ε2Ib+δ(Z,Z) < 0 for ε small enough.

Remark 58. If the variation is proper, E ′′(0) = Ia(V, V ) only

depends on V , and hence Ia is actually the Hessian of E|Ωγ(0),γ(a)

at its critical point γ (∀f : M → N ⇒ Tf(F(M,N)) = Xf).

§20. Application: The Bonnet-Myers Theorem

Theorem 59. If M is complete with Ric ≥ 1/k2 > 0, then

M is compact, and diam(M) ≤ πk. In particular, its univer-

sal cover is compact and hence #π1(M) <∞.

Remark 60. This is false for K > 0 (paraboloid). But the

curvature bound can be relaxed asking for slow decay at infinity.

Remark 61. The estimate in diam is sharp: Snk . And there’s

rigidity (!!): if diam(M)=πk, then Mn = Snk (Corollary 97).
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§21. Application: The Synge-Weinstein Theorem

Theorem 62. (Weinstein) Mn compact and oriented with

K>0. If f ∈ Iso(Mn) preserves (resp.reverses) the orienta-

tion of Mn if n is even (resp.odd), then f has a fixed point.

Proof: Let g(x) := d(x, f (x))2 and assume g(p) = min g > 0.

If γ is a unit minimizing geodesic between p and f (p), then

f (γ) = γ. So, (P γ)−1 ◦ f∗p fixes some vector v ∈ γ′(0)⊥ ⇒
f ◦γv = γf∗v. Now the second variation for cs(t) = expγ(t)(sP

γ
0tv)

says that 0 is a strict maximum of E(s)⇒ g(γv(s))
2 ≤ L(cs)

2 ≤
2g(p)E(cs) < 2g(p)E(γ) = L(γ)2 = g(p)2, a contradiction.

Remark 63. Weinstein Theorem 62 is still true for conformal

diffeomorphisms, but it is not known for diffeomorphisms. If this

were also true, then S2×S2 would not admit a metric with K > 0

(f = (−Id,−Id)): this is the well known Hopf conjecture, one

of the most important open conjectures in Riemannian geometry!

Corollary 64. (Synge) If Mn is compact with K > 0, then:

a) If n is even, then π1(Mn) = 0 if Mn orientable, while

π1(Mn)= Z2 if Mn is nonorientable (see Corollary 50);

b) If n is odd, then Mn is orientable.

Remark 65. RP2 and RP3 show that the 3 hypothesis in Corol-

lary 64 (a) and (b) are necessary. Yet, compactness is not since

for noncompact Mn the soul of its universal cover is a unique

point, hence fixed by Deck(π).
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Remark 66. B-M and S-W theorems are quite deep:

• Compact manifolds with K ≥ 0 abound: products of compact

manifolds with K ≥ 0; compact Lie groups G with bi-invariant

metrics; homogeneous spaces G/H ; biquotients G//H ; etc.

• OTOH, very few examples are know with K > 0: aside from

CROSSES (Sn,RPn,CPn,HPn, Ca2), Eschenburg spaces E7
p and

Bazaikin spaces B13
q for infinite many p, q ∈ Z5, only a handful

of examples are known, and only in dimensions 6, 7, 12 and 24.

• However, very few obstructions are known for K > 0 that do

not hold already for K ≥ 0 and Theorem 59 and Theorem 62 are

the most important. In fact: there is no known obstruction that

distinguishes the class of compact simply connected manifolds

which admit K ≥ 0 from the ones that admit K > 0 !!

§22. The Index Lemma

We show next that Jacobi fields are the unique minimizers of

the index form (up to the first conjugate point):

Lemma 67. (Index lemma). Let γ : [0, a]→M be a geodesic

without conjugate points to γ(0). Let V ∈Xγ p.d. with V ⊥γ′
and V (0) = 0. Consider t0 ∈ (0, a] and J ∈ XJ

γ the unique

Jacobi field such that J(0) = 0 and J(t0) = V (t0). Then,

It0(J, J) ≤ It0(V, V ), and equality holds ⇔ V = J in [0, t0].

Proof: {J1, . . . , Jn−1} basis of {J ∈ XJ
γ : J ⊥ γ, J(0) = 0},

and write V =
∑
fiJi on (0, t0].

Claim: {fi} extend C∞ to 0: If Ji(t) = tAi(t)⇒ Ai(0) = J ′i(0)

are L.I. ⇒ V =
∑
giAi with gi p.d. on [0, t0] and gi(0) = 0

⇒ gi(t) = thi(t) where hi(t) =
∫ 1

0 g
′
i(ts)ds⇒ fi = hi|(0,t0].
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But 〈V ′, V ′〉−〈Rγ′V, V 〉 = ‖
∑
f ′iJi‖2 + 〈

∑
fiJi,

∑
fiJ
′
i〉′ since

〈Ji, J ′j〉 = 〈J ′i, Jj〉, so It0(V, V ) = It0(J, J) +
∫ t0

0 ‖
∑
f ′iJi‖2.

§23. The Rauch comparison Theorem

Two goals: refine the idea of Bonnet-Myers, and make a global

version of Proposition 27: compare Jacobi fields when there is

comparison of curvature (we can only expect this NCP). As an

inspiration, an old ODE result that will be used in Theorem 77:

Theorem 68. (Sturm) Let K, K̃, f, f̃ : [0, a] → R satisfying

f ′′ + Kf = 0 and f̃ ′′ + K̃f̃ = 0, with f (0) = f̃ (0) = 0 and

f ′(0) = f̃ ′(0) > 0. If f̃ > 0 in (0, a] and K̃ ≥ K, then f/f̃ is

nondecreasing (and hence f̃ ≤ f). Moreover, if f (r) = f̃ (r)

for some r ∈ (0, a], then K̃ = K and f = f̃ in [0, r].

Proof: Since (f ′f̃−ff̃ ′)(t) =
∫ t

0 (K̃−K)ff̃ ⇒ f does not vanish

before f̃ (if f > 0 in (0, r) and f (r) = 0 < f̃ (r) ⇒ f ′(r) < 0

contradicting the above equality) ⇒ f/f̃ is increasing.

Theorem 69. (Rauch) Let γ : [0, a]→Mn, γ̃ : [0, a]→ M̃n+p

be geodesics with the same speed, and J ∈ XJ
γ and J̃ ∈ XJ

γ̃

with comparable initial conditions, i.e., J(0) = 0, J̃(0) = 0,

〈J ′(0), γ′(0)〉 = 〈J̃ ′(0), γ̃′(0)〉, and ‖J ′(0)‖ = ‖J̃ ′(0)‖. Assume

that γ̃ has no conjugate points and that K(γ′, J) ≤ K̃(γ̃′, ṽ)

on [0, a], ∀ ṽ ∈ γ̃⊥ ⊂ Tγ̃M̃ . Then, ‖J‖/‖J̃‖ is increasing and,

in particular, ‖J‖ ≥ ‖J̃‖. Moreover, if ‖J̃(r)‖ = ‖J(r)‖ for

some r ∈ (0, a], then K(γ′, J) = K̃(γ̃′, J̃) on (0, r].

Proof: We may assume 0 6= J ⊥ γ′, 0 6= J̃ ⊥ γ̃′. If f :=

‖J‖2 and f̃ := ‖J̃‖2, g := f/f̃ is well defined in (0, a] and
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g(0+) = 1. So it is enough to see that g′ ≥ 0, or, equivalently,

f̃ ′(r)/f̃ (r) ≤ f ′(r)/f (r) when f (r) 6= 0. Since U := J/
√
f (r)

and Ũ := J̃/
√
f̃ (r) are Jacobi fields, by the hypothesis on the

curvature and the Index Lemma 67, f̃ ′(r)/f̃ (r) = 2Ĩr(Ũ , Ũ) ≤
2Ĩr(φU, φU) ≤ 2Ir(U,U) = f ′(r)/f (r), where φ : Xγ → Xγ̃

is any parallel isometry (with the image) with φ(γ′) = γ̃′ and

φ(U(r)) = Ũ(r). Equality ⇒ on (0, r]: g ≡ 1, Ĩr(φU, φU) =

Ir(U,U), Ũ = φU , and so K(γ′, J) = K̃(γ̃′, J̃).

Corollary 70. If K ≥ 1/k2 (resp. K ≤ 1/k2) for some

k > 0, then the distance d between two consecutive conjugate

points along any geodesic satisfies that d ≤ πk (resp. d ≥ πk).

Remark 71. Rauch Theorem 69 is actually equivalent to a com-

parison argument for the general Riccati equation in Section 14

due to J. Eschenburg (see Theorem 3.1 on page 12 here).

Exercise. Prove the Sturm comparison Theorem using Rauch Theorem 69.

§24. An application to submanifold theory

Theorem 72. (Moore) Let Mn be a compact submanifold of

a Hadamard manifold M̃n+p with K ≤ K̃ + c ≤ 0 for certain

c ≥ 0. Then, p ≥ n.

Proof: Fix q̃0 6∈ M , q ∈ M realizing the maximum distance

to q̃0, γ a unit minimizing geodesic between q̃0 = γ(0) and q =

γ(`), v ∈ TqM unitary and ĉ(s) a curve in M with ĉ′(0) = v.

If c(s) = exp−1
q̃0

(ĉ(s)), for the variation γc′(s)(t) of γ we have

that 0 ≥ E ′′(0) = I`(J, J) + 〈α(v, v), γ′(`)〉, with J(`) = v.
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Comparing M̃ with Qn+p
−c we have I`(J, J) ≥ Ĩ`(J̃ , J̃)>

√
c ⇒

‖α(v, v)‖2 ≥ 〈α(v, v), γ′(`)〉2>c. Now apply Otsuki’s Lemma.

Remark 73. Simply connectedness of M̃ is essential (T n ⊂
T n+1), as well as compactness ofM (catenoid in R3; even bounded

minimal surfaces exist), but H2 6⊂ R3 (Hilbert). The nonexistence

of an is.im. Hn ⊂ R2n−1 is a famous century old open conjecture.

§25. Applications: comparing geometries!! :o))

As in Cartan’s Theorem 45, take p ∈Mn, p̃ ∈ M̃n, i : TpM →
Tp̃M̃ a linear isometry and r > 0 such that Br(p)⊂M is a nor-

mal ball and expp̃ is non-singular in Br(0p̃)⊂ Tp̃M̃ . For the map

f := expp̃ ◦ i ◦ exp−1
p |Br(p) : Br(p) ⊂M → Br(p̃) ⊂ M̃ we have:

Proposition 74. If K̃(γ̃′iv(t), ·) ≥ K(γ′v(t), ·) ∀ v ∈ TpM ,

‖v‖ = 1, |t| < r⇒ f is a contraction: ‖f∗‖ ≤ 1. In particular,

if c : I → Br(p) is any p.d. curve, then L(f ◦ c) ≤ L(c), and,

if Br(p) is convex, then f is also a metric contraction, i.e.,

d̃(f (x), f (y)) ≤ d(x, y) ∀x, y ∈ Br(p).

Exercise. Check that Corollary 47 follows immediately from Proposition 74.

Corollary 75. If K(γ′v(t), ·) = k constant for all v ∈ Tp0M

and all |t| < r, then K ≡ k in Br(p0) (see Remark 46).

Remark 76. Proposition 74 is the local version of Toponogov

Theorem 100.
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§26. Bishop-Gromov volume comparison, I ([Pe])

Consider a normal ball Br0(p) ⊂Mn, r < r0 (but the same com-

putation works for normal neighborhoods) and set S = Sn−1 =

Sn−1
1 (0p) ⊂ TpM . Let v ∈ S, γ = γv, {ei} an o.n. basis of

v⊥ ⊂ TpM and Ji(t) = t(d expp)tv(ei) ∈ XJ
γ . Then,

Vol(Sn−1
r (p)) =

∫
S

det
(
(d expp)rv

)
rn−1dv =

∫
S
jv(r)

n−1dv,

where jn−1
v = ‖J1 ∧ · · · ∧ Jn−1‖ is the volume in γ′⊥ of the

parallelepiped spanned by {Ji}. Therefore, j′v = hvjv, where

hv(r) = 1
n−1trace(A(r)) is the mean curvature and A(r) the

sec.fund.form of Sn−1
r (p) at γv(r) as seen in Section 14. Writ-

ing A = hvId + A0 with A0 symmetric and traceless, by (2),

h′v + h2
v +Rv = 0, with Rv := Ric(γ′) +

‖A0‖2

n− 1
≥ Ric(γ′).

So, j′v = hvjv ⇒ j′′v +Rvjv = 0, with jv(0) = 0 and j′v(0) = 1.

In particular, for Mn = Qn
k , we have j

′′
+ kj = 0 (indep. of v !!).

Now assume that Ric ≥ k ⇒ by Sturm Theorem 68, jv/j is

decreasing ⇒ qv := (jv/j)
n−1 is decreasing ⇒

the map r 7→ Vol(Sn−1
r (p))/Vol(Sn−1

r,k ) is decreasing !!

where Bn
r,k is a ball of radius r in Qn

k and Sn−1
r,k its geodesic sphere.

Moreover, setting Vr(p) := Vol(Br(p)) and V k
r := Vol(Bn

r,k),

by Gauss Lemma Vr(p)/V k
r = Vol(S)−1

∫
Smv(r)dv, where

mv(r) :=
∫ r

0 qvj
n−1

/
∫ r

0 j
n−1

is the (j
n−1

-weighted) average of qv.

Since qv is decreasing, so is mv, and we conclude:
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Theorem 77. (Bishop-Gromov, local version) If RicM≥k,

then the map r 7→ Vr(p)/V k
r is decreasing (for normal balls).

If, in addition, Vs(p)/Vs,k = Vr(p)/V k
r for some 0 < s < r ≤

diam(M), then Br(p) is isometric to Bn
r,k.

Proof: We already proved the first part, so we only need to check

the equality case. But in this case by monotonicity of mv we get

mv(s) = mv(r) ∀v ∈ S. By monotonicity of qv this implies

that qv ≡ 1 on [0, r] ∀v. By the equality in Sturm Theorem 68,

Rv ≡ k ⇒ Ric(γ′) ≡ k and A0 ≡ 0 ⇒ A agrees to that for Qn
k

⇒ the Jacobi fields along γ are snk(t)e(t) with e(t) parallel (as

for Qn
k) ⇒ f in Proposition 74 is an isometry.

Remark 78. B-G Theorem 77 does not hold for Ric ≤ k

(because of A0), but the decreasing statement works for K ≤ k

using the same idea as in the proof of Rauch Theorem 69. (exercise)

Remark 79. B-G Theorem 77 is local because it was proved

only for normal balls. But we will see that for complete manifolds

this easily extends for all r, i.e., for all metric balls. (Theorem 96).

§27. Index Lemma and Rauch Thm for focal points

Focal points are generalizations of conjugate points: given p ∈
N ⊂M a normal variation by geodesics of a geodesic γ emanat-

ing orthogonally from p gives to J ∈ XJ
γ such that

J(0) ∈ TpN and J ′(0) + Aγ′(0)J(0) ∈ T⊥p N, (3)

and conversely, by considering γs(t) = expα(s)(tη(s)), where η ∈
T⊥α N , α′(0) = J(0), η(0) = γ′(0) and η′(0) = J ′(0).

Exercise. See the details in the book.
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Def.: q ∈ M is a focal point of a submanifold N ⊂ M if there

is a geodesic γ orthogonal to N at γ(0) ∈ N with q = γ(r), and

0 6= J ∈ XJ
γ as in (3) such that J(r) = 0. The focal set F (N)

of N is the union of its focal points.

Examples: Sn ⊂ Sn+1 ⇒ ±N . Sn ⊂ Rn+1 ⇒ 0.

Def.: The normal exponential map of N is exp⊥ :T⊥N→M .

Proposition 80. The focal points of N ⊂ M are precisely

the singularities of exp⊥ : T⊥N →M .

Exercise. See the details in the book.

Exercise. Compute the focal points of Nn ⊂ Rn+1 in terms of its principal curvatures.

Analogously to Theorem 41, the following holds: If M is com-

plete and N ⊂ M is closed and without focal points, then

exp⊥ : T⊥N →M is a covering map. (Hermann).

Def.: A geodesic γ : [0, a] → M is free of focal points if Nε =

expγ(0)(Bε(0p)∩γ′(0)⊥) has no focal points along γ (equivalently,

0 6= J ∈ XJ
γ with J ⊥ γ and J ′(0)=0 ⇒ J(t) 6= 0 ∀t ∈ [0, a]).

Making slight modifications in their proofs, we have: Both the

Index Lemma 67 and Rauch Theorem 69 hold for geodesics

free of focal points.

Exercise. Prove the last assertion without looking at the book.

Def.: We say that M has no focal points (NFP) if no embedded

geodesic γ(−ε, ε) ⊂M has focal points (as a submanifold).
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Proposition 81. K ≤ 0⇒ NFP ⇒ NCP . In fact:

i) K ≤ 0⇔ ‖J‖2
′′
≥ 0, ∀J ∈ XJ

γ ;

ii) NFP ⇔ ‖J(t)‖2
′
> 0, ∀t > 0, 0 6= J ∈ XJ

γ with J(0) = 0;

iii) NCP ⇔ ‖J(t)‖2 > 0, ∀t > 0, 0 6= J ∈ XJ
γ with J(0) = 0;

Remark 82. NCP 6⇒ NFP 6⇒ K ≤ 0 for complete met-

rics. But what about plain differentiable manifolds admitting

such metrics? Two important open problems: it is not known if

Mn
C⊂Mn

F , or ifMn
F ⊂Mn

0 , forMn
0 ={Mn : ∃ 〈 , 〉 withK≤0},

Mn
F ={Mn : ∃ NFP 〈 , 〉} andMn

C ={Mn : ∃ NCP 〈 , 〉}.

§28. The Morse Index Theorem

Given a geodesic γ : [0, a]→M , consider Va the set of p.d. vector

fields along γ that vanish at 0 and a (i.e., Va = TγΩγ(0),γ(a)).

For proper variations of γ, HessE =Ia where Ia : Va × Va → R.

Def.: The nullity of Ia is ν(Ia) := dim Ker (Ia), while its index is

i(Ia) := max{dimL : Ia|L×L < 0}. (γ minimizing ⇒ i(Ia) = 0).

The purpose now is to show that i(Ia) = # of conjugate points

along γ. We will reduce the problem to a finite dimensional one.

Proposition 83. Ker (Ia) = Va ∩ XJ
γ . I.e., Ia is degenerate

⇔ γ(a) is conjugate to γ(0) along γ, with ν(Ia) as multiplicity.

Proof: Immediate from the two expressions in Proposition 56.

Let 0 = t0 < t1 < · · · < tk = a be a normal subdivision of [0, a]

(γ([ti, ti+1]) is contained in a totally normal neighborhood).
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Define

V+
a := {V ∈ Va : V (ti) = 0, i = 0, . . . , k},

V−a := {V ∈ Va : V |[ti,ti+1] is Jacobi} ⇒ dimV−a = nk−1 < +∞.

Proposition 84. Va = V+
a ⊕V−a , Ia|V+

a ×V−a = 0, Ia|V+
a ×V+

a
> 0.

Proof: Proposition 56 + γ|[ti,ti+1] minimizing + Proposition 83.

Corollary 85. i(Ia)= i(Ia|V−a ×V−a )<+∞, ν(Ia)=ν(Ia|V−a ×V−a ).

Theorem 86. (Morse) i(Ia) < +∞ is equal to the number of

conjugate points (with multiplicities) to γ(0) along γ in [0, a).

Proof: Take t ∈ (0, a) and choose the normal partition such that

t ∈ (ti, ti+1). Consider ϕt : S := Tγ(t1)M × · · · × Tγ(ti)M → V
−
t ,

ϕ−1
t (V ) = (V (t1), . . . , V (ti)), and work with Ît = ϕ∗t It : S ×

S → R, that also depends continuously on t (since the vector(
d(expγ(t))−(t−ti)γ′(t)

)−1
(v0/(t − ti)) depends continuously on t

as long as no conjugate points appear). Set i(t) := i(Ît) and

ν(t) := ν(Ît). By continuity, i(t + ε) ≥ i(t) and i(t + ε) ≤
i(t) + ν(t) for all |ε| small enough. But by the Index Lemma 67

we have that Ît > Ît+ε, and then i(t + ε) ≥ i(t) + ν(t) if ε > 0.

Then, i(t) is increasing and i(t + ε) = i(t) + ν(t).

Corollary 87. (Jacobi) Let γ : [0, a]→M be a geodesic such

that q = γ(a) is not conjugate to p = γ(0) along γ. Then,

γ has no conjugate points ⇔ γ is a strict local minimum

of E|Ωp,q. In particular, γ minimizing ⇒ γ has no conjugate

points (compare with Corollary 57).

Corollary 88. The set of conjugate points to γ(0) along γ is

discrete.
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§29. The cut locus

Given M complete, p ∈ M and v ∈ Sn−1(0p) ⊂ TpM , de-

fine ρ(v) = ρp(v) := sup{t > 0 : d(p, γv(t)) = t} ∈ (0,+∞].

If ρ(v) < +∞, γv(ρ(v)) is called the cut point of p along γ.

The cut locus Cm(p) of p is the union of its cut points.

i(p) := d(p, Cm(p)) ∈ (0,+∞] is the injectivity radius at p.

i(M) := infp∈M i(p) ∈ [0,+∞] is the injectivity radius of M .

Proposition 89. Let γ be a minimizing geodesic between

p and q. Then, q is the cut point of p along γ if and only

if either q is the first conjugate point of p along γ, or there

exists another minimizing geodesic between p and q.

Corollary 90. q ∈ Cm(p)⇔ p ∈ Cm(q).

Corollary 91. q ∈M \ Cm(p)⇒ there exists a unique min-

imizing geodesic between p and q.

Examples: C(p) and Cm(p): Sn,RPn,S1×S1,S1×R, ellipsoid.

Proposition 92. ρ : Sn−1(0p)→ (0,+∞] is continuous.

Proof: Proposition 89 + continuity of d(p, ·).
Corollary 93. Cm(p) is closed.

Corollary 94. M is compact ⇔ ρ is bounded.

Corollary 95. M \ Cm(p) is a normal neighborhood of p

that is homeomorphic to a ball, open, dense and star-shaped.

In particular, d2(p, ·) = ‖ exp−1
p (·)‖2 is smooth in M \ Cm(p).

Exercise. Show that Cm(p) has measure 0 (Sug.: show that Cm(p) ∩ Br(p) has measure 0).

In fact, C(p) and Cm(p), and even C(N) and Cm(N), are Lipschitz submanifolds; see [IT].
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§30. Bishop-Gromov volume comparison, II ([Pe])

Theorem 96. (Bishop-Gromov) The Bishop-Gromov Theo-

rem 77 holds for every radius r ≥ 0 for complete manifolds.

Proof: Since all the arguments in Section 26 needed only expp
to be a chart, we can repeat everything on M \ Cm(p) using

Corollary 95, and that Vol(Bp(r))=
∫
S
∫ r

0 jv(t)
n−1dtdv still holds

once we extend jv(t) as 0 for t > ρ(v). Indeed, all that is needed

is that the functions qv = jv/j are still decreasing.

Corollary 97. (Cheng) If diam(Mn) = πk in Bonnet-Myers

Theorem 59, then Mn is isometric to Sn(k) = Qn
1/k2.

Proof: WLG k = 1, and take p1, p2 ∈ Mn with d(p1, p2) = π.

Then, we have that Mn = Bπ(pi), and Bπ
2
(p1) ∩ Bπ

2
(p2) = ∅.

But Vol(Mn)/Vol(Bπ
2
(pi)) = Vπ(pi)/Vπ

2
(pi) ≤ V 1

π /V
1
π
2

= 2. So,

Vol(Mn)≤Vol(Bπ
2
(p1)∪Bπ

2
(p2))≤Vol(Mn)⇒ Vπ(pi)/Vπ

2
(pi)=2

⇒ by the equality case in Theorem 96 Bπ(pi) and Bn
π,1 =Sn\{N}

are isometric ⇒ Bπ(pi) = Mn \ {pi+1} ⇒ Mn = Sn.

Corollary 98. (Calabi-Yau) Mn complete noncompact with

Ric ≥ 0 ⇒ Vol(Br(p)) ≥ r
Vol(Br0(p))

2n+3r0
if r ≥ 6r0, i.e., it grows

at least linearly in r (notice that it grows linearly in Sn×R).

Proof: Vt = Vt(p) = Vol(Bt(p)), V̂t = tnwn−1 in Rn. For a

ray γ at p, t ≥ 2r0, and q = γ(t + r0) we have V3t ≥ Vt(q) ≥
Vt+2r0

(q)−Vt(q)
V̂t+2r0

−V̂t
V̂t ≥

Vr0(p) tn

(t+2r0)n−tn =
Vr0 t

2r0
∑n
i=1 (ni)(2r0/t)n−i

≥ t
Vr0

2r0(2n−1).

Corollary 99. If M is complete with finite volume and

Ric ≥ 0 (in particular, if M is flat), then M is compact.
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§31. The Toponogov Theorem ([Me])

A global generalization of Rauch Theorem 69 is the following.

Theorem 100. (Toponogov, hinge version) M complete with

K≥k, and γ1, γ2 normalized geodesics arcs with γ1(0)=γ2(0).

Assume γ1 is minimizing and, if k > 0, that L(γ2) ≤ π/
√
k.

Let γ̂1, γ̂2 be the corresponding hinge in Q2
k, that is,

L(γ̂i) = L(γi) and ∠(γ̂′1(0), γ̂′2(0)) = ∠(γ′1(0), γ′2(0)). Then,

d(γ1(`1), γ2(`2)) ≤ d̂(γ̂1(`1), γ̂2(`2)).

Remark 101. Theorem 100 is immediate from Proposition 74

when γ1 and γ2 are contained in a metric ball centered at p onto

which expp is nonsingular, and L(γi) ≤ π/
√

4k , i = 1, 2, when

k > 0.

There are several versions of Toponogov Theorem 100, some of

which do not need anything but distances. For example:

Theorem 102. Let M be complete with K ≥ k. If {γj} is

a minimizing geodesic triangle in M , then there is a unique

minimizing geodesic triangle {γ̂j} in Q2
k with L(γ̂j) = L(γj),

j = 0, 1, 2, and satisfies d(o, γ0(t)) ≥ d̂(ô, γ̂0(t)) ∀t ∈ [0, L(γ0)].

Theorem 100 follows easily from Theorem 103 below (which in

turn is slightly more general than Theorem 102) using the Exercise

in Section 11 and the fact that in Q2
k the length of a closing

edge in a hinge with minimal geodesics and the hinge angle are

in a monotone relation; see [Me], page 16 Remarks 3 and 5.

However, they are actually equivalent. Hence, we will prove:
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Theorem 103. (Toponogov, metric version) M complete,

p1 6= o 6= p2 ∈M , γi a minimizing geodesic between o and pi,

i = 1, 2, and γ0 a non-constant geodesic between p1 and p2

satisfying L(γ0) ≤ L(γ1) + L(γ2), all p.b.a.l.. If K ≥ k,

and L(γ0) ≤ π/
√
k when k > 0, then there is a minimizing

geodesic triangle {γ̂j} in Q2
k with L(γ̂j) = L(γj), j = 0, 1, 2,

and it satisfies that d(o, γ0(t)) ≥ d̂(ô, γ̂0(t)) ∀t ∈ [0, L(γ0)].

Proof: Let ρ = d(o, ·), ρ̂ = d̂(ô, ·). IfA = Hessρ|∇ρ⊥ is the second

fundamental form of (pieces of) geodesic spheres centered at o,

Rauch says that A ≤ s′

s I , and Â = s′

s I , where s is the solution

of s′′ + ks = 0, s(0) = 0, s′(0) = 1. To get a uniform Hessian

estimate over TM (not just over ∇ρ⊥), take f such that f ′ = s.

Then, f ′′ + kf = C = constant. So, if σ := f ◦ ρ and σ̂ := f ◦ ρ̂
we have Hessσ = (f ′′ ◦ ρ)dρ ⊗ dρ + (f ′ ◦ ρ)Hessρ and therefore

Hessσ ≤ (−kσ + C)I on M \ Cm(o) and Hessσ̂ = (−kσ̂ + C)I .

If k > 0, assume first that L(γ0)+L(γ1)+L(γ2)<2π/
√
k, so the

corresponding minimizing geodesic triangle exists in Q2
k and it is

not a great circle. In particular, ` := L(γ0) < π/
√
k.

Consider now δ := σ ◦ γ0 − σ̂ ◦ γ̂0 on [0, `]. Since diam(M) ≤
π/
√
k if k > 0 by Bonnet-Myers Theorem 59, in any case f

is monotonous increasing and we only have to see that δ ≥ 0.

Observing that δ(0) = δ(`) = 0, assume that m := inf δ < 0.

If k > 0, comparing with a sphere of curvature k + ε for ε→ 0,

we may assume that diam(M) < π/
√
k (or use Theorem 97!).

Hence, there exist k′ > k and τ > 0 such that ` < π/
√
k′ − τ .

In any case, it is easy to find a function a0 such that a′′0 +k′a0 = 0,

a0(−τ ) = 0 and a0|[0,`] ≤ m. Thus, there is λ > 0 such that the

38



function a = λa0 satisfies a′′ + k′a = 0, a ≤ δ, and a(t0) =

δ(t0) < 0 for some t0 ∈ (0, `). (make a picture!)

Case 1. x := γ0(t0) 6∈ Cm(o). Then δ is smooth in a neigh-

borhood of t0, and δ′′ = 〈Hessσγ
′
0, γ
′
0〉 − 〈Hessσ̂γ̂

′
0, γ̂
′
0〉 ≤ −kδ.

Hence, (δ − a)′′(t0) ≤ (k′ − k)δ(t0) < 0, which contradicts the

fact that t0 is a minimum of δ − a.

Case 2. x ∈ Cm(o). Let β be a minimizing geodesic from o to x,

oε := β(ε), and replace ρ by ρε = d(o, oε) + d(oε, ·). By the

triangle inequality, ρε ≥ ρ with equality at x, i.e., ρε is an upper

support function (USF) of ρ at x. Moreover, x 6∈ Cm(oε),

and so ρε is smooth at x. Since f is monotonously increasing,

σε := f ◦ ρε is then an USF of σ at x. Thus δε − a is also an

USF of δ − a at t0, and therefore it also attains its minimum

at t0. Since we get the same estimates as in Case 1 up to a

small error, δ′′ε ≤ −kδε +O(ε) (exercise), we have (δε−a)′′(t0) ≤
(k′−k)δ(t0)+O(ε) < 0 for ε small enough, again a contradiction.

Finally, we need to argue for L(γ0) + L(γ1) + L(γ2) ≥ 2π/
√
k

if k > 0. The “=” case follows from the “<” case with a limit

argument in k+ ε as we did with the diameter. For the “>” case,

take δ < k given by L(γ0) + L(γ1) + L(γ2) = 2π/
√
δ and use

the “=” case comparing with Q2
δ: the comparison triangle in Q2

δ

has to be a great circle, so −ô = γ̂0(s0) and therefore π/
√
δ =

d̂(ô,−ô) ≤ d(o, γ0(s0)) ≤ π/
√
k < π/

√
δ, a contradiction.

Application. For noncompact M , π1(M) may not be finitely

generated. However this does not happen if K ≥ 0; in fact, there

is an a-priori bound on the (minimum) number of generators:
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Theorem 104. (Gromov) Mn complete with K ≥ 0 ⇒
π1(Mn) can be generated by less than 3n elements.

Proof: Fix x ∈ M̃ , and for f ∈ Γ = Deck(π) define ‖f‖ =

d(x, f (x)). Notice that {g ∈ Γ: ‖g‖ ≤ r} is finite for all r > 0.

So choose f1 ∈ Γ such that ‖f1‖ = min{‖f‖ : f ∈ Γ}, and

fk ∈ Γ with ‖fk‖ = min{‖f‖ : f ∈ Γ\<f1, . . . , fk−1>}. Setting

li := ‖fi‖ and lij := d(fi(x), fj(x)), we have for i < j that

lij = d(x, f−1
i fj(x)) ≥ lj ≥ li.

Now choose a minimizing geodesic γi from x to fi(x) of length

li, and for i < j a minimizing geodesic γij from fi(x) to fj(x) of

length lij. Take αij = 〈γ′i(0), γ′j(0)〉 that is bounded from below

by the angle α̃ij of the corresponding minimizing triangle in R2

by Toponogov’s Theorem 100. The cosine law says that cos α̃ij =

(l2i + l2j − l2ij)/2lilj ≤ (l2i + l2j − l2j )/2l2i = 1/2. Hence, αij ≥ π/3,

and so the balls Bn
1/2,0(γ′i(0)) are disjoint in Bn

3/2,0(0) ⊂ TxM̃ .

The estimate follows easily comparing volumes.

Remark 105. Essentially the same proof shows that if Mn is

complete with K bounded from below, K ≥ −λ2, and bounded

diameter, diam(Mn)≤D, then π1(Mn) is generated by less than√
nπ/2 (2+2 cosh(2λD))

n−1
2 elements (see Theorem 3.1 in [Me]).

To estimate the maximum number of balls of a fixed radius r that

fit in the unit n-sphere is an old subject. For π/6 an exponential

known bound is 1.321n ([CZ]). But we have a natural:

Open problem: Is there a linear (or polynomial, or even subex-

ponential) bound in n for Theorem 104?
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§32. On Alexandrov Spaces ([BBI])

Toponogov’s Theorem 103 (or even Proposition 74) gives rise to

curvature notions for metric (length) spaces(!):

Def.: (E, d) a metric space ⇒ di = inf{L(c)} (may be +∞) is

called the interior distance. If di = d, (E, d) is called a length

space (actually, dii = di).

Hopf-Rinow Theorem 32 holds for locally compact length spaces:

If a locally compact length space (E, d) is complete, then any

two points in E can be connected by a minimizing geodesic,

and any bounded closed set of E is compact.

Def.: A length space (E, d) is called an Alexandrov space with

curvature ≥ c if for all x ∈ E there exists a neighborhood Ux
of x such that, for every triangle pqr in Ux, q

′ ∈ pr and p′ ∈
qr, it holds that d(p′, q′) ≥ d̂(p̂′, q̂′), where p̂′ and q̂′ are the

corresponding points on the comparison triangle p̂q̂r̂ in Q2
c .

Remark 106. In the same way that the local Proposition 74

gives rise to its global version Toponogov Theorem 103 for com-

plete manifolds, the previous local definition implies the corre-

sponding global theorem for complete Alexandrov spaces, a result

due to Burago, Gromov and Perelman (for a proof, see [LS]).

Alexandrov spaces appear as limits of manifolds:

Given two compact metric spaces X, Y we define the Gromov-

Hausdorff distance dGH(X, Y ) = inf{dH(f (X), g(Y ))} where

the infimum is taken over all metric spaces Z and all distance pre-

41



serving maps f:X→Z, g:Y →Z, and dH is the Hausdorff dis-

tance given by dH(R, S) = inf{ε≥0 : R ⊆ Bε(S), S ⊆ Bε(R)}.
With dGH the isometry classes of compact metric spaces C is itself

a metric space(!) and we can talk about convergence of compact

metric spaces(!!). A celebrated result by M. Gromov states that

M(n, c,D) = {Mn compact : Ric ≥ c, diam(M) ≤ D}

is precompact in C. Limits of converging sequences with bounded

K are Alexandrov spaces that are not in general manifolds.

§33. The Preissman Theorem

Mn complete, K < 0⇒ M̃n ∼= Rn ⇒ πk(M
n) = 0 ∀k ≥ 2. But

how is π1(Mn) when Mn is compact?

Def.: Free homotopy classes: π̂1(M).

Def.: Closed geodesics and geodesic loops.

Theorem 107. (Cartan) Mn compact⇒ ∃ a closed geodesic

in each free homotopy class.

Proof: Fix w ∈ π̂1(M) nontrivial, and take a sequence of closed

piecewise geodesics γn : S1 → M such that L(γn) → ` :=

inf{L(c) : c ∈ w}. {γn} is equicontinuous ⇒ γn → σ ∈ C0

uniformly. Define γ as the closed broken geodesic joining σ(ti) to

σ(ti+1), where σ([ti, ti+1]) is inside a convex ball ⇒ γ ∈ w ⇒
L(γ) ≥ `. But L(γ) ≤ ` ⇒ γ is not broken.

Remark 108. Compactness is necessary. Yet, every compact

Riemannian manifold has a closed geodesic (Lyusternik-Fet 1951).
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Def.: g ∈ Iso(N) without fixed points is a translation along γ

if g(γ) = γ (the images as sets), for some geodesic γ of N .

Lemma 109. M compact, π : M̃ → M its universal cover

with the covering metric. Then, every Id 6= f ∈ Deck(π) ⊂
Iso(M̃) is a translation.

Proof: Let j be the isomorphism in Corollary 37 and γ ∈ j−1(f )

as in Cartan’s Theorem 107 (as a free homotopy class) with lift γ̃.

Then, f (γ̃(s)) = γ̃(s+ r), where r is the period of γ (it is s and

not −s since otherwise γ̃(r/2) would be a fixed point of f ).

Lemma 110. If H 6= 1 is a subgroup of Deck(π) all whose

elements leave invariant the same geodesic γ, then H ∼= Z.

Proof: h(γ(0)) = γ(τ (h)), with τ : H → (R,+) an injective

group homomorphism. H acts discontinuously ⇒ τ (H) ∼= Z.

Lemma 111. A,B,C a geodesic triangle in a Hadamard

manifold ⇒ i) A2 + B2 − 2AB cos(γ) ≤ C2 (< if K < 0),

ii) α + β + γ ≤ π (< if K < 0).

Proof: Consequence of Proposition 74 (expp is an expansion).

Proposition 112. Let M̃ be a Hadamard manifold with

K < 0, and f 6= Id a translation along γ ⇒ γ is unique.

Proof: Suppose there are two, γ1, γ2 ⇒ γ1 ∩ γ2 = ∅ ⇒ there is

a geodesic quadrilateral which contradicts Lemma 111.

Corollary 113. If g ∈ Iso(M̃) commutes with an f as in

Proposition 112 ⇒ g is also a translation along γ.
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Theorem 114. (Preissman) M compact with K < 0 ⇒ any

nontrivial abelian subgroup of π1(M) is infinite cyclic.

Proof: Lemma 109 + Corollary 113 + Lemma 110.

Corollary 115. Many compact manifolds that admit metric

with K ≤ 0 admit no metric with K < 0: T n, N 2 × S1 for a

compact N 2. Nor M ×N for compact M and N . Etc...

Lemma 116. If M complete with K ≤ 0 and Deck(π) fixes

the same geodesic γ̃, then M is not compact (in fact, every

geodesic orthogonal to π(γ̃) is a ray).

Proof: Take β a unit orthogonal geodesic to γ at p = γ(0), αt
a minimizing geodesic joining p to β(t), and lift β and αt to M̃ .

By Lemma 111 (i), t ≤ L(α̃t) = L(αt) = d(p, β(t)) ≤ t.

Corollary 117. (Preissman) If M is compact with K < 0,

then π1(M) is not abelian.

Theorem 118. (Byers) If M is compact with K < 0 and

1 6= H ⊂ π1(M) is solvable, then H ∼= Z. Moreover, any such

subgroup has infinite index.

Proof: H = H0 ⊃ H1 ⊃ · · · ⊃ Hk−1 ⊃ Hk = 1 with Hi normal

in Hi+1 and abelian quotients ⇒ Hk−1 =< g >∼= Z with g

fixing γ. If h ∈ Hk−2, [h, g] = gm for some m ⇒ h also leaves γ

invariant ⇒ Hk−2
∼= Z, and so on ⇒ H ∼= Z (abelian quotients

only needed for Hk−1).

For the second part, suppose H =< g >∼= Z ⊂ π1(M) has finite

index, and take h ∈ π1(M) ⇒ for some n,m, hn = gm ⇒ hn

fixes γ. By Proposition 112 h also fixes γ ⇒ π1(M) fixes γ. This

contradicts Corollary 117 by Lemma 110.
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Remark 119. For (much) more about manifolds with non-

negative curvature, see [BGS].

§34. On the differentiable sphere Theorem

Let Mn be a compact manifold with positive sectional curvature.

Then, Kmin ≤ K ≤ Kmax (i.e., Kmin(p) ≤ K(σp) ≤ Kmax(p)).

Def.: The function Kmin/Kmax is called the pinching function

of M . We say that M is δ-pinched, or that δ ∈ R is a pinching

of M , if δ < Kmin/Kmax, i.e.,

δKmax(p) < K(σp) ≤ Kmax(p), ∀σp ⊂ TpM, ∀p ∈M.

The old question: δ ∼ 1 ⇒ Mn ∼= Sn/Γ ?

The answer was yes, but how close δ has to be from 1, and what

does “∼= ” mean? Lots of development and people involved.

At least for n even, δ ≥ 1/4 : CPn.

Extrinsic geometric flows: Curvature flow for closed embedded

curves in compact and complete surfaces. Watch this and this

youtube videos to get an intuition.

Very global in nature: smooth a triangle at its vertices.

Mean curvature flow (MCF): f ′ = −HN ; inverse MCF, etc...:

f ′ = −∇E(f ) for some energy functional E (E = vol for MCF).

Def.: Hamilton’s Ricci flow : g′t = −Ricgt.
Def.: Normalized Ricci flow : g′t = −Ricgt + 1

n(
∫
M scalgt)gt.

These are diffusion equations that tend to ‘distribute’ the curva-

ture uniformly over the manifold (preserving the volume for the

normalized flow). So they should somehow make the metric more
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‘symmetric’. In general, although we always have existence of flux

for small time (Hamilton), singularities (where K →∞) appear.

Remark 120. Perelman’s proof of Thurston’s geometrization

(and hence Poincaré’s) conjecture is based on the classification of

the singularity types of the Ricci flow, and their desingulariza-

tion using (discrete!) surgeries. The number of surgeries is finite

for compact simply connected 3-dimensional manifolds, proving

Poincaré’s conjecture. Apart from the beautiful and tough math,

the story behind this is well known (and quite sad... to say the

least: see [NG]).

The two important questions for us are:

1. Which are invariant conditions under the Ricci flow?

2. Does the metric converge under an invariant condition?

Under some invariant conditions the Ricci flow develops no sin-

gularities, like it was shown in the seminal work [BW]:

Theorem 121. (Böhm-Wilking) Positive and 2-positive cur-

vature operator are invariant conditions, and the metrics con-

verge to a metric with constant sectional curvature. In par-

ticular, M is diffeomorphic to a spherical space form, Sn/Γ.

The key main technique behind this beautiful result is the use of

pinching-families, that are barriers in the sense of PDEs.

Theorem 122. (Yau-Zheng) If M is 1/4-pinched⇒ KC > 0.

Theorem 123. (Ni-Wolfson, [NW]) Both KC ≥ 0 and

KC > 0 are invariant conditions under the Ricci flow.
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These three results, together with a pinching-family construction

as [BW], immediately give the differentiable sphere theorem:

Corollary 124. (Brendle-Schoen) If M is (pointwise) 1/4-

pinched, then M is diffeomorphic to a spherical space form.

Actually, Ni and Wolfson in their beautiful and short work [NW]

proved a stronger version of the differentiable sphere theorem

Corollary 124, where even zero curvatures are allowed:

Theorem 125. (Ni-Wolfson) Assume there exist continuous

functions k(p), δ(p) ≥ 0, such that P := {p ∈ M : k(p) > 0}
is dense and δ 6≡ 0, satisfying that, for all p ∈M , σ ⊂ TpM ,

1

4
(1 + δ(p))k(p) ≤ K(σ) ≤ (1− δ(p))k(p).

Then, the normalized Ricci flow deforms g into a metric of

constant sectional curvature. In particular, Mn ∼= Sn/Γ.

Remark 126. It is a pity that the paper [NW] by Ni and

Wolfson was never published in print (as neither were the three

papers where Perelman proves Thurston’s geometrization conjec-

ture). But the really interesting question is: why?

For details about the Ricci flow, Böhm-Wilking superb work

[BW] and the differentiable sphere theorem, see the survey [Ri].

§35. Busemann functions

These functions are one of the main tools to study the behavior

“at infinity” of complete noncompact manifolds.
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First, recall: Integration by parts⇒ weak solutions of PDEs =

good spaces where things converge nicely, as opposed to Ck(M,R).

Regularity theory of elliptic PDEs: weak solutions are strong.

Max. pple: f ∈ C2(M,R), f ≥ 0, f (p0) = 0, ∆f ≤ 0 ⇒ f ≡ 0.

Support functions and the strong maximum principle: Let

f ∈ C0(M,R), f ≥ 0, f (p0) = 0. Suppose that ∀x ∈ M

and ∀ε > 0, ∃ gxε ∈ C2(Ux) with gxε ≥ f , gxε (x) = f (x) and

∆gxε (x) ≤ ε. Then, f ≡ 0.

Def.: A ray γ : [0,+∞) → M is a (normalized) geodesic such

that d(p, γ(t)) = t,∀t > 0, while a line is a (normalized) geodesic

γ : R→M with d(γ(t), γ(s)) = |t− s|, ∀t, s ∈ R.

For a ray γ and t ≥ 0, set bt = bγt := d(γ(t), ·)− t : M → R. If

p := γ(0), triangle inequality ⇒ bt ≤ bs if t ≥ s, bt ≥ −d(p, ·),
and |bt(x)− bt(y)| ≤ d(x, y) ∀x, y ∈M ⇒ the Busemann func-

tion of γ given by bγ := limt→+∞ b
γ
t is well defined and Lipschitz.

Lemma 127. If f : M → R is C2 with ‖∇f‖ ≡ 1, then

−(n−1)Ric(∇f ) ≥ ∇f (∆f ) + ‖Hessf‖2 ≥ ∇f (∆f ) +
(∆f )2

n−1
.

Proof: The first inequality follows taking an o.n.b. diagonalizing

Hessf , while the second one is Cauchy-Schwarz on (∇f )⊥.

Corollary 128. (Calabi) If Ric ≥ 0, then for ρ := d(p, ·) it

holds that ∆ρ ≤ (n− 1)/ρ on M \ Cm(p).

Proof: If γ is a minimizing geodesic starting at p, and λ := ∆ρ◦γ,

then limt→0
n−1
λ(t) = limt→0 t = 0, and (n−1

λ )′ ≥ 1.
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Corollary 129. Ric ≥ 0 ⇒ a.e. ∆bγt ≤ n−1
t−d(p,·) → 0 on com-

pacts as t→ +∞. In particular, bγ is weakly subharmonic.

§36. The Cheeger-Gromoll splitting Theorem

While any complete noncompact manifold has a ray, lines only

appear in products under nonnegative Ricci curvature:

Theorem 130. (Cheeger-Gromoll) Let M be complete with

Ric ≥ 0. If M has a line, then M is isometric to N × R.

Proof: Take γ a line, x ∈M , and µ+ = lims µs : [0,+∞)→M a

future asymptote to γ with µ+(0) = x. Since µ+ is a ray starting

at x, gxt := bµ+
t + bγ(x) is smooth at x. In fact, gxt (x) = bγ(x)

and, since d(γ(s), x)− t ≥ d(γ(s), µ+(t))− d(µs(t), µ+(t)),

gxt = lim
s→+∞

(d(µ+(t), ·) + d(γ(s), x)− t− s) ≥ bγ.

That is, gxt is an upper support function for bγ at x.

Now repeat the same for the past of γ: b−γ, µ−, g̃xt . The function

b := bγ + b−γ, satisfies b ≥ 0 and b = 0 over γ. But hxt := gxt + g̃xt
is an upper support function for b at x and, by Corollary 128,

∆hxt (x) ≤ 2(n− 1)/t. By the strong maximum principle, b ≡ 0,

and by Corollary 129 both b±γ are harmonic, hence smooth. By

Lemma 127, Hessbγ ≡ 0, ∇bγ is parallel (⇒ Killing), the level

sets Nt = (bγ)−1(t) of bγ are smooth embedded totally geodesic

isometric hypersurfaces, and the (global!) flux of ∇bγ restricted

to N0 × R is a bijective local isometry, hence an isometry.

Exercise. If M is compact with Ric ≥ 0, then its universal cover splits isometrically as

N × Rk, with N compact and simply connected.
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