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§1. Manifolds

We want to extend calculus: object needs to be locally a vector

space. Example: Sn.
Topological space, neighborhood, covering.

Countable basis.

Hausdorff (T2).

REM: Countable basis and Hausdorff are inherited by subspaces.

Locally Euclidean Topological space: charts and coordinates.

Dimension, notation: dim Mn = n.

Topological manifold = Topological space + Locally Euclidean +

Countable basis + Hausdorff.

Examples: Rn, graph, cusp. Not a manifold: ‘× ’ (⊂ R2).

Compatible C∞–charts, transition functions, atlas (always C∞).
Example: Sn: πN : Sn \{−N} → N⊥ stereographic projection:

πN (x) =
xN⊥

1−⟨x,N⟩
, π−1

N (y) =
2y−(1−∥y∥2)N

1+∥y∥2
, π−N ◦ π−1

N (y) =
y

∥y∥2
.

Differentiable structure = maximal (C∞) atlas.

REM: By a theorem due to Whitney, every maximal Ck–atlas for k > 0 contains a “unique”

C∞–atlas. Not true for k = 0: there exist topological manifolds which admit no C1–structure.

From now on, for us: Manifold = differentiable manifold = smooth

manifold = Topological manifold + maximal atlas.

Examples: Rn, End(V n), Sn, U ⊂ Mn open, GL(n,R), graphs,
products.
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§2. Differentiable functions between manifolds

Definition, composition, diffeomorphism, local diffeomorphism.

Examples: Every chart is a diffeo with its image; function from/to

a product. Ex.: f : R2 → R defined as f(s, t) = st/(s2 + t2) outside the origin and

f(0, 0) = 0 satisfies that, for all x ∈ R, f(x, ·) ∈ C∞, f(·, x) ∈ C∞, yet f is not even

continuous at the origin. So video 2 at 42:00 is awfully wrong...

Partial derivatives, Jacobian matrix, Jacobian.

Lie Groups, examples: Gl(n,R), S1, S3.
Right and left translations: Lg, Rg for g ∈ G.

§3. The moduli space

As you know, Rn2 and the set of square matrices Rn×n are iso-

morphic as vector spaces. This means that, although they are

different as sets, they are indistinguishable as vector spaces:

every inherent property of vector spaces is satisfied by both.

In fact, the dimension is the only vector space property that

distinguishes between vector spaces (of finite dimension over the

same field). Now, regard M := R as a topological manifold, and

N := R as a smooth manifold. Consider the map τ : M → N

given by τ (t) = t3. Since τ is a homeomorphism, the topologies

and therefore the sets of continuous functions onM and N agree:

C0(M) = C0(N). On the other hand, since τ is a bijection, there

is a unique differentiable structure on M such that τ is a diffeo-

morphism, that is, the one induced by {τ} as an atlas. Let M̂ be

M with this differentiable structure. Now, although M̂ = N as

sets (and as topological manifolds), M̂ ̸= N as smooth manifolds,

since τ is not even an immersion when we regard on M = R the
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standard differentiable structure of R. In fact, F(M̂) ̸= F(N).

However, τ : M̂ → N is a diffeomorphism by definition (hence

F(M̂) = {g◦τ : g ∈ F(N)}), and thus, by the above discussion,

as smooth manifolds they should be indistinguishable! Huh????

Answer: As a general fact in math, when studying a mathemat-

ical structure as such, we should distinguish them only up to

the isomorphism of the category. That is, we should not really

study the set Mn of differentiable n-manifolds, but its moduli

space Mn/∼, where two manifolds are identified if they are dif-

feomorphic. So we finally obtain M̂ ∼ N , as we got Rn2 ∼ Rn×n.

In fact, every topological manifold of dimension n ≤ 3 has a dif-

ferentiable structure, which is also unique (in the above sense).

Yet, in 1956 John Milnor showed that the topological 7-sphere S7
has more than one differentiable structure! We now know exactly

how many smooth structures exist on each Sn... except for n = 4

for which almost nothing is known. See here. (Don’t worry, you will

understand more of this Wiki article by the end of the course).

§4. Quotients

Exercise: Show that on any topological space quotient there is a unique minimal topo-

logical structure, called quotient topology, such that the projection π is continuous (i.e.,

the final topology of π). But the quotient of a manifold is not necessarily a manifold...

Examples: Möbius strip, R2/Z2, [0, 1]/{0, 1} = S1.
Open equivalence relations: X has countable basis⇒ X/∼ has,

and {(x, y) ∈ X ×X : x ∼ y} is closed ⇒ X/∼ is Hausdorff.

Example: RPn.

A properly discontinuous action φ : G×M → M satisfies:
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1) ∀p ∈ M, ∃Up ⊂ M such that (g·Up)∩Up = ∅, ∀g ∈ G\{e},

2) ∀p, q ∈ M in different orbits, ∃Up, Uq ⊂ M such that

(G · Up) ∩ Uq = ∅ (this is necessary to ensure Hausdorff!).

In this situation, M/∼ (= M/φ) is a manifold.

Exercise: Consider S3 as the unit quaternions, and define the map P : S3 → SO(3)

by Pux = uxu−1, where x ∈ R3 is identified with the imaginary quaternions. Prove that

this map is well defined, a homomorphism and a 2-1 surjective local diffeomorphism.

Conclude that SO(3) ∼= S3/{±I}.

§5. The tangent space

Germs of functions: Fp(M) = {f : U ⊂ M → R : p ∈ U}/ ∼
TpM , x : Up ⊂ Mn → Rn chart ⇒ ∂

∂xi
|p ∈ TpM , 1 ≤ i ≤ n.

Differential of functions ⇒ chain rule.

f local diffeomorphism ⇒ f∗p isomorphism ⇒ dimension is pre-

served by local diffeomorphisms.

Converse: Inverse function Theorem (it has to hold!).

Since every chart x is a diffeomorphism with its image and since

x∗p(∂/∂xi|p) = ∂/∂ui|x(p) ∀1 ≤ i ≤ n,

then { ∂
∂x1

|p, . . . , ∂
∂xn

|p} is a basis of TpM ⇒ dimTpM = dimM .

Local expression of the differential.

Curves: speed, local expression.

Differential using curves: every vector is the derivative of a curve.

REM: TpRn = Rn. Therefore, if f ∈ Fp(U), v ∈ TpM , then

f∗p(v) = v(f ).

Differential of curves, and computation of differentials using curves.

Immersion, submersion, embedding. Rank.
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Exercise: Every injective immersion from a compact manifold is an embedding.

Examples: projections and injections in product manifolds.

Identification of the tangent space of a product manifold:

TpM × Tp′M
′ ∼= T(p,p′)(M ×M ′).

Definition 1. The point p ∈ M is a regular point of f : M → N

if f∗p is surjective. Otherwise, p is a critical point. The point

q ∈ N is a critical value of f if it the image of some critical point.

Otherwise, q is a regular value of f (in particular, q ∈ N, q ̸∈ Im (f) ⇒ q is a

regular value of f).

§6. Submanifolds

Regular submanifolds S ⊂ M . Codimension. Topology.

Adapted charts xS ⇒ the inclusion iS : S → M is an embedding.

Examples: sin(1/t) ∪ I ; points and open sets.

The φS give an atlas of S.

Differentiable functions from and to regular submanifolds.

Level sets: f−1(q). Regular level sets.

Examples: Sn, SL(n,R): use the curve t 7→ det(tA) !!

Exercise: S ⊂ M is a submanifold ⇐⇒ ∃ covering C of S such that S ∩ U is a

submanifold of U , for all U ∈ C.

Theorem 2. If q ∈ Im (f ) ⊂ Nn is a regular value of

f : Mm → Nn, then f−1(q) ⊂ Mm is a regular submanifold

of Mm of dimension m− n.

Proof: Let p ∈ Mm with f (p) = q and local charts (x, U) and

(y, V ) in p and q. We can assume that y(q) = 0, f (U) ⊂ V and

that span{f∗p( ∂
∂xi

|p) : i = 1, . . . , n} = TqN . Define φ : U → Rm
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by φ = (y ◦ f, xn+1, . . . , xm). Then, since φ∗p is a isomorphism,

∃U ′ ⊂ U such that x′ = φ|U ′ : U ′ → Rm is a chart of Mm in p.

Moreover, since y ◦ f ◦ x′−1 = πn, we have that f
−1(q) ∩ U ′ =

{r ∈ U ′ : x′1(r) = · · · = x′n(r) = 0}. Therefore, x′ is an adapted

chart to f−1(q).

Exercise: If p ∈ L := f−1(q) ⊂ Mm in Theorem 2, then TpL = Ker f∗p.

Exercise: Adapting the proof of Theorem 2, prove the following: Let f : Mm → Nn a
function whose rank is a constant k in a neighborhood of p ∈ M . Then, there are charts
in p and f(p) such that the expression of f in those coordinates is given by

πk := (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0) ∈ Rn.

Conclude from this the normal form of immersions and submersions as particular cases.

Exercise: Conclude for the previous exercise that, if f has constant rank = k in a

neighborhood U of f−1(q) ̸= ∅, then U ∩ f−1(q) is a regular submanifold of Mm with

dimension m− k.

Example: f : GL(n,R) → GL(n,R), f (A) = AAt has constant

rank n(n+ 1)/2 (since f ◦ LC = LC ◦RCt ◦ f ∀C) ⇒ O(n) is a

submanifold of dimension n(n−1)/2 (no needed for constant rank: enough

to see that I is a regular value of f thought the Im (f) ⊂ Sim(n,R)).

REM: Since “having maximal rank” is an open condition, if a

function f is an immersion (or a submersion) at point p, then it

is an immersion (or a submersion) at a neighborhood of p.

SL(n,R), SO(n), O(n), S3, U(n),... are all Lie groups.

Immersed and embedded submanifolds. Figure 8.

Identify: p∈S ⊂ M ⇒ TpS ⊂ TpM ; S ⊂ Rn ⇒ TpS ⊂ Rn.

Exercise: Show that 0 is a regular value of F : Sn−1 × R× Rn×n → Rn, F (v, s, A) =

(A−sI)v. Conclude the smooth dependence of eigenvectors and eigenvalues near simple

real eigenvalues (what happens at non-simple eigenvalues?). Complexify the exercise.
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§7. Tangent and vector bundles (see [Zi])

Topological and differentiable structure of TM .

π : TM → M . Vector fields over M :

X (M) = {X : M → TM : π ◦X = IdM}.

Differentiability, module structure of X (M).

Vector fields on M ∼= Derivations on M :

D(M) = {X ∈ End(F(M)) : X(fg) = X(f )g + fX(g)}.

Lie bracket: X (M) is a Lie algebra: [ · , · ] is bilinear, skewsym-

metric and satisfy Jacobi identity.

Given f : M → N ⇒ f -related vector fields: Xf . Ex.: X|U .
Xi ∼f Yi ⇒ [X1, X2] ∼f [Y1, Y2] ⇒ [X|U , X ′|U ] = [X,X ′]|U .
Fields along f : local expression.

Integral curves, local flux and Fundamental Theorem ODE.

Vector bundles, local trivializations, transition functions. TM .

Trivial vector bundle, product vector bundle.

Whitney sum of of vector bundles.

Pull-back of vector bundles: f ∗(E).

Bundle maps, isomorphism. Example: f∗ : TM → TN .

Sections. Frames. Differentiability.

Exercise: A vector bundle is trivial if and only if exists a global frame.

Cotangent bundle: T ∗M , {dxi, i = 1, . . . , n}.
Vector bundles ⇒ local basis of sections (as F(U)-module)

⇒ All linear algebra constructions apply to vector bundles !!

General bundles and G-bundles. Reduction.
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§8. Partitions of unity

Exercise: Show that any differentiable manifold M has a countable basis of pre-compact

sets. Conclude that M is a countable union of nested compact sets K1 ⊂ K2 ⊂ ...

Support of functions. Bump functions.

Global extensions of locally defined objects: functions, C∞ fields,

sections of vector bundles, etc.

Locally finite partitions of unity subordinated to coverings.

Theorem 3. For any open cover U = {Uα : α ∈ Λ} of

a smooth manifold there is a locally finite partition of unit

subordinated to U .

Proof for compact manifolds.

Exercise: Read (and understand!) the proof of the existence of partitions of unity in

general (better than in Tu, see this simple proof by Thurston).

Application: Existence of Riemannian metrics.

Exercise: Give a well defined meaning for a subset K ⊂ Mn to have (Lebesgue)

measure zero. Show that, if f : M → N is smooth with dimM = dimN and K ⊂ M

has measure 0, then f(K) ⊂ N has measure zero.

Exercise (mini Sard’s Theorem): If m < n and f : Mm → Nn, then f(M) ⊂ N has

measure zero.

Application: Whitney’s embedding theorem (for compact man-

ifolds): use mini Sard exercise. (You can see the general proof here).

§9. Orientation

V n a real vector space ⇒ O(V n) =Bases/ ∼ two orientations.

Moebius strip: paper trick, knot: intrinsic vs extrinsic topology.

Orientability: bundle!
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For every real vector bundle E → M , the orientation bundle of

E is the 2:1 cover O(E) → M . We say that E is orientable (as

a vector bundle) ⇔ Γ(O(E)) ̸= ∅. Each element in Γ(O(E)) is

called an orientation of E.

We have a natural homomorphism τE : π1(M) → Z2.

Exercise: Show that τE⊕E′ = τE + τE′ .

E is orientable ⇔ O(E) ∼= M ∪M .

We say that a manifold is orientable when its tangent bundle is.

Example: TM is orientable as a manifold.

Exercise: If M is orientable, then, a vector bundle E → M is orientable as a vector

bundle if and only if E is orientable as a manifold.

§10. Differential 1–forms

Ω1(M) = Γ(T ∗M) = {w :X (M)→F(M)/w is F(M)− linear}:
Local operator ⇒ point-wise operator ⇒ F(M)-linear.

f ∈ F(M) ⇒ df ∈ Ω1(M), and df ∼= f∗.

(x, U) chart⇒{ ∂
∂x1

|p, . . . , ∂
∂xn

|p} is basis of TpM whose dual basis

is {dx1|p, . . . , dxn|p} (i.e., basis of T ∗
pM).

{dx1, . . . , dxn} are then a frame of T ∗U : local expression.

Example: Liouville form on T ∗M : λ(w) := w ◦ π∗w.
Pull-back: φ ∈ End(V ,W ) ⇒ φ∗ ∈ End(W ∗,V ∗);

f : M → N ⇒ f ∗ : F(N) → F(M); f ∗ : Ω1(N) → Ω1(M).

Importance of pull-back!

Restriction of 1-forms to a submanifold i : S → M : w|S = i∗w.

§11. Multilinear algebra

Let V and V ′ R–vector spaces. V ∗ = Hom(V ,R).
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Bi/tri/multi linear functions on vector spaces: V ⊗ V .

Tensors and k–forms on V : Bil(V ) = (V ⊗ V )∗ = V ∗ ⊗ V ∗.

V ⊗ V ′, V ∧ V , ∧0V = V ⊗0 := R,

V ⊗k := V ⊗ · · · ⊗ V , dimV ⊗k = (dimV )k

∧k V := V ∧ · · · ∧ V ⊂ V ⊗k, dim∧k V =

(
dimV

k

)
Operators ⊗ and ∧ (bil. and assoc.) over multilinear maps:

σ ∈ ∧k V , ω ∈ ∧sV ⇒ ω ∧ σ :=
1

k!s!
A(ω ⊗ σ) ∈ ∧(k+s)V

REM: ω ∧ σ = (−1)ks σ ∧ ω.

§12. Differential k – forms and tensor fields

ALL the multilinear algebra extends to vector bundles: Hom(E,E ′)

Examples: T ∗M ; Riemannian metric: ⟨ , ⟩|U =
∑

gijdxi ⊗ dxj
Tensor (field) and (differential) k-form:

X k(Mn), Ωk(Mn)

are simply the sections of the bundles (T ∗M)⊗k, Λk(T ∗M).

Tensors = F(M)-multilinear maps (bump-functions).

REM: Ω0(M) = X 0(M) = F(M), Ω1(M) = X 1(M).

Notation: Jk,n := {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ n}, and for

I = (i1, . . . , ik) ∈ Jk,n, we set dxI := dxi1 ∧ · · · ∧ dxik .

Local expression:

df1 ∧ · · · ∧ dfn = det([∂fi/∂xj]1≤i,j≤n) dx1 ∧ · · · ∧ dxn , (1)
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and, for J = (j1, . . . , jk) ∈ Jk,n and y1, . . . , yn ∈ F(M),

dyJ =
∑

I∈Jk,n

det(AJI) dxI , onde AJI =

[
∂yjr
∂xis

]
1≤r,s≤k

.

Wedge operator ∧ : Ωk(M) × Ωs(M) → Ωk+s(M) bilinear, ten-

sorial

Ω•(M) :=

n⊕
k=0

Ωk(M)

is a graded algebra with ∧.
Pull-back of tensors and forms: linear, tensorial, respects ∧:

F ∗f := f ◦ F, ∀f ∈ F(M),

F ∗(ω ∧ σ) = F ∗ω ∧ F ∗σ,

(F ◦G)∗ = G∗ ◦ F ∗.

§13. Orientation and n – forms

Recall: if B = {v1, . . . , vn}, B′ = {v′1, . . . , v′n} are bases of

V n ⇒ β(v1, . . . , vn) = detC(B,B′)β(v′1, . . . , v
′
n), ∀ β ∈ Λn(V n).

We say that β determines an orientation [B] if β(v1, ..., vn) > 0.

REM: Mn orientable ⇔ exists β ∈ V , where

V = {σ ∈ Ωn(Mn) : σ(p) ̸= 0, ∀ p ∈ Mn}.

Orientations of M ∼= V/F+(M).

Diffeomorphisms that preserve/revert orientation.

Exercise: Do this exercise again, but now use forms: If M is orientable, then, a

vector bundle E → M is orientable as a vector bundle if and only if E is orientable as

a manifold.
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§14. Exterior derivative: VIP!!

Definition 4. The exterior derivative on Ω•(M) is the linear

map d : Ω•(M) → Ω•(M) that satisfies the following properties:

1. d(Ωk(M)) ⊂ Ωk+1(M);

2. f ∈ F(M) = Ω0(M) ⇒ df (X) = X(f ), ∀X ∈ X (M);

3. ∀ω∈Ωk(M), σ∈Ω•(M)⇒ d(ω∧σ) = dω∧σ+(−1)kω∧dσ;

4. d2 = 0.

• Props (2) + (3) + bump functions: ω|U = 0 ⇒ dω|U = 0.

• Then, dω|U = d(ω|U), and we can carry local computations.

• Props (3) + (4) + induction ⇒ d(df1 ∧ · · · ∧ dfk) = 0.

• d exists and is unique: coordinate local expression.

For every F : M → N we have that (see first for Ω0):

F ∗ ◦ d = d ◦ F ∗

i.e., F ∗ : Ω•(N) → Ω•(M) is a morphism of differential graded

algebras (i.e., preserves degree and commutes with d).

REM: This also explains why dω|U = d(ω|U) via inc∗.

Exercise: ∀ k, ∀ω ∈ Ωk(M), ∀Y0, . . . , Yk ∈ X (M), it holds that dw(Y0, . . . , Yk) =

k∑
i=0

(−1)iYiω(Y0, . . . , Ŷi, . . . , Yk) +
k∑

0≤i<j≤k

(−1)i+jω([Yi, Yj], Y0, . . . , Ŷi, . . . , Ŷj, . . . , Yk).
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Given X ∈ X (M) we define the interior multiplication

iX : Ωk+1(M) → Ωk(M)

by (iXω)(Y1, . . . , Yk) = ω(X, Y1, . . . , Yk).

• iXω is tensorial (= F(M)-bilinear) on X and on ω.

• ∀ ω ∈ Ωk(M), σ ∈ Ωr(M),

iX(ω ∧ σ) = (iXω) ∧ σ + (−1)kω ∧ (iXσ).

• iX ◦ iX = 0.

§15. Manifolds with boundary

C∞ functions and diffeos over arbitrary subsets S ⊂ Mn.

Proposition 5. Let U ⊂ Mn open, S ⊂ M̂n arbitrary, and

f : U → S a diffeomorphism. Then, S is open on M̂n.

Corolary 6. Let U and V open of Hn := Rn
+ = {xn ≥ 0} and

f : U → V a diffeomorphism. Then f takes interior (resp.

boundary) points to interior (resp. of boundary) points.

Manifold with boundary: definition. (Rough idea of orbifold).

Interior points.

The boundary of Mn = ∂Mn is a manifold of dimension n− 1.

∂M versus topological boundary.

If p ∈ ∂M : Fp(M), T ∗
pM , v ∈ TpM (yet, it could be no curve

with α′(0) = v), TM , orientation, submanifolds (with bound-

ary!): SAME as before. In particular, ∂M is an embedded hy-

persurface of M .
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If p ∈ ∂M : v ∈ TpM interior and exterior.

REM: In any manifold with boundary M there exists an ex-

terior vector field X along ∂M (i.e., considering the inclusion

inc : ∂M → M we have that X ∈ Xinc). Then, ∂M is ori-

entable if M is, with the induced orientation inc∗iXω. In fact,

X is defined in a neighborhood U of ∂M , which in turnin turn

defines a collar ∂M ⊂ Uϵ ⊂ M by means of the flux of X .

Examples: Hn, [a, b]; Bn, Bn.

Example: If j = inc : Sn−1 = ∂Bn → Bn, Z(p) = p ∈ Xinc is

exterior ⇒ orientation σ in Sn−1 ⊂ Bn via Bn ⊂ Rn and dvRn:

σ = j∗(iZdvRn) =
∑
i

(−1)i−1 ui du1∧· · ·∧ d̂ui∧· · ·∧dun. (2)

§16. Integration (Riemann)

Forms with compact support = Ω•
c(M): preserved by pull-backs

of diffeomorphisms (and, more generally, proper maps).

• If ω ∈ Ωn
c (U), U ⊂ Hn write ω = fdx1 ∧ · · · ∧ dxn. Given a

diffeo ξ : V ⊂ Hn → U ⊂ Hn with ϵξ = 1 (resp. ϵξ = −1) if

ξ preserves (resp. reverses) orientation, we get from (1) and the

Change of Variables Theorem (CVT: VIP!!!) that∫
V

ξ∗ω =

∫
V

ξ∗(fdx1 ∧ · · · ∧ dxn)

=

∫
V

f ◦ ξ (ξ∗dx1 ∧ · · · ∧ ξ∗dxn)

=

∫
V

f ◦ ξ (dξ1 ∧ · · · ∧ dξn)

=

∫
V

f ◦ ξ det(Jξ) dx1 ∧ · · · ∧ dxn = ϵξ

∫
U

ω.
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• If U ⊂ Hn, we define the linear operator

ω ∈ Ωn
c (U) 7→

∫
U

ω =

∫
Hn

ω :=

∫
Hn

fdx = Riemann integral.

REM: Same for ω n-form continuous on U , A ⊂ U bounded

with measure zero boundary (e.g., A = cube) ⇒
∫
A ω.

• If Mn is oriented, φ : U ⊂ Mn → Hn oriented chart, we define

the linear operator

ω ∈ Ωn
c (U) 7→

∫
U

ω =

∫
M

ω :=

∫
φ(U)

(φ−1)∗ω.

• If Mn oriented, we define the linear operator

ω ∈ Ωn
c (M

n) 7→
∫
M

ω :=
∑
α

∫
M

ραω.

CVT:
∫
N φ∗ω =

∫
M ω, ∀φ ∈ Dif+(N,M), ∀ω ∈ Ωn

c (M
n).

Dim M = 0 case:
∫
M f :=

∑
i f (pi)−

∑
j f (qj).

M = (M, o) oriented, −M := (M,−o) ⇒
∫
−M ω = −

∫
M ω.

§17. Stokes Theorem 1.0

...which was not proved by Stokes, but by Klein (dim 2) and E.Cartan in general... :o/

Theorem 7 (Stokes v.1.0). Mn oriented, ω ∈ Ωn−1
c (Mn) ⇒∫

M

dω =

∫
∂M

ω.

Underlying idea: Sum integrals over small cubes, since the inte-

rior faces cancel down due to orientation (dim 1 and 2 pictures).

Cor.: Mn compact oriented ∂M =∅⇒
∫
M dω=0,∀ω∈Ωn−1(M).
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Exercise 1: The classical calculus theorems all follow from Stokes.

Exercise 2. M compact orientable ⇏ ∃ f : M → ∂M with f |∂M = Id (retraction).

Theorem 8 (Brouwer’s fixed point Theorem). If B ⊂ Rn is a

closed ball (or a compact convex subset), then every continu-

ous function f :B → B has fixed points.

OBS (!!): i : Nk ⊂ M , Nk compact oriented regular sub-

manifold, and ω ∈ Ωk(M) (or Nk oriented and ω ∈ Ωk
c (M))

⇒
∫
N ω (=

∫
N i∗ω).

If ρ ∈ Diff+(N
k) ⇒

∫
N ρ∗ω =

∫
N ω ⇒ we only care about the

image i(N), nor really on the map i (!) ⇒ Notation:∫
i

w :=

∫
N

i∗ω, ∀i : Nk → Mn.

It makes sense for any differentiable function i:
∫
iw (even ifM is

not orientable!), and
∫
i◦ρw =

∫
iw (we only care about i(N)...).

Curiosity: Palais’ Theorem. Let D : Ωk → Ωr such that Df∗ = f∗D, ∀f : M → N . Then,

either k = l and D = cId, or r = k + 1 and D = c d, or k = dimM , r = 0, and D = c
∫
M .

§18. Stokes Theorem 2.0 (Spivak vol.1 chap.8)

k-cube: Ik: [0, 1]k ↪→ Rk. Singular k-cube: c: [0, 1]k → M .

c singular k-cube, ω ∈ Ωk(M) ⇒
∫
c ω :=

∫
[0,1]k c

∗ω.

Ck(M) = Ck(M ;G) := k-chains of M = free G-module over

singular cubes, for G = R (or Z or Q or Z2 or...).∫
: Ck(M)× Ωk(M) → R is defined ∀M and is bilinear!

Iki,α(x1, . . . , xk−1) :=Ik(x1, . . . , xi−1, α, xi, . . . , xk−1)), α = 0,1.

ci,α := c ◦ Iki,α, ∂c =
∑k

i=1

∑1
α=0(−1)i+αci,α (dim 2 picture).

Extend linearly ∂:Ck(M)→Ck−1(M): ∂c = boundary of c.

17



Defs: c ∈ Ck(M) is closed if ∂c = 0; c is um boundary if c = ∂c̃.

Examples: c1, c2 1-cubes. c1 closed ⇔ c1(0)=c1(1); c=c1−c2 is

closed ⇔ c1(0)=c2(0) and c1(1)=c2(1), or c1 and c2 closed.

Since (Iki,α)j,β = (Ikj+1,β)i,α ∀ 1 ≤ i ≤ j ≤ k−1 ⇒ ∂2 = 0 .

What we proved in Theorem 7 is, in fact, the following:

Theorem 9 (Stokes v.2.0). For every differentiable mani-

fold M , w ∈ Ωk−1(M), and c ∈ Ck(M), we have that∫
c

dω =

∫
∂c

ω.

In other words, ∂ (over R) is the dual (with respect to
∫
) of d.

Everything works the same with k-simplex instead of k-cubes.

DO ALL EXERCISES

IN CHAPS. 8 AND 11 OF SPIVAK!!

§19. De Rham cohomology (Spivak, vol.1 chap.8)

If w ∈ Ω1(Rn), when w= df for certain f ∈ F(Rn)? Necessary

condition: dw = 0. Is it enough?? YES: taking singular 1-cube

c, c(0) = 0, c(1) = p, define f (p) =
∫
cw. It is well defined by

Stokes(!), since every closed curve on Rn is a boundary. In fact,

cs(t) = sc1(t)+(1−s)c0(t). That is: solutions of certain PDEs

are related to the topology of the space.

Poincaré’s Lemma (seen later): Zk(Rn) = Bk(Rn).

That is, locally we can always solve the problem, but globally...

depends on the topology! ⇒ likewise orientability!
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System of linear PDEs: integrability condition.

Obstructions to solve PDEs, or globalize certain local objects.

Zk(M) := Ker dk = closed forms (local condition)

Bk(M) := Im dk−1 = exact forms (global condition!)

Definition: The k-th de Rham cohomology of the manifold M

(with or without boundary) is given by

Hk(M) := Zk(M)/Bk(M).

H0(M) = Rr, where r is the number of connected comp. of M .

Hn(Mn) ̸= 0 if Mn is a compact orientable manifold (Stokes).

Hn+k(Mn) = 0, ∀ k ≥ 1.

Ex: dimHk(T n) ≥
(
n
k

)
: if ωI := [dθi1∧· · ·∧dθik ] ⇒

∫
TJ
wI = δIJ .

Pull-back: F : M → N ⇒ F ∗(= F#) : Hk(N) → Hk(M).

(F ◦G)∗ = G∗◦F ∗ ⇒ Hk(M) is an invariant of the differentiable

structure (!), and invariant under diffeomorphisms.

∧ : Hk(M)×Hr(M) → Hk+r(M), [ω] ∧ [σ] := [ω ∧ σ] (well!).

H•(M) := ⊕k∈ZH
k(M) is the de Rham cohomology ring of M .

In fact, H•(M) is a anticommutative graded algebra, and F ∗ is

a homomorphism of graded algebras.

§20. Homotopy invariance (Spivak, vol.1 chap.8)

Definition 10. Given two manifolds (with or without bound-

ary) M and N , we say that f, g : M → N are (differentiably)

homotopic if there is a smooth function T :M × [0, 1] → N such

that T0 := T ◦ i0 = f , T1 := T ◦ i1 = g, where is(p) = (p, s).

This is an equivalence relation on F(M,N): f ∼ g.

Example: M is contractible ⇔ IdM ∼ cte.
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REM:Continuously homotopic⇒ differentiably homotopic ([Le])

Proposition 11. If M is a manifold with or without bound-

ary, for all k there is a linear map τ : Ωk(M × [0, 1]) →
Ωk−1(M) (called cochain homotopy) such that

i∗1ω − i∗0ω = dτω + τdω, ∀ω ∈ Ωk(M × [0, 1]).

Proof: Define τ (ω) =
∫ 1

0 i∗s(i∂/∂t(ω))ds. It is enough to check

two cases (identify via π∗
1 and π∗

2). If ω = fdxI , dω = · · · +
(∂f/∂t)dt ∧ dxI , and therefore it is just the Fundamental Theo-

rem of Calculus. If ω = fdt ∧ dxI , then i∗1ω = i∗0ω = 0, and an

easy computation gives ⇒ dτω + τdω = 0.

More than a differential invariantH•(M) is a homotopic invariant:

Theorem 12 (!!!!!!). f ∼ g ⇒ f ∗ = g∗ (in H•(M)).

Proof: Immediate from Proposition 11. (The same holds true for

the singular homology: see Theorem 2.10 on [Ha] and its proof).

Corolary 13. M contractible ⇒ Hk(M) = 0, ∀ k ≥ 1.

Corolary 14. (Poincaré’s Lemma) Zk(Rn)=Bk(Rn) ∀k ≥ 1.

Corolary 15. Mn compact orient. ⇒ Mn not contractible.

Definition 16. f : M → N is a homotopic equivalence if

there exists g : N → M such that g ◦f ∼ IdM and f ◦g ∼ IdN .

In this case, we say thatM and N are homotopically equivalent,

or that M and N have the same homotopy type: M ∼ N .
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Example: M contractible ⇐⇒ M ∼ point.

Exercise. The “letters” X and Y as subsets of R2 are homotopically equivalent but
not homeomorphic.

REM: Whitehead’s Theorem states that, if a continuous function (between CW complexes)
induces isomorphisms between all homotopy groups, then f is a homotopy equivalence. Yet,
it is not enough to assume that all homotopy groups are isomorphic: RP2 × S3 ̸∼ S2 × RP3

since they are covered by S2 × S3 and π1 = Z2. By Hurewicz Theorem, this implies that a
continuous function f between simply connected CW complexes that induces isomorphisms
between the singular homologies with integer coefficients is also a homotopy equivalence.

Corolary 17 (!!!!!). Let f : M → N be a homotopy equiva-

lence between manifolds with or without boundary.

Then f ∗ : H•(N) → H•(M) is an isomorphism.

Corolary 18. If M has boundary, then H•(M) = H•(M ◦).

Definition 19. A retract of M to a submanifold S ⊂ M is a

function f : M → S such that f |S (= f ◦ incS) = IdS. S is

called a retract of M (⇒ f ∗ is injective and inc∗S is surjective).

Exercise 1. Using deRham cohomology prove again Brouwer fixed point Theorem 8.

Exercise 2. Using deRham cohomology prove again Exercise 2 on page 15: if M is

compact and orientable then there is no retraction f : M → ∂M .

Exercise 3. Prove the previous exercise without orientability. (Suggestion: pick a reg-

ular value p of f and notice that #∂(f−1(p)) is even by Sard, which is a contradiction).

Definition 20. A deformation retract from M to S ⊂ M is a

function T : M × [0, 1] → M such that T0 = IdM , Im (T1) ⊆ S,

and T1|S = IdS (i.e., retract T1 ∼ T0 = IdM ⇒ T ∗
1 and inc∗S are

isomorphisms).

In other words, a deformation retract is a homotopy between a

retract from M to S and the identity of M . In particular, if S is

a deformation retract of M , then M ∼ S.
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Corolary 21. If E is a vector bundle over M , then H•(E) =

H•(M).

Application: tubular neighborhoods. Given an embedded

compact submanifold N ⊂ M , for each 0 < ϵ < ϵ0 there exists

an open subset N ⊂ Vϵ ⊂ M , such that N is a deformation

retract of Vϵ, Vϵ ⊂ Vϵ′ if ϵ < ϵ′, and ∩ϵVϵ = N . (Proof: use

Whitney’s Theorem for M , or Riemannian metrics; see Theorem

5.2 on [Hr]). In particular, H•(Vϵ) = H•(N).

Definition 22. A strong deformation retract is a deformation

retract T as in Definition 20 such that Tt|S = IdS, ∀ t ∈ [0, 1]

(e.g, H below).

Example: Möbius strip F ∼ S1 (⇒ H2(F ) = 0).

Example: Rn \ {0} ∼ Sn−1 ̸∼ Rn: H(x, t)=((1− t) + t/∥x∥)x.

§21. Integrating cohomology: degree (Spivak, vol.1 chap.8)

For noncompact M (without boundary) we also work with

Hk
c (M) := Zk

c (M)/Bk
c (M), k ∈ Z.

REM: If Mn is orientable, then
∫
: Hn

c (M
n) → R is of course

a well defined linear map. And more:

Theorem 23. If Mn is a connected orientable manifold, then∫
: Hn

c (M
n) → R is a isomorphism (⇒ dimHn

c (M
n) = 1).

Proof: We only need to check that, if
∫
M ω = 0, then ω = dβ

with β with compact support.

(a) It is true for M = R. Se g(t) =
∫ t

−∞ ω ⇒ ω = dg.
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(b) If it holds for Sn−1, then it holds for Rn. If ω ∈ Ωn
c (Rn) ⊂

Ωn(Rn), since Rn is contractible we know that ω = dη for some

η ∈ Ωn−1(Rn) (but η not necessarily with compact support!).

Now, since ω has compact support (say, inside the ball Bn
1 ) and∫

Rn ω = 0, we have
∫
Sn−1 j

∗η′ =
∫
Sn−1 i

∗η =
∫
Rn ω = 0 by Stokes,

where i : Sn−1 → Rn and j : Sn−1 → Rn \{0} are the inclusions,

and η′ = η|Rn\{0}. Then, by hypothesis, j∗[η′] = 0. But j∗ is a

isomorphism since Sn−1 is deformation retract of Rn \ {0}. We

conclude that η′ = dλ for some λ ∈ Ωn−2(Rn\{0}). In particular,
if h : Rn → R satisfies h ≡ 1 outside of Bn

1 and h ≡ 0 inside Bn
ϵ ,

then β = η − d(hλ) ∈ Ωn−1(Rn) has compact support on Bn
1 ,

and ω = dβ.
Another, more explicit proof of (b): If ω = fdvRn ∈ Ωn(Rn) has compact sup. on Bn

1 , then

define g : Rn → R by g(p) =
∫ 1
0 tn−1f(tp)dt, r : Rn \ {0} → Sn−1, r(x) = x/∥x∥ (retract),

i : Sn−1 → Rn the inclusion and σ = iXdvRn ∈ Ωn−1(Rn) as in (2).
• Computation ⇒ w = d(gσ) (yet gσ not necessarily with compact support!)
•
∫
Sn−1(g ◦ i)i∗σ =

∫
Bn fdvRn =

∫
Rn ω = 0 ⇒ i∗(gσ) = dλ, by hypothesis.

• gσ = r∗(i∗(gσ)) = d(r∗λ) outside Bn
1 , since (i ◦ r)∗p = ∥p∥−1Πp⊥ , (i ◦ r)∗σ(p) = ∥p∥−nσ(p),

and g(p) = ∥p∥−n(g ◦ i ◦ r)(p), if ∥p∥ ≥ 1.
• If β := gσ − d(hr∗λ) ⇒ w = d(gσ) = dβ, with sup(β) ⊆ Bn

1 .

(c) (!!!) If it holds for Rn it holds for every Mn. Fix any

w0 ∈ Ωn
c (U0) with U0 ⊂ Mn diffeo to Rn, with

∫
M w0 ̸= 0.

Let w ∈ Ωn
c (M

n). It is enough to see that there is a ∈ R and

η ∈ Ωn−1
c (Mn) such that w = aw0 + dη. Taking partitions of

unity we can assume that sup(w) ⊂ U , U diffeo a Rn. Since Mn

is connected, there exists a sequence {Ui, 1 ≤ i ≤ m}, Ui diffeo

a Rn, with Um = U and Ui ∩ Ui+1 ̸= ∅. Let wi with compact

support, sup(wi) ⊂ Ui ∩Ui+1, and such that
∫
M wi ̸= 0. Since it

holds for Rn ∼= Ui+1, wi+1 − ci+1wi = dηi+1. Done! :)

Theorem 24. Mn connected not orientable ⇒ Hn
c (M

n) = 0.
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Proof: Use the idea in (c) above.

Exercise. Prove Theorem 24 using the orientable double cover.

Theorem 25. Mn connected non compact, with or without

boundary ⇒ Hn(Mn) = 0.

Proof: Use the idea in (c). Suppose first Mn orientable and

use exhaustion by compact sets (or by Theorem 52). For non

orientableMn, prove that π∗ : Hn(Mn) → Hn(M̃n) is injective.

By Theorem 23, for any proper differentiable function between

connected orientable manifolds, f : Mn → Nn (same dimen-

sion!), there exists deg(f ) ∈ R, the degree of f , such that∫
M

f ∗ω = deg(f )

∫
N

ω, ∀ ω ∈ Ωn
c (N

n).

Theorem 26. Under the above hypothesis, if q ∈ Nn is a

regular value of f and f (p) = q, set sgnf(p) = ±1, according

to f∗p preserving or reversing orientation. Then,

deg(f ) =
∑

p∈f−1(q)

sgnf(p).

In particular, deg(f ) ∈ Z, and deg(f )=0 for f not surjective.

Proof: If {p1, . . . , pk} = f−1(q), choose small disjoint neigh-

borhoods Ui of pi and V of q such that f : Ui → V is diffeo.

Let ω with compact support on V such that
∫
N ω ̸= 0. Then,∫

Ui
f ∗ω = sgnf(pi)

∫
V ω. So, the result is immediate... if it only

holds that sup(f ∗ω) ⊂ U1 ∪ · · · ∪ Uk. But we fix it like this:
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Let K ⊂ V compact such that q ∈ Ko. Then, K ′ = f−1(K) \
(U1∪ · · · ∪Uk) is compact, and thus f (K ′) is closed not contain-

ing q. Now just change V by any V ′ ⊂ Ko \ f (K ′) ⊂ K, with

q ∈ V ′, that automatically satisfies f−1(V ′) ⊂ U1 ∪ · · · ∪ Uk.

REM: The set of regular values is open and dense, and the sum

in Theorem 26 is finite.

REM: Hn
c (M

n) ̸⊂ Hn(Mn) in general: Hn
c (Rn) = R, yet

Hn(Rn)=0, n ≥ 1. In fact, f ∼ g ̸⇒ f ∗ = g∗ on H•
c . But:

Corolary 27. f, g : Mn → Nn as above, f ∼ g (properly

homotopic) ⇒ deg(f ) = deg(g).

Example: deg(−IdSn) = (−1)n+1.

Corolary 28. Hairy even dimensional dog Theorem.

REM: We can always comb odd dimensional dogs!

Corolary 29. Fundamental Theorem of Algebra.

Proof: Extend g(z) = zk+a1z
k−1+ · · ·+ak to C ∪∞ = S2 via

g(∞) = ∞. It is smooth since 1/g(1/z) = zk

1+a1z+···akzk
, and it is

homotopic to h(z) = zk via gt(z) = zk + t(a1z
k−1 + · · · + ak).

Let w = f (r)dx ∧ dy = f (r)rdr ∧ dθ with f with compact

support. Then,
∫
R2 h

∗w = k
∫
R2 w ⇒ deg(g)=deg(h)=k>0 ⇒

g is surjective.

Another proof: h is a proper orientation preserving local diffeo of

C \ {0}, and ∀u ∈ C \{0}, #h−1(u) = k ⇒ deg(h)=k.

Exercise. Using degree prove (again!) Brouwer fixed point Theorem 8. (Suggestion:

for 0 ≤ t ≤ 1 consider ft(x) = (x− tf(x))/st, where st = sup{y − tf(y) : y ∈ B}).
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§22. Application: winding number (video 25)

f : Mn → Rn+1 an immersion of a compact connected orientable

manifold, p ∈ Rn+1 \Mn, r > 0 such that Br(p) ∩Mn = ∅ ⇒
π ◦ f : Mn → ∂Br(p) ∼= Sn ⇒ w(p) := deg(π ◦ f ) ∈ Z is

the winding number of Mn around p (independent on r) ⇒
w is constant on each connected component of Rn+1 \Mn.

See for curves, in particular, the effect of the orientation.

Mn is not orientable? Theorem 26 ⇒ winding number mod 2:

exercises 23 to 26 Spivak chap.8: f : Mn × I → Nn homotopy,

y ∈ Nn regular value de f, f0, f1 ⇒ #f−1
0 (y) = #f−1

1 (y) mod 2.

Picture ⇒ w is never constant and jumps at Mn ⇒

Corolary 30. Mn orientable or not, b0(Rn+1 \Mn) ≥ 2.

§23. The birth of exact sequences

Let U, V ⊂ M open such that M = U ∪ V , k ∈ Z ⇒ iU : U ↪→
M , jU : U ∩ V ↪→ U ⇒ i∗U : Ωk(M) → Ωk(U), j∗U : Ωk(U) →
Ωk(U ∩ V ). Idem for iV , jV . We then have:

i = i∗U ⊕ i∗V : Ωk(M) → Ωk(U)⊕ Ωk(V ),

j = j∗V ◦ π2 − j∗U ◦ π1 : Ωk(U)⊕ Ωk(V ) → Ωk(U ∩ V ),
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i.e., i(ω) = (ω|U , ω|V ), j(σ, ω) = j∗Vω − j∗Uσ = ω|U∩V − σ|U∩V .

Joining, we get

0 → Ωk(M)
i→ Ωk(U)⊕ Ωk(V )

j→ Ωk(U ∩ V ) → 0, (3)

with each image contained in the kernel of the next. Now, the

fundamental point is that, in fact, they equal! (the only not

obvious is that j is surjective, but, if {ρU , ρV } is a partition of

unity subordinated to {U, V } and ω ∈ Ωk(U ∩ V ), then ωU :=

ρVω ∈ Ωk(U), ωV := ρUω ∈ Ωk(V ), and j(−ωU , ωV ) = ω).

§24. Complexes (Spivak, Vol. I, Chap. 11)

Exact sequences of abelian groups: short, long.

Exercise. The dual of an exact sequence is an exact sequence.

A
f→ B → 0 ⇔ f epimorphism

0 → A
f→ B ⇔ f monomorphism

0 → A
f→ B → 0 ⇔ f isomorphism

A
f→ B → C → 0 ⇒ C ∼= B/Im f

0 → A → B → C → 0 ⇒ C ∼= B/A

Proposition 31. (General linear algebra dimension Theorem)

If 0
α→V 1

β→V 2→· · ·→V k→0 is exact⇒
∑

i(−1)i dimV i = 0.

Proof: Induction on k, changing to 0→V 2/Imα
β[ ]→ V 3 → · · ·

Cochain complex: C = {Ck}k∈Z + ‘differentials’ {dk}k∈Z:

· · ·C−1 d−1→ C0 d0→ C1 d1→ C2 · · · , dk ◦ dk−1 = 0.
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Direct sum of cochain complexes.

a ∈ Ck is a k−cochain of C.
a ∈ Zk(C) := Ker dk ⊂ Ck is a k−cocycle of C.
a ∈ Bk(C) := Im dk−1 ⊂ Ck is a k−coboundary of C.
The k-th cohomology of C is given by

Hk(C) := Zk(C)/Bk(C).

If a∈ Zk(C) ⇒ [a] ∈ Hk(C) is the cohomology class of a.

Um cochain map φ : A → B is a sequence {φk:A
k → Bk}k∈Z

such that d ◦ φk = φk+1 ◦ d. This gives maps φ∗ : H•(A) →
H•(B). The sequence 0 → A i→ B j→ C → 0 is said to be short

exact if at each level k is exact. In this situation,

Hk(A)
i∗→ Hk(B) j∗→ Hk(C)

is exact for all k. Yet, it is NOT exact with 0 at the left or at the

right... BUT:

Theorem 32 (!!!!!!!). If 0 → A i→ B j→ C → 0 is short ex-

act, then there exist (explicit and natural) homomorphisms

δ∗ : Hk(C) → Hk+1(A),

called connection homomorphisms, that induce the following

long exact sequence in cohomology:
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Proof: (“Diagram chasing”: make with students) Given c ∈ Zk(C), there
exists b ∈ Bk such that jb = c. But then db ∈ Ker j (jdb =

djb = dc = 0), and, since Ker j = Im i, there is a ∈ Ak+1 such

that db = ia (given b, a is unique since i is injective). Now,

ida = dia = d2b = 0 ⇒ da = 0. Define then δ∗[c] := [a]

(independent of the choice of b and c).

Let’s check, e.g., that the long sequence is exact on Hk(C).
• Im j∗ ⊂ Ker δ∗: for [b] ∈ Hk(B), we have δ∗j∗[b] = δ∗[jb]. By

definition of δ∗, we can choose as b itself the element that goes to

c = jb. But b is a cocycle: db = 0. Therefore, in the definition of

δ∗, ia = db = 0 ⇒ a = 0 ⇒ δ∗[jb] = [0] = 0. (Idem i∗δ∗ = 0).

• Ker δ∗ ⊂ Im j∗: if δ∗[c] = 0, the a in the definition of δ∗ is a

coboundary and the b is a cocycle: a = da′. Thus db = ida′ =

dia′, i.e., d(b− ia′) = 0. So j∗[b− ia′] = [jb− jia′] = [jb] = [c].

§25. The Mayer–Vietoris sequence

As we saw, (3) is exact for all k, hence we conclude:
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Theorem 33 (!!!!). The following long sequence of coho-

mology, called the sequence of Mayer–Vietoris, is exact:

0 → H0(M)
i∗→ H0(U)⊕H0(V )

j∗→ H0(U ∩ V )
δ∗→ · · ·

· · ·
· · · δ∗→ Hk(M)

i∗→ Hk(U)⊕Hk(V )
j∗→ Hk(U ∩ V )

δ∗→
δ∗→ Hk+1(M)

i∗→ Hk+1(U)⊕Hk+1(V )
j∗→ Hk+1(U ∩ V )

δ∗→ · · ·

And, for the same price we got the recipe to construct δ∗:

• If ω ∈ Ωk(U ∩V ), with part. of unity we get forms ωU and ωV

on U and V such that j(−ωU , ωV ) = ωV |U∩V + ωU |U∩V = ω;

• Now, if ω is closed, −dωU and dωV agree on U ∩ V (!!!), since

j(−dωU , dωV ) = dj(−ωU , ωV ) = dω = 0;

• Therefore, −dωU and dωV define a form σ ∈ Ωk+1(M), that

is clearly closed (yet not necessarily exact!). We conclude that

δ∗[ω] = [σ] ∈ Hk+1(M).

REM: If U, V and U ∩ V are connected we begin at k = 1, i.e.,

0 → H0(M)
i∗→ H0(U)⊕H0(V )

j∗→ H0(U ∩ V ) → 0,

0 → H1(M)
i∗→ H1(U)⊕H1(V )

j∗→ · · ·

are exact (since M is connected, and H0(U ∩ V )
δ∗→ H1(M) is

the zero function, since j∗ : H0(U) ⊕ H0(V ) → H0(U ∩ V ) is

surjective).

Examples: M =
⋃

iMi disjoint⇒ Hk(M) = ⊕iH
k(Mi). H

•(Sn).
H•(T 2).
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§26. The Euler characteristic

In this section we assume that all cohomologies of M have finite

dimension (we will see that this is always the case forM compact).

Definition 34. The Euler characteristic of M is the homo-

topic invariant

χ(M) :=
∑
i

(−1)ibi(M) ∈ Z,

where bk(M) :=dimHk(M) is the k-th Betti number of M .

Mayer–Vietoris + Proposition 31 ⇒

χ(M)=χ(U)+χ(V )−χ(U ∩ V ). (4)

Simplex ⇒ triangulations: always exist (by countable basis).

Theorem 35. For any triangulation of Mn it holds that

χ(Mn) =

n∑
i=0

(−1)iαk,

where αk = αk(T ) is the number of k-simplexes in T .

Proof: For each n-simplex σi of T , choose pi ∈ σo
i and pi ∈

Bpi ⊂ σo
i (think about pi as a small ball too). Let U1 be the

disjoint union of these αn balls, and Vn−1 = M \ {p1, . . . , pαn}.
Then, (4) ⇒ χ(Mn) = χ(Vn−1) + (−1)nαn.

For each (n − 1)-face τj of T , pick the “long” ball Bτj joining

the two Bpi’s of each n-simplex touching τj. Call U2 the union

of these disjoint αn−1 balls. Pick an arc (inside Bτj) joining the
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boundaries of the two Bpi’s , and let Vn−2 be the complement of

these αn−1 arcs. Again, (4)⇒ χ(Vn−1) = χ(Vn−2)+(−1)n−1αn−1.

Inductively we obtain Vn−3, · · · , V0, the last one being the union

of α0 contractible sets (each one a neighborhood of a vertex of T ),

so that χ(V0) = α0 and χ(Vk) = χ(Vk−1) + (−1)kαk.

Corolary 36. (Descartes-Euler) If a convex polyhedron has

V vertices, F faces, and E edges, then V − E + F = 2.

Corolary 37. There are only 5 Platonic solids.

Proof: If r ≥ 3 is the number of edges (= vertices) on each

face, and s ≥ 3 is the number of edges (= faces) that arrive at

each vertex, we have that rF = 2E = sV . But V − E + F =

2 ⇒ 1/s + 1/r = 1/E + 1/2 > 1/2, or (r − 2)(s − 2) < 4.

Since F = 4s/(2s+ 2r− sr) we get (r, s) = (3,3) = tetrahedron

= Fire, (4,3) = cube = Earth, (3,4) = octahedron = Air, (3,5)

= icosahedron = Water, and (5,3) = dodecahedron... which,

according to Plato, was “...used by God to distribute the (12!)

Constellations in the Universe” (I was unable to prove this last

assertion).

Exercise: Show that if M is compact and M̂ → M is a p-fold cover, then χ(M̂) =

p χ(M).

Platonic model of the solar system by Kepler; Circogonia icosahedra; Stones from 2000 AC
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STRONG advice: Watch this video about Kepler’s life, from

the spectacular Cosmos TV series (the one from the 80s!).

REM: On dimension n = 4 there are 6 regular solids (there is

one with 24 faces), and for n ≥ 5 there are only 3: the simplex

(tetrahedron), the hypercube (of course), and the hyperoctahe-

dron, that is the convex hull of {±ei}.

§27. Mayer–Vietoris: compact support

We cannot simply switch Hk by Hk
c in Mayer–Vietoris, since

ω ∈ Ωk
c (M) ̸⇒ i∗U(ω) ∈ Ωk

c (U). However, if ω ∈ Ωk
c (U), the

extension as 0 of ω, îU(ω), satisfies îU(ω) ∈ Ωk
c (M). And this

works! (j := ĵU ⊕ ĵV , i := îU − îV ):

Lemma 38. The following sequence is exact ∀k (exercise):

0 → Ωk
c (U ∩ V )

j→ Ωk
c (U)⊕ Ωk

c (V )
i→ Ωk

c (U ∪ V ) → 0.

Then, Theorem 32 + Lemma 38 ⇒

Theorem 39. The following long sequence is exact:

· · · δ∗→ Hk
c (U ∩ V )

j∗→ Hk
c (U)⊕Hk

c (V )
i∗→ Hk

c (M)
δ∗→

δ∗→ Hk+1
c (U ∩ V )

j∗→ Hk+1
c (U)⊕Hk+1

c (V )
i∗→ Hk+1

c (M)
δ∗→ · · ·

REM: Compare both Mayer–Vietoris.

REM: BEWARE not to mix them!!!

REM: Theorem 32 is a factory of theorems!
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§28. Mayer–Vietoris for pairs

Let i:N ↪→ M be a compact embedded submanifold, and k ∈ Z.
Then, W = M \N is a manifold and thus

Ωk
c (M \N)

ĵW→ Ωk
c (M)

i∗→ Ωk(N).

But this is not exact on Ωk
c (M): the kernel of i∗ are the forms

that vanish on N , while the image of ĵW are the ones that vanish

on a neighborhood of N . But we fix this with a standard trick:

Let V be a tubular neighborhood with compact closure of N ,

j : N ↪→ V the inclusion, and π : V → N a deformation retract,

i.e., π ◦ j = idN , j ◦ π ∼ idV . We construct now a sequence of

such V , V = V1 ⊃ V2 ⊃ · · ·, such that ∩iVi = N . Then, we

say that ω and ω′ on Ωk(U) for some open U ⊂ M containing

N are equivalent if there is r > i, j such that ω|Vr = ω′|Vr. The
set of these classes is a vector space Gk(N), that of “germs of

k-forms defined in a neighborhood of N”, which has an obvious

differential induced by d, and is therefore a cochain complex G =

(G•(N), d). This gives a cochain map Ωk
c (M)

î∗→ Gk(N), where

î∗(ω) = class of ω|V1.

Lemma 40. The following sequence is exact (exercise):

0 → Ωk
c (M \N)

ĵW→ Ωk
c (M)

î∗→ Gk(N) → 0.

Now, since j∗ : Hk(Vi) → Hk(N) is an isomorphism for all i

and for all k, Hk(N) is isomorphic to Hk(G) (exercise). Then,

Theorem 32 + Lemma 40 ⇒
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Theorem 41. There is a long exact sequence:

· · · → Hk
c (M\N) → Hk

c (M) → Hk(N)
δ∗→ Hk+1

c (M\N) → · · ·

In a completely analogous way to Theorem 41 we conclude:

Theorem 42. Let M be a compact manifold with boundary.

Then there exists a long exact sequence:

· · ·→Hk
c (M\∂M)→Hk(M)→Hk(∂M)

δ∗→ Hk+1
c (M\∂M)→· · ·

Corolary 43. Hk
c (Rn) ∼= Hn−k(Rn) ∼= (Hn−k(Rn))∗, ∀ k.

Proof: By Corolary 18, if B ⊂ Rn is an open ball, Hk
c (Rn) =

Hk
c (B) ∼= Hk

c (B) = Hk(B) = Hk(B) = 0, ∀ k ̸= n.

Exercise: Compute H•(Sn × Sm). Suggestion: Sn × Sm = ∂(B × Sm).

§29. Application: Jordan’s theorem

Theorem 44 (Jordan generalized). Let Mn ⊂ Rn+1 be a

connected embedded compact hypersurface. Then, Mn is ori-

entable, Rn+1 \Mn has exactly 2 connected components, one

bounded and one not, and Mn is the boundary of each one.

Proof: By Theorem 41 and Corolary 43 we have that

0 ∼= Hn
c (Rn+1) → Hn(Mn) → Hn+1

c (Rn+1 \M) → Hn+1
c (Rn+1) ∼= R → 0.

That is, dimHn(Mn) + 1 = b0(Rn+1 \ Mn) ≥ 2 (Corolary 30).

Hence, by Theorem 23 and Theorem 24, Hn(Mn) ∼= R, Mn is

orientable, and #{connected components of Rn+1 \ Mn} = 2.

By the same argument for winding numbers, each point of Mn is

arbitrarily close to points in both connected components.
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Corolary 45. Neither the Klein bottle nor the projective

plane can be embedded in R3.

§30. Poincaré duality

Let U ⊂ Rn open bounded and star shaped with respect to 0,

i.e.,

U = Uρ = {tx : 0 ≤ t < ρ(x), x ∈ Sn−1}
for some bounded function ρ : Sn−1 → R>0.

Lemma 46. If ρ ∈ C∞, U is diffeomorphic to Rn.

Proof: Clearly we can assume ρ≥ 1, so just choose the diffeo-

morphism h:B1 →U as h(tx) = (t + (ρ(x) − 1)f (t))x, for any

smooth function f with f = 0 on [0, ϵ), f ′ ≥ 0, f (1) = 1.

But ρ does not even need to be continuous... yet, it is semicon-

tinuous:

Lemma 47. Given x ∈ Sn−1 and ϵ > 0, there exist a neigh-

borhood Vx = V (x, ϵ) of x such that ρ|Vx > ρ(x)− ϵ.

Proof: U is open.

Lemma 48. H•(U) ∼= H•(Rn) and H•
c (U) ∼= H•

c (Rn).

(In fact, U is diffeomorphic to Rn even if ρ is not C∞, but

this is a difficult result).

Proof: The first is obvious since U is contractible. By Corolary 43

we thus only need to verify that Hk
c (U) = 0 for k < n. But

if [ω] ∈ Hk
c (U), suppose that there is ρ ∈ C∞(R) such that

K = sup(ω) ⊂ Uρ ⊂ U (i.e., ρ < ρ). Then Uρ
∼= Rn and
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[ω] ∈ Hk
c (Uρ) = 0. So there is η ∈ Ωk−1

c (Uρ) ⊂ Ωk−1
c (U) with

ω = dη.

To show that there exists such a ρ, let 2ϵ = d(K,Rn \ U) > 0

and, for x ∈ Sn−1, t(x) := max{t : tx ∈ K} ≤ ρ(x) − 2ϵ. At

a neighborhood Vx of x we have that t|Vx < ρ(x) − ϵ < ρ|Vx by

Lemma 47 and the definition of ϵ. Pick a finite subcover {Vxi} of

Sn−1 and a partition of unity {φi} subordinated to it, and define

ρ =
∑

i(ρ(xi)− ϵ)φi. Then, t < ρ < ρ, and K ⊂ Uρ ⊂ U .

Definition 49. We say that Mn is of finite type if there is a

finite covering U of Mn such that every nonempty intersection V

of elements of U satisfies that H•(V ) = H•(Rn) and H•
c (V ) =

H•
c (Rn). Such a covering U is called good.

Lemma 50. Every compact manifold has a good covering.

Proof: Totally convex neighborhoods (Riemannian geometry).

Proposition 51. If M is of finite type (e.g. M compact),

then H•(M) and H•
c (M) have finite dimension.

Proof: Induction on # U using Mayer–Vietoris.

Now, observing that Hk(M) ∧Hr
c (M) ⊂ Hk+r

c (M) we obtain:

Theorem 52 (Poincaré duality). If Mn is connected and

orientable, the linear function PD:Hk(M) → (Hn−k
c (M))∗,

PD([ω])([σ]) :=

∫
M

ω ∧ σ

is an isomorphism, for all k.
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Proof: The proof for manifolds of finite type follows by induction

in the number of elements of a good covering by the next lemma.

Lemma 53. If U and V are open such that PD is an iso-

morphism for all k in U , V and U ∩ V , then PD is an iso-

morphism for all k in U ∪ V .

Proof: Let M = U ∪ V and l = n− k. Mayer–Vietoris gives

Hk−1(U)⊕Hk−1(V ) → Hk−1(U ∩ V ) → Hk(M) → Hk(U)⊕Hk(V ) → Hk(U ∩ V )

↓ PD ⊕ PD ↓ PD ↓ PD ↓ PD ⊕ PD ↓ PD

(H l+1
c (U)⊕H l+1

c (V ))∗ → H l+1
c (U ∩ V )∗ → H l

c(M)∗ → (H l
c(U)⊕H l

c(V ))∗ → H l
c(U ∩ V )∗

where all vertical maps are isomorphisms, except maybe the mid-

dle one. Moreover, all squares commute up to signs (exercise),

and hence up to some signs in the PD’s everything commutes.

The lemma follows now from the five Lemma (prove!), which says

precisely that the middle one must also be an isomorphism.

Corolary 54. If Mn is compact, connected and orientable,

then bk(M
n)=bn−k(M

n). In particular χ(Mn)=0 if n is odd.

Corolary 55. Theorem 25 follows from Poincaré duality.

Exercise. Show that the signature s(M) of a compact oriented 4n-manifold is an
oriented cobordism invariant. Namely, from Theorem 52 we know that φM = PD :
H2n(M4n)×H2n(M4n) → R is symmetric and non-degenerate, so we define

s(M) := dimH2n(M4n)− 2 index(φM) = coindex(φM)− index(φM).

Show that, if there is a compact oriented manifold W 4n+1 such that ∂W = M4n∪−N4n,
then s(M) = s(N). (SUG: First notice that M does not need to be connected, so you
can assume N = ∅. Then, if i : M → W is the inclussion, show that Im i∗ is isotropic
for φM by Stokes. Finally, show that Im i∗ has half of the dimension of H2n(M4n) using
the connection homomorphism δ∗ and Stokes again.)
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Exercise. Using the Five Lemma prove the Künneth Formula, which is true in general,
when one of the factors is of finite type:

Hk(M ×N) = ⊕i+j=kH
i(M)⊗Hj(N), ∀k.

30.1 The Poincaré sphere

Henri Poincaré conjectured that a 3-manifold with the homology of a sphere must be

homeomorphic to the 3-sphere S3. Poincaré himself found a counterexample, essentially

creating the concept of fundamental group. Indeed, by Hurewicz theorem, it would be

enough to take S3/G, with G ⊂ SO(4) a nontrivial perfect group (i.e., G = [G,G])

acting freely. The simplest such example that we can think of is G = A5 ⊂ SO(3) as

the order 60 icosahedral group since A5 is simple. This almost works, except that G

has to be extended to the binary icosahedral group G = 2A5 of order 120, which is still

perfect, though not simple (or work with A5 but on SO(3) ∼= S3/{±I} instead) . Then,

H1(S3/G,Z) = G/[G,G] = 0, and H2(S3/G) = H1(S3/G) = 0 by e.g. Poincaré duality.

Thus, H∗(S3/G) = H∗(S3), yet S3/G is not simply connected. It is remarkable that

this is the only example with finite fundamental group (there are plenty with infinite

fundamental group). After Poincaré found this counterexample to his own conjecture,

he made another one: the 3-sphere is the only simply connected homology 3-sphere.

This is of course the very famous Poincaré conjecture, proved (among other things!) by

G.Perelman in 2002. Notice that, by Perelman’s result, any homology 3-sphere with

finite fundamental group must be S3/G, with G ⊂ SO(4) perfect, reducing the original

problem to a group one: find the finite perfect subgroups of SO(4) that act freely. It

turns out that 2A5 is the only one!

§31. Singular homology and de Rham Theorem

As seen in Section 18, we have the boundary operator between

chains (of simplex) with any abelian group G as coefficients,

∂k : Ck(M) → Ck−1(M), that satisfies ∂2 = 0. That is, chains
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form a complex (for any topological space). The homology of this

complex is called the singular homology of M :

Hk(M) = Hk(M ;G) := Ker ∂k/Im ∂k+1.

Now, ifM = U∪V , the composition of chains with the inclusions

gives the next (obviously exact) Mayer–Vietoris sequence:

0 → Ck(U ∩ V ) → Ck(U)⊕ Ck(V ) → Ck(U + V ) → 0,

where Ck(U + V ) are the k-chains of M that decompose as sum

of k-chains on U and V . By Theorem 32 we get then the cor-

responding long exact sequence on homology. But, with an idea

conceptually similar to the one used to construct G (“barycentric

decomposition”) we prove (with a bit of work) that

H•(U ∪ V ) ∼= H•(U + V ).

Therefore we have the long exact sequence of singular homology:

· · ·Hk+1(M) → Hk(U ∩ V ) → Hk(U)⊕Hk(V ) → Hk(M) → Hk−1(U ∩ V ) → · · · (5)

Compare with Theorem 39 and use Theorem 9!

Exercise 2. Prove Exercise 3 on page 19 using Z2 relative homology: if M is compact

then there is no retraction f : M → ∂M . (Suggestion: 0 → Hn−1(M,∂M ;Z2) ∼= Z2 →

Hn−1(∂M ;Z2) ∼= Z2 → Hn−1(M ;Z2)).

For the singular (differentiable) homology H•(M ;R), by Stokes

and in an analogous way to Poincaré duality (Lemma 53 in the

proof of Theorem 52), we prove the following (recall Section 18):

Theorem 56 (deRham). For every manifold M , the linear
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functional DR :Hk(M)→ (Hk(M ;R))∗ given by

DR([ω])([c]) =

∫
c

ω

is an isomorphism, for all k.

Proof: See here for a general argument, even for manifolds that

are not of finite type.

The End. :o)

References

[Ha] Hatcher, A.: Algebraic topology. Cambridge University

Press, 2002.

[Hi] Hitchin, N.: Differentiable manifolds. Lecture notes here.

[Hr] Hirsch, M.: Differential topology. Graduate text in Math-

ematics 33, Springer-Verlag, New York, 1972.

[Le] Lee, J.: Introduction to smooth manifolds. University of

Washington, Washington, 2000.

[Tu] Tu, L: An introduction to manifolds. Second edition. Uni-

versitext. Springer, New York, 2011.

[Sp] Spivak, M.: The comprehensive introduction to differen-

tial geometry.. Vol. I. Third edition. Publish or Perish, Inc.,

Wilmington, Del., 1979.

[Zi] Zinger, A: Notes on vector bundles.. Lecture notes here.

41

http://luis.impa.br/aulas/analise/DeRhamIsomorphism.pdf
http://luis.impa.br/aulas/anvar/Hitchin_DifferentiableManifolds.pdf
http://luis.impa.br/aulas/anvar/Zinger_NotesOnVectorBundles.pdf

	[gindex]Manifolds
	[gindex]Differentiable functions between manifolds
	[gindex]The moduli space
	[gindex]Quotients
	[gindex]The tangent space
	[gindex]Submanifolds
	[gindex]Tangent and vector bundles (see zi)
	[gindex]Partitions of unity
	[gindex]Orientation
	[gindex]Differential 1–forms
	[gindex]Multilinear algebra
	[gindex]Differential k – forms and tensor fields
	[gindex]Orientation and n – forms
	[gindex]Exterior derivative: VIP!!
	[gindex]Manifolds with boundary
	[gindex]Integration (Riemann)
	[gindex]Stokes Theorem 1.0
	[gindex]Stokes Theorem 2.0 (Spivak vol.1 chap.8)
	[gindex]De Rham cohomology (Spivak, vol.1 chap.8)
	[gindex]Homotopy invariance (Spivak, vol.1 chap.8)
	[gindex]Integrating cohomology: degree (Spivak, vol.1 chap.8)
	[gindex]Application: winding number (video 25)
	[gindex]The birth of exact sequences
	[gindex]Complexes (Spivak, Vol. I, Chap. 11)
	[gindex]The Mayer–Vietoris sequence
	[gindex]The Euler characteristic
	[gindex]Mayer–Vietoris: compact support
	[gindex]Mayer–Vietoris for pairs
	[gindex]Application: Jordan's theorem
	[gindex]Poincaré duality
	The Poincaré sphere

	[gindex]Singular homology and de Rham Theorem

